(3.236.6.6) 您好!臺灣時間:2021/04/22 19:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳廣亮
研究生(外文):Guang-Liang Chen
論文名稱:基於桁架優化與體素後處理的具晶格結 構之三維列印通孔鞋中底設計
論文名稱(外文):3D Printable Porous Shoe Midsole Design with Cellular Structures Based on Truss Optimization and Voxel Post-Processing
指導教授:林柏廷林柏廷引用關係
指導教授(外文):Po-Ting Lin
口試委員:林宗翰陳品銓張敬源林柏廷
口試委員(外文):Tzung-Han LinPin-Chuan ChenChing-Yuan ChangPo-Ting Lin
口試日期:2019-07-11
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:121
中文關鍵詞:拓樸優化積層製造桁架尺寸優化分群優化三維模糊卷積
外文關鍵詞:Topology optimizationAdditive manufacturingTruss size optimizationClustering optimization3D blur convolution
相關次數:
  • 被引用被引用:0
  • 點閱點閱:41
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
拓樸優化是門廣泛應用在各領域的結構優化方法,能幫助設計者在給定的邊界條件與體積限制下計算出最佳的結構。在積層製造技術尚未發達前,複雜的拓樸結構製造上有相當高的難度,但現今積層製造技術已日趨成熟,大幅減低了拓樸結構製造的成本,也使更多拓樸設計能運用在實際生活上。目前已經有學者嘗試以拓樸優化設計通孔鞋中底結構,為了計算出高精度的設計,該設計採用大量的有限元素網格,因此需要大量的運算才能完成該拓樸結構。有鑑於此,本研究開發了一套快速的通孔鞋中底設計演算法,建立在桁架尺寸優化與體素後處理技術上,其優化後的模型為近似通孔之中底結構。演算法流程是先在設計空間中建立好桁架結構,將桁架中的桿件依應力大小分群,利用分群優化演算法計算出各桿件的最佳截面面積,接著將所有桿件做布林運算得出最佳的桁架結構,再利用體素後處理技術對結構做三維模糊卷積,以達到修邊與體積補償。本文最後分別以女鞋楦與男鞋楦自動生成中底通孔中底結構去驗證此演算法的可行性,證實此優化流程能快速且有效的優化出最佳中底結構。
Topology optimization (TO) is a method of structural optimization which widely used in many fields. The concept of TO is to get the best structure in the design domain under the volume constraints. Before additive manufacturing (AM) evolved to become a common method to produce components, the complicate topology structure is hard to be fabricated. However, AM was substantial growing in the past decades and the difficulty of topology structure fabrication had been dramatically reduced. Therefore, more and more topology structure can be used in our daily life. Now, some researcher started to use TO to design porous midsole structure. In order to calculate with high precision, the design needs amounted mesh in finite element and thus the computation task is very heavy. This research presents a fast approach of porous midsole design which is based on truss size optimization and post-processing of voxelization and gets the optimal porous-like structure. The algorithm flow starts with building the truss in the design domain and clustering the truss member by simulating each member stress with loading. Then it uses clustering optimization algorithm to find the best size of each truss member. After that, the algorithm uses Boolean operation to unite all members of the truss and 3D blur convolution to fillet the truss structure and compensate the volume error. In the final, we use two shoe lost to verify the feasibility of this methods and the results show that this is a fast and efficiency manner.
摘 要
ADSTRACT
誌謝
目錄
符號索引
圖表索引
第一章、序論
1.1前言
1.2動機
1.3文獻回顧
第二章、拓樸最佳化
2.1拓樸最佳化定義
2.2 拓樸最佳化數學式
2.3 懲罰函數的等向剛體材料模型
2.4 演化結構最佳化
2.5雙向演化結構最佳化
第三章、研究方法
3.1 中底設計空間定義
3.2 中底結構設計
3.2.1中底桁架生成演算法
3.3 足壓邊界條件定義
3.3.1足壓主軸校正
3.3.2足壓核密度估計
3.4 有限元素法分析
3.5 分群最佳化演算法
3.5.1拉格朗日乘數
3.5.2最陡坡度法
3.6校正中底座標位置
3.7 體素化與模糊濾波
3.6.1濾波閥值演算法
3.8切層PNG檔
第四章、實驗結果
4.1女用鞋楦優化與結果
4.2 男用鞋楦優化與結果
第五章、結論與未來展望
5.1結論
5.2未來展望
參考文獻
附錄A 女鞋鞋楦優化前後結果
附錄B 男鞋鞋楦優化前後結果
個人簡介
[1] O. Sigmund, On the design of compliant mechanisms using topology optimization. Mechanics of Structures and Machines, 1997. 25(4): p. 493-524.
[2] L.L. Beghini, A. Beghini, N. Katz, W.F. Baker, and G.H. Paulino, Connecting architecture and engineering through structural topology optimization. Engineering Structures, 2014. 59: p. 716-726.
[3] J.-H. Zhu, W.-H. Zhang, and L. Xia, Topology optimization in aircraft and aerospace structures design. Archives of Computational Methods in Engineering, 2016. 23(4): p. 595-622.
[4] D. Schäpper, R. Lencastre Fernandes, A.E. Lantz, F. Okkels, H. Bruus, and K.V. Gernaey, Topology optimized microbioreactors. Biotechnology and bioengineering, 2011. 108(4): p. 786-796.
