跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/08 17:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳品均
研究生(外文):Pin-Chun Chen
論文名稱:稀薄氣體從滑移流到自由分子流區通過微流道之氣體行為探討
論文名稱(外文):Investigation of the behaviors of rarefied gas flowing through the microchannel from the slip flow regime to the free molecular flow regime
指導教授:蘇裕軒
指導教授(外文):Yu-Hsuan Su
口試委員:曾修暘田維欣
口試委員(外文):Hsiu-Yang TsengWei-Hsin Tien
口試日期:2019-07-18
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:99
中文關鍵詞:微流道自由分子流滑移流切線動量修正係數
外文關鍵詞:MicrochannelTangential momentum accommodation coefficient(TMAC)Slip flowMolecular flow
相關次數:
  • 被引用被引用:1
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗使用微機電技術製造出微流道系統來探討氣體在流道中的運動行為。本實驗氣體設定為氦氣,氮氣和氬氣,並且使氣體從滑移流區到自由分子流區通過矩形微流道(寬390um,深10.1um,長10000um ),並在等溫狀態(298K)的流體動力學行為研究。

微流道在矽晶圓上構建,並且用玻璃(Pyrex 7740)通過陽極鍵結接合確保實驗過程中內部只存選用的實驗氣體。並且使用Arkilic的雙槽累積系統間接確定質量流率(10^-9到10^-13 kg/s)。使用此量測方式比起傳統的單槽累積量測系統最大的差異在於可以將溫度所造成的質量流率變化量降低,並且準確的量測出由實驗氣體流入鋼瓶內所造成的質量流率變化量。

結果發現在滑移流狀態下主要影響質量流率的參數為上下游所造成的壓差變化。並且切線動量修正係數(TMAC)位於0.01<Kn_m<0.7時基於二階擬合,氦氣,氮氣和氬氣的TMAC分別為0.856,0.878和0.863。並且我們的實驗數據表明,Veltzke所提出的擴散模型低估了從滑移流到過渡流的質量流率。

在自由分子流中,我們將Knudsen,Smoluchowsky和Clausing三者的模型加入至我們的討論中,透過系統性的實驗得出Knudsen所估計的質量流率模型可以獲取質量流率的下限,而Smoluchowsky和Clausing的估計的模型明則顯高估了自由分子到過渡區域的質量流率。並且如果出口壓力為固定的,則在自由分子流到過渡區中的質量流率為線性趨勢,並且取決於壓力差(p_i-p_o)
This experiment used microelectromechanical technology to create a microchannel system in order to investigate the behavior of gas in the microchannel. The experiment gas included helium, nitrogen, argon, and the isothermal steady gaseous flows (298K). The gas through a rectangular microchannel(390um wide, 10.1 um deep, and 10000 um long)from the slip flow region to the free molecular flow region is conducted extensively.The microchannel is constructed on a silicon chip capped with a glass (Pyrex 7740) cover plate via anodic bonding to ensure that only experimental gas inside the microchannel. The minute mass flow rates (10^-9 to 10^-13 kg/s) are determined indirectly using the dual-tank constant-volume mass accumulation system designed by Arkilic.

The result found that within the slip flow regime the TMACs for helium, nitrogen, and argon determined by quadratic fitting for 0.01<Kn_m<0.7 are 0.856, 0.878, and0.863, respectively. Our experimental data indicate that Veltzke's diffusion model underestimates the mass flow rates for flows from slip to transition regimes.In free molecular regime, we also compare the model of Knudsen, Smoluchowsky and Clausing. Through systematic experiments, Knudsen's equation set a lower bound on the mass flow rates that can be obtained.Therefore, if the outlet pressure is fixed, the mass flow rates for flows within the free molecular to transition regime depends linearly on the differential pressure(p_i-p_o).
