1. D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys”, 3rd ed., (2008).
2. 李勝隆,”熱處理金屬材料原理與應用”,全華圖書股份有限公司(2014)。
3. D.E. Laughlin, Spinodal decomposition in age hardening copper-titanium alloys, Acta Metall., 23, 329 (1975).
4. W.A. Soffa, D.E. Laughlin, High-strength age hardening copper–titanium alloys: redivivus, Prog. Mat. Sci., 49, 347 (2004).
5. K. Sato, K. Tagawaand, Y. Inoue, Age hardening of an Fe-30Mn-9Al-0.9 C alloy by spinodal decomposition, Scripta Metall., 22, 899 (1988).
6. K. Sato, K. Tagawaand, Y. Inoue, Mater. Sci. Eng. A, 111, 45 (1989)
7. K. Sato, K. Tagawa, Y. Inoue, Modulated structure and magnetic properties of age-hardenable Fe-Mn-Al-C alloys, Metall. Trans. A, 21, 5 (1990).
8. Y.G. Kim, Y.S. Park, J.K. Han, Low temperature mechanical behavior of microalloyed and controlled-rolled Fe-Mn-Al-CX alloys, Metall. Trans. A, 16, 1689 (1985).
9. K.H. Han, On the coarsening of the modulated structure during aging of austenitic Fe-Mn-Al-C alloys prepared by the rapid solidification process, Mater. Sci. Eng. A, 197, 223 (1995).
10. W.K. Choo, J.H. Kim, J.C. Yoon, Microstructural change in austenitic Fe-30.0 wt% Mn-7.8 wt% Al-1.3 wt% C initiated by spinodal decomposition and its influence on mechanical properties, Acta Mater., 45, 4877 (1997).
11. M.C. Li, H. Chand, P.W. Kao, D. Gan, The effect of Mn and Al contents on the solvus of κ phase in austenitic Fe-Mn-Al-C alloys, Mater. Chem. Phys., 59, 96 (1999).
12. C.S. Wang, C.N. Hwang, C.G. Chao, T.F. Liu, Phase transitions in an Fe–9Al–30Mn–2.0 C alloy, Scripta Mater., 57, 809 (2007).
13. W.A. Soffa, D.E. Laughlin, Decomposition and ordering processes involving thermodynamically first-order order→disorder transformations, Acta Metall., 37, 3019 (1989).
14. R. Oshima, C.M. Wayman, Fine structure in quenched Fe-Al-C steels, Metall. Trans., 3, 2163 (1972).
15. 羅翊洋,“鐵-13鎵合金之磁彈性與機械性質研究”,國立台灣科技大學,碩士論文 (2014)。16. R.E. Reed-Hill, Physical Metallurgy Principle, 3rd ed., (1992).
17. G.E. Dieter, Mechanical Metallurgy, 132 (1988).
18. K.H. Hwang, C.M. Wan, J.G. Byrne, Mat. Sci. Eng. A, 132, 161 (1991).
19. E. Robert, Physical Metallurgy Principles, 3rd ed,. (2002).
20. A.G. Crocker, J. De Phys. Colloque C4, 43, 209 (1982).
21. Z. Nishiyama, Martensitic Transformation, Academic Press (1978).
22. 崔占全、王昆林、吳潤,金屬學與熱處理,北京大學出版社,236 (2010)。
23. L. Cheng, X.L. Wan, K.M. Wu, Three-dimensional morphology of grain boundary Widmanstätten ferrite in a low carbon low alloy steel, Mater. Char., 61, 192 (2010).
24. 林郁珊,“以方位影像顯微學分析鐵錳鋁合金內沃斯田體晶粒的麻田散體相變化”,國立台灣科技大學,碩士論文 (2014)。25. C.N. Hulme-Smith, I. Lonardelli, A.C. Dippel, H.K.D.H. Bhadeshia, Experimental evidence for non-cubic bainitic ferrite, Scripta Metall., 69, 409, (2013).
26. J.H. Jang, H.K.D.H. Bhadeshia, D.W. Suh, Solubility of carbon in tetragonal ferrite in equilibrium with austenite, Scripta Metall., 68, 195, (2013).
27. J.Y. Yan, A.V. Ruban, Configurational thermodynamics of C in body-centered cubic/tetragonal Fe: A combined computational study, Comput. Mater. Sci, 147, 293, (2018).
28. D.N. Shackleton, P.M. Kelly, The crystallography of cementite precipitation in the bainite transformation Cristallographie de la precipitation de cementite dans la transformation bainitique Die kristallographie der zementitausscheidung bei bainit-umwandlungen, Acta Metall., 15, 979 (1967).
29. K.H. Kuo, C.L. JIA, Crystallography of M23C6 and M6C precipitated in a low alloy steel, Acta Metall., 33 (6), 991 (1985).
30. J. Janovec, M. Svoboda, A. Vyrostkova, A. Kroupa, Time–temperature–precipitation diagrams of carbide evolution in low alloy steels, Mater. Sci. Eng., A, 402, 288 (2005).
31. G. Spanos, H.I. Aaronson, Morphology, crystallography and mechanism of sympathetic nucleation of proeutectoid cementite plates, Scripta Metall., 22, 1537 (1988).
32. D.H. Huang, G. Thomas, Metallography of bainitic transformation in silicon containing steels, Met. Trans., 8A, 1661, (1977).
33. Y.A. Bagaryatskii, The probable mechanism of the martensite decomposition, Dokl Akad Nauk SSSR, 73, 1161 (1950).
34. 周宇正,“1.0碳過共析鋼內spinodal相分離與序化相變化的研究”,國立台灣科技大學,碩士論文 (2018)。35. 李孟倫,“0.45碳亞共析鋼內spinodal相分離與序化相變化的研究”,國立台灣科技大學,碩士論文 (2018)。36. 近角聰信,(張煦、李學養譯),“磁性物理學”,聯經出版事業公司 (1982)。
37. W.F. Smith,(李春穎、許煙明、陳忠仁譯),“材料科學與工程”高麗圖書有限公司 (1994)。
38. 金重勳,磁性技術手冊,中華民國磁性技術協會出版 (2002)。
39. C.N. Hulme-Smith, I. Lonardelli, A.C.Dippel, H.K.D.H. Bhadeshia, Experimental evidence for non-cubic bainitic ferrite, Scripta Mater. 69 409 (2013)
40. Y.J. Hu, J. Li, K.A. Darling, W.Y. Wang, B.K. Vanleeuwen, X.L. Liu, L.J. Kecskes, E.C. Dickey, Z.K. Liu, Nano-sized superlattice clusters created by oxygen ordering in mechanically alloyed Fe alloys, Sci Rep., 5, 11772, (2015).