[5] O. Sardan, V. Eichhorn, D. Petersen, S. Fatikow, O. Sigmund, and P. Bøggild, Rapid prototyping of nanotube-based devices using topology-optimized microgrippers. Nanotechnology, 2008. 19(49): p. 495503.
[6] D. Brackett, I. Ashcroft, and R. Hague. Topology optimization for additive manufacturing. in Proceedings of the solid freeform fabrication symposium, Austin, TX. 2011. S.
[7] K.V. Wong and A. Hernandez, A review of additive manufacturing. ISRN Mechanical Engineering, 2012.
[8] T. Zegard and G.H. Paulino, Bridging topology optimization and additive manufacturing. Structural and Multidisciplinary Optimization, 2016. 53(1): p. 175-192.
[9] M.P. Bendsøe and O. Sigmund, Material interpolation schemes in topology optimization. Archive of applied mechanics, 1999. 69(9-10): p. 635-654.
[10] M.Y. Wang, X. Wang, and D. Guo, A level set method for structural topology optimization. Computer methods in applied mechanics and engineering, 2003. 192(1-2): p. 227-246.
[11] O. Sigmund, A 99 line topology optimization code written in Matlab. Structural and multidisciplinary optimization, 2001. 21(2): p. 120-127.
[12] F.A. Dullien, Porous media: fluid transport and pore structure. 2012: Academic press.
[13] "Adidas Release their 3D Printed Shoes: The Futurecraft 4D". 2018; Available from: https://www.3dnatives.com/en/adidas-futurecraft-4d-220120184/.
[14] A.G.M. Michell, LVIII. The limits of economy of material in frame-structures. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1904. 8(47): p. 589-597.
[15] W.S. Hemp, Theory of structural design. 1958.
[16] W. Prager, Optimality criteria derived from classical extremum principles. 1968: University of Waterloo, Department of Civil Engineering.
[17] G. Rozvany and W. Prager, Optimal design of partially discretized grillages. Journal of the Mechanics and Physics of Solids, 1976. 24(2-3): p. 125-136.
[18] A. Mazurek, W.F. Baker, and C. Tort, Geometrical aspects of optimum truss like structures. Structural and Multidisciplinary optimization, 2011. 43(2): p. 231-242.
[19] M.P. Bendsøe and N. Kikuchi, Generating optimal topologies in structural design using a homogenization method. Computer methods in applied mechanics and engineering, 1988. 71(2): p. 197-224.
[20] M.P. Bendsøe, Optimal shape design as a material distribution problem. Structural optimization, 1989. 1(4): p. 193-202.
[21] M.P. Bendsøe and O. Sigmund, Optimization of structural topology, shape, and material. Vol. 414. 1995: Springer.
[22] Y.M. Xie and G.P. Steven, Basic evolutionary structural optimization, in Evolutionary structural optimization. 1997, Springer. p. 12-29.
[23] X. Huang and Y. Xie, Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials. Computational Mechanics, 2009. 43(3): p. 393.
[24] W. Dorn, Automatic design of optimal structures. 1964.
[25] P. Hajela and E. Lee, Genetic algorithms in truss topological optimization. International journal of solids and structures, 1995. 32(22): p. 3341-3357.
[26] H. Kawamura, H. Ohmori, and N. Kito, Truss topology optimization by a modified genetic algorithm. Structural and Multidisciplinary Optimization, 2002. 23(6): p. 467-473.
[27] J. Wu, N. Aage, R. Westermann, and O. Sigmund, Infill optimization for additive manufacturing—approaching bone-like porous structures. IEEE transactions on visualization and computer graphics, 2017. 24(2): p. 1127-1140.
[28] I. Hannah, A. Harland, D. Price, and T. Lucas, Using topology optimisation to generate personalised athletic footwear midsoles. 2014.
[29] N. Aage, M. Nobel-Jørgensen, C.S. Andreasen, and O. Sigmund, Interactive topology optimization on hand-held devices. Structural and Multidisciplinary Optimization, 2013. 47(1): p. 1-6.
[30] A. Olason and D. Tidman, Methodology for topology and shpe optimization in the design process. 2010.
[31] T.C. Pataky and J.Y. Goulermas, Pedobarographic statistical parametric mapping (pSPM): a pixel-level approach to foot pressure image analysis. Journal of biomechanics, 2008. 41(10): p. 2136-2143.
[32] A. Harrison and P. Hillard, A moment-based technique for the automatic spatial alignment of plantar pressure data. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 2000. 214(3): p. 257-264.
[33] B.W. Silverman, Density estimation for statistics and data analysis. 2018: Routledge.
[34] J.N. Reddy, An introduction to the finite element method. 1993.
[35] R.T. Rockafellar, Lagrange multipliers and optimality. SIAM review, 1993. 35(2): p. 183-238.
[36] H.B. Curry, The method of steepest descent for non-linear minimization problems. Quarterly of Applied Mathematics 1944. 2(3): p. 258-261.
[37] R.J. LeVeque, Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems. Vol. 98. 2007: Siam.
[38] J. Aldrich, Doing least squares: perspectives from Gauss and Yule. International Statistical Review, 1998. 66(1): p. 61-81.
[39] S. Mama. Available from: https://twitter.com/keep0109.
電子全文 電子全文(網際網路公開日期:20240731)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