摘要.......................... i
英文摘要...................... ii
致謝.......................... iii
目錄.......................... vi
圖目錄........................ ix
表目錄........................ x
第一章導論.......................... 1
1.1 研究背景.......................... 1
1.2 文獻回顧.......................... 4
1.3 論文架構.......................... 6
第二章理論分析.......................... 7
2.1 連續流區.......................... 7
2.1.1 圓管流.......................... 7
2.1.2 二維平板流.......................... 8
2.2 滑移流區.......................... 9
2.2.1 滑移速度之邊界條件........................... 9
2.2.2 滑移流的質量流率推導.......................... 11
2.2.3 二階滑移速度之邊界條件........................... 20
2.2.4 質量流率與切線動量修正係數的關係.................. 22
2.3 自由分子流區....... 23
2.4 過渡流區........... 25
2.4.0.1 對流質量流率推導. . . . . . . . . . . . . . . . . . . 28
2.4.0.2 擴散質量流率推導. . . . . . . . . . . . . . . . . . . 30
2.4.0.3 總質量流率. . . . . . . . . . . . . . . . . . . . . . . 30
第三章微流道晶片與陽極封裝................... 32
3.1 微流道晶片................. 32
3.2 陽極封裝.............. 35
3.2.1 陽極封裝原理.......... 35
3.2.2 陽極封裝設備..... 37
3.2.3 陽極封裝鍵結步驟....................... 39
3.3 介面接合................ 40
第四章量測方法與實驗設備........ 41
4.1 量測方法........................ 41
4.1.1 定壓量測........... 41
4.1.2 定容量測......... 41
4.2 實驗設備.......... 44
4.3 實驗參數............. 48
4.3.1 實驗氣體選用..... 48
4.3.2 實驗分子模型選用....................................... 51
4.4 實驗步驟.................. 51
4.4.1 實驗過程...... 51
第五章實驗結果討論.......... 54
5.1 參數估算驗證......... 54
5.2 滑移流區到過渡流區..... 56
5.3 過渡流區到自由分子流區................. 63
第六章結論與未來展望....... 78
6.1 結論.............. 78
6.2 未來展望.......... 79
參考文獻............... 86
[1] E. B. Arkilic, M. Schmidt, and K. Breuer, “Sub-nanomol per second flow measurement near atmospheric pressure,” Experiments in fluids, vol. 25, no. 1, pp. 37–41, 1998.
[2] R. Clausius, “Ueber die art der bewegung, welche wir wärme nennen,” Annalen der Physik, vol. 176, no. 3, pp. 353–380, 1857.
[3] R. Clausius, “On the mean length of the paths described by the separate molecules of gaseous bodies on the occurrence of the molecular motion: together with some other remarks upon the mechanical theory of heat,” Phil. Mag., vol. 17, pp. 81–91, 1858.
[4] J. C. Maxwell, “Vii. on stresses in rarified gases arising from inequalities of temperature,”Philosophical Transactions of the Royal Society of London, vol. 170, pp. 231–256, 1879.
[5] D. Hilbert, “Begrundungderkinetischen gastheorie,” Mathematische Annalen, vol. 72,pp. 562–577, 1912.
[6] D. Burnett, “The distribution of velocities in a slightly non-uniform gas,” Proceedings of the London Mathematical Society, vol. s2-39, no. 1, pp. 385–430, 1935.
[7] D. Burnett, “The distribution of molecular velocities and the mean motion in a nonuniform gas,” Proceedings of the London Mathematical Society, vol. s2-40, no. 1,pp. 382–435, 1936.
[8] M. Slemrod, “Hilbert’s sixth problem and the failure of the boltzmann to euler limit,”Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences, vol. 376, p. 20170222, 04 2018.
[9] M. Knudsen, “Die gesetze der molekularströmung und der inneren reibungsströmung der gase durch röhren,” Annalen der Physik, vol. 333, no. 1, pp. 75–130, 1909.
[10] K. Pong, “Non-linear pressure distribution in uniform microchannels,” in Appl. Microfabrication to Fluid Mechanicsk, vol. 5, pp. 51–56, 1994.
[11] J. C. Harley, Y. Huang, H. H. Bau, and J. N. Zemel, “Gas flow in micro-channels,”Journal of Fluid Mechanics, vol. 284, p. 257–274, 1995.
[12] E. B. Arkilic, M. A. Schmidt, and K. S. Breuer, “Gaseous slip flow in long microchannels,”Journal of Microelectromechanical Systems, vol. 6, pp. 167–178, June 1997.
[13] D. Seibt, E. Vogel, E. Bich, D. Buttig, and E. Hassel, “Viscosity measurements on nitrogen,”Journal of Chemical and Engineering Data, vol. 51, no. 2, pp. 526–533, 2006.
