跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/08 05:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周禹廷
研究生(外文):Yu-Ting Chou
論文名稱:利用反射式光彈法量測與分析圓管環縫填料對接殘留應力
論文名稱(外文):Measurement and Analysis of the Residual Stress of Girth-Butt Welds by Photoelastic Coating Method
指導教授:趙振綱黃育熙
指導教授(外文):Ching-Kong ChaoYu-Hsi Huang
口試委員:黃育熙趙振綱洪光民
口試委員(外文):Yu-Hsi HuangChing-Kong ChaoKuang-Ming Hung
口試日期:2019-07-10
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:217
中文關鍵詞:圓管環縫對接殘留應力鑽孔法反射式光彈法有限元素分析
外文關鍵詞:girth-butt weldingresidual stressdrilling methodphotoelastic coating methodfinite element method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文主要針對管路施作環縫填料銲接後所造成的殘留應力進行量測及分析,分別以銲接母材之初始銲接溫度的差異以及於管路上施作不同道次作為比較,探討施作不同條件下之銲接對於母材造成的殘留應力分佈及大小,並據此判別殘留應力對管路銲接結構的影響。
研究過程分別使用有限元素數值模擬分析以及實驗量測。有限元素分析軟體採用熱彈塑性理論配合熱-結構耦合元素及非線性溫度相依材料特性進行數值分析,主要分為熱學模式和力學模式兩種計算模型來分別探討環縫填料銲接過程中隨時間變化之溫度場與熱應力場。
實驗量測殘留應力方面,研究上分別使用鑽孔法以及反射式光彈法驗證數值計算結果。鑽孔法貼附三軸向應變規量測因鑽孔釋放之應變值,利用無窮域平板圓孔理論將應變值反算即可得知未鑽孔前的殘留應力。為改善鑽孔法僅能得知單點應力之缺點,研究上進行反射式光彈法來解析全場之殘留應力分佈,由於圓管銲接件並非平面結構需利用可以自由塑形的光彈液薄膜做為傳遞應力的介質,藉由鑽孔釋放光彈干涉條紋,配合影像處理技術可成功地反算圓管銲接件內部光彈條紋應力,獲得全域式的應力分佈量測之資訊。
有限元素數值分析於銲接模擬需要較大運算量,如遇硬體設備不足之情況,多道次覆層銲接的入熱量可利用等效能量法等效為單道次銲接入熱量,此方法於平板填料覆銲對接和本研究中的二道次圓管環縫填料對接之有限元素數值分析中得到驗證。
The measurement and analysis of the residual stress caused by the Girth-Butt welds is investigated on this research. The different distributions of the residual stress in the several conditions were studied under the different initial temperatures on the base metal and once or twice welding fillet on the pipes. This research explores experimentally and numerically the influence of the residual stress on the welded structure of the pipes.
The finite element analysis used the thermo-mechanical coupled elements of temperature dependent material properties, based on thermo-elastic-plastic theory. The procedure is sequentially following the heat transfer model and the thermal-mechanical model, respectively, resulting in the temperature field and the thermal stress field over time during the welding process of the girth-butt welds.
In terms of experimental measurement of residual stress, the drilling method and the photoelastic coating method are used in the study. The rosette strain-gage is attached to the weldment to measure the strain value released by the drilling. After drilling, the residual stress can be obtained inversely calculating from the strain value through analytical formulas. However, the residual stress is obtained pointwisely only by the drilling method. In order to obtain more information, the photoelastic coating method is used to measure the full-field residual stress distribution. The photoelastic coating is fabricated by the solvent-based liquid, which can be freely shaped. Then, the hole is drilled, and the photoelastic interference fringes are released as the medium for transmitting stress. After image processing the subtraction from the principal stresses of the pipe weldment is successfully analyzed to achieve on the photoelastic fringes the full-field measurement.
Because the finite element numerical analysis requires a large amount of calculation in welding simulation, in case of the shortage of hardware equipment, the equivalent energy method is developed to simulate efficiently by single welding fillet. The heat input of multi-layer welding can be calculated as the correspondent heat input of a single welding fillet. The equivalent energy method is validated by the finite element numerical analysis, in the cases of the plate butt welding and the pipe girth-butt welding.