[14] R. K. Prud’Homme, “Laminar compressible flow in a tube,” Applied Scientific Research,vol. 43, pp. 67–74, Mar 1986.
[15] E. B. Arkilic and K. S. Breuerand M. A. Schmidt., “Mass flow and tangential momentumaccommodation in silicon micromachined channels,” Journal of Fluid Mechanics, vol. 437, p. 29–43, 2001.
[16] G. E. K. Ali Beskok, “Report: A model for flows in channels, pipes, and ducts at micro and nano scales,” Microscale Thermophysical Engineering, vol. 3, no. 1, pp. 43–77, 1999.
[17] J. Maurer, P. Tabeling, P. Joseph, and H. Willaime, “Second-order slip laws in microchannels for helium and nitrogen,” Physics of Fluids, vol. 15, no. 9, pp. 2613–2621, 2003.
[18] T. Ewart, P. Perrier, I. Graur, and J. Gilbert Meólans, “Mass flow rate measurements in gas micro flows,” Experiments in Fluids, vol. 41, pp. 487 – 498, 2006.
[19] N. Dongari, A. Sharma IITK, and F. Durst, “Pressure-driven diffusive gas flows in micro-channels: From the knudsen to the continuum regimes,” Microfluidics and Nanofluidics, vol. 6, pp. 679–692, 05 2009.
[20] P. Perrier, I. A. Graur, T. Ewart, and J. G. Méolans, “Mass flow rate measurements in microtubes: From hydrodynamic to near free molecular regime,” Physics of Fluids, vol. 23, no. 4, p. 042004, 2011.
[21] H. Yamaguchi, Y. Matsuda, and T. Niimi, “Tangential momentum accommodation coefficient measurements for various materials and gas species,” Journal of Physics: Conference Series, vol. 362, p. 012035, may 2012.
[22] T. Veltzke and J. Thöming, “An analytically predictive model for moderately rarefied gas flow,” Journal of Fluid Mechanics, vol. 698, p. 406–422, 2012.
[23] A. Beskok and G. E. Karniadakis, “Simulation of heat and momentum transfer in complex microgeometries,” Journal of Thermophysics and Heat Transfer, vol. 8, no. 4, pp. 647–655, 1994.
[24] F. J. Alexander, A. L. Garcia, and B. J. Alder, “Direct simulation monte carlo for thin film bearings,” Physics of Fluids, vol. 6, no. 12, pp. 3854–3860, 1994.
[25] Y. Ji, K. Yuan, and J. Chung, “Numerical simulation of wall roughness on gaseous flow and heat transfer in a microchannel,” International Journal of Heat and Mass Transfer, vol. 49, no. 7, pp. 1329 – 1339, 2006.
[26] G. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows: Hauptbd. The Oxford engineering science series, Clarendon Press, 1994.
[27] C. Cercignani and A. Daneri, “Flow of a rarefied gas between two parallel plates,”Journal of Applied Physics, vol. 34, no. 12, pp. 3509–3513, 1963.
[28] S. K. Loyalka, “Momentum and temperature slip coefficients with arbitrary accommodation at the surface,” The Journal of Chemical Physics, vol. 48, no. 12, pp. 5432–5436, 1968.
[29] S. K. Loyalka, “Approximate method in the kinetic theory,” The Physics of Fluids, vol. 14, no. 11, pp. 2291–2294, 1971.
[30] S. Loyalka, N. Petrellis, and T. S. Storvick, “Some numerical results for the bgk model: Thermal creep and viscous slip problems with arbitrary accomodation at the surface,”Physics of Fluids, vol. 18, 09 1975.
[31] F. Sharipov and V. Seleznev, “Data on internal rarefied gas flows,” Journal of Physical and Chemical Reference Data, vol. 27, no. 3, pp. 657–706, 1998.
[32] A. Agrawal and S. V. Prabhu, “Survey on measurement of tangential momentum accommodation coefficient,” Journal of Vacuum Science & Technology A, vol. 26, no. 4, pp. 634–645, 2008.
[33] F. M. White, Viscous Fluid Flow. McGraw-Hill, 1991.
[34] T. EWART, P. PERRIER, I. A. GRAUR, and J. G. MÉOLANS, “Mass flow rate measurements in a microchannel, from hydrodynamic to near free molecular regimes,”Journal of Fluid Mechanics, vol. 584, p. 337–356, 2007.
[35] I. A. Graur, P. Perrier, W. Ghozlani, and J. G. Méolans, “Measurements of tangential momentum accommodation coefficient for various gases in plane microchannel,”Physics of Fluids, vol. 21, no. 10, p. 102004, 2009.
[36] S. COLIN, P. LALONDE, and R. CAEN, “Validation of a second-order slip flow model in rectangular microchannels,” Heat Transfer Engineering, vol. 25, no. 3, pp. 23–30, 2004.
[37] S. Albertoni, C. Cercignani, and L. Gotusso, “Numerical evaluation of the slip coefficient,”The Physics of Fluids, vol. 6, no. 7, pp. 993–996, 1963.
[38] M. Knudsen, “Die molekularströmung der gase durch offnungen und die effusion,” Annalen der Physik, vol. 333, no. 5, pp. 999–1016, 1909.
[39] W. Gaede, “Die äußere reibung der gase,” Annalen der Physik, vol. 346, no. 7, pp. 289–336, 1913.
[40] H. Adzumi, “Studies on the flow of gaseous mixtures through capillaries. i the viscosity of binary gaseous mixtures,” Bulletin of the Chemical Society of Japan, vol. 12, no. 5, pp. 199–226, 1937.
[41] W. G. Pollard and R. D. Present, “On gaseous self-diffusion in long capillary tubes,”Phys. Rev., vol. 73, pp. 762–774, 04 1948.
[42] S. L. Thompson and W. R. Owens, “A survey of flow at low pressures,” Vacuum, vol. 25, no. 4, pp. 151 – 156, 1975.
[43] L. B. Loeb, The kinetic theory of gases,. New York and London: McGraw-Hill, 2 ed., 1934.
[44] B. T. Gorodnov and P. E., “Free molecular flow of a gas in a rectangular channel of finite size,” Soviet Physics Journal, vol. 13, pp. 818–819, 06 1970.
[45] M. v. Smoluchowski, “Zur kinetischen theorie der transpiration und diffusion verdünnter gase,” Annalen der Physik, vol. 338, no. 16, pp. 1559–1570, 1910.
[46] P. Clausing, “The flow of highly rarefied gases through tubes of arbitrary length,” Journal of Vacuum Science and Technology, vol. 8, no. 5, pp. 636–646, 1971.
[47] F. Durst, J. Gomes, and R. Sambasivam, “Thermo fluid dynamics: Do we solve the right kind of equations?,” Turbulence, Heat and Mass Transfer, vol. 5, pp. 3–18, 01 2006.
[48] S. Chapman, T. Cowling, D. Burnett, and C. Cercignani, The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge Mathematical Library, Cambridge University Press, 1990.
[49] E. Kennard, Kinetic theory of gases: with an introduction to statistical mechanics. International series in pure and applied physics, McGraw-Hill, 1938.
[50] J.A.Dziuban, Bonding in Microsystem Technology. Springer, 2006.
[51] E. May, R. Berg, and M. R. Moldover, “Reference viscosities of h2, ch4, ar, and xe at low densities,”International Journal of Thermophysics, vol. 28, pp. 1085–1110, 10 2007.
[52] H. L. Johnston and E. R. Grilly, “Viscosities of carbon monoxide, helium, neon, and argon between 80° and 300°k. coefficients of viscosity.,” The Journal of Physical Chemistry, vol. 46, no. 8, pp. 948–963, 1942.
[53] J. Kestin and W. Leidenfrost, “The viscosity of helium,” Physica, vol. 25, no. 1, pp. 537 – 555.
[54] G. C. Maitland and E. B. Smith, “Critical reassessment of viscosities of 11 common gases,” Journal of Chemical & Engineering Data, vol. 17, no. 2, pp. 150–156, 1972.
[55] C. Evers, H. W. Lösch, and W. Wagner, “An absolute viscometer-densimeter and measurements of the viscosity of nitrogen, methane, helium, neon, argon, and krypton over a wide range of density and temperature,” International Journal of Thermophysics, vol. 23, pp. 1411–1439, 11 2002.
[56] J. J. Moré, “The levenberg-marquardt algorithm: implementation and theory,” in Numerical analysis, pp. 105–116, Springer, 1978.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top