中文摘要 I
Abstract II
誌謝 IV
目錄 V
表目錄 IX
圖目錄 X
第一章 緒論 1
1.1研究背景與動機 1
1.2研究方法 2
1.3研究目的 3
1.4文獻回顧 3
1.5論文章節介紹 12
第二章 研究理論 14
2.1銲接殘留應力之形成 14
2.2惰性氣體鎢極電弧銲 17
2.3有限元素法 19
2.3.1熱傳模擬分析-熱學模式(Thermal modal) 19
2.3.2有限元素分析之材料係數 21
2.3.3力學模擬分析-力學模式(Mechanical model) 22
2.4應變規鑽孔法(Hole-Drilling Strain-Gauge Method) 25
2.5光彈法(Photoelastic Coating Method) 33
2.5.1偏振光(polarized light) 33
2.5.2光的雙折射現象 35
2.5.3應力-光學定律(Stress-Optic Law) 36
2.5.4光學元件介紹 39
2.5.5光彈實驗元件的瓊斯矩陣(Jones Martix) 39
2.5.6平面偏振光系統(Plane Polariscope) 47
2.5.7圓偏振光系統(Circular Polariscope) 50
2.5.8反射式光彈法(Reflective Photoelastic Method) 54
2.6影像處理 59
第三章 銲接實驗方 60
3.1銲接 61
3.1.1試片規格 61
3.1.2退火熱處理 62
3.1.3半自動銲接機 63
3.2鑽孔法 68
3.2.1高速鑽孔機 68
3.2.2應變計 71
3.2.3熱電偶 74
3.3反射式光彈法 75
3.3.1光彈系統 76
3.3.2光彈液(Liquid Plasstic) 79
第四章 研究方法 80
4.1填料銲接實驗 82
4.1.1實驗試片處理 82
4.1.2銲接實驗 83
4.2有限元素模擬分析 87
4.2.1模型建立 88
4.2.2材料參數 89
4.2.3網格劃分與元素和運算求解器設定 92
4.2.4銲接條件 93
4.2.5運算步階設定 94
4.3鑽孔法量測殘留應力 97
4.3.1實驗試片處理 97
4.3.2動態應變計原理與設定 97
4.3.3鑽孔規範 99
4.3.4鑽孔實驗步驟 100
4.3.5鑽孔實驗注意事項 102
4.4反射式光彈法量測殘留應力 104
4.4.1光彈液薄膜製作 106
4.4.2鑽孔法結合反射式光彈法 111
4.5反射式光彈條紋 113
第五章 結果與討論 113
5.1有限元素分析 115
5.1.1熱傳分析後處理結果 115
5.1.2力學分析後處理結果 119
5.2鑽孔法 125
5.2.1離縫填料銲接件試片 125
5.2.2鑽孔實驗結果 126
5.2.3結果與討論 135
5.2.4結論 139
5.3反射式光彈法 140
5.3.1光彈實驗結果 140
5.3.2結果與討論 152
5.3.3結論 156
5.4應力值與位置靈敏度探討 157
5.4.1分析結果資料擷取 157
5.4.2位置離散比較 157
5.4.3結果與討論 158
第六章 簡化模擬分析 159
6.1簡化動機 163
6.2等效能量 165
6.2.1入熱量公式推導 165
6.2.2有限元素設定 166
6.3有限元素法於平板填料對接 167
6.3.1有限元素設定 167
6.3.2後處理結果 169
6.3.3結論 177
6.4有限元素法於圓管填料對接 178
6.4.1有限元素設定 178
6.4.2後處理結果 178
6.4.3結論 185
第七章 結論與未來展望 181
7.1結論 187
7.2未來展望 189
參考文獻 185
[1] 行政院原子能委員會委託研究計畫研究報告,計畫編號1072001INER523。
[2] ASTM E837-13a, “Standard Test Method for Determining Residual Stresses by the Hole-Drilling Stress-Gage Method”, 2013.
[3] Ueda, Y. and Yamakawa, T., “Analysis of Thermal Elastic-Plastic Stress and Strain during Welding by Finite Element Method”, Transactions of the Japan-Welding Society 2 September 21, pp.90-100, 1971.
[4] Sharplesa, J. K., Gardnera, L., Batea, S. K., Goldthorpeb, M. R., Yatesc, J. R., and Bainbridge, H. “Project to Evaluate the Integrity of Repaired Welds”, International Journal of Pressure Vessels and Piping, Vol. 82, pp. 319-338, 2005.
[5] Dean, D. and Hidekazu, M., “Prediction of Welding Residual Stress in Multi-pass butt-welded Modified 9Cr-1Mo Steel Pipe Considering Phase Transformation Effects”, Computational Materials Science, Vol. 37, pp. 209-219, 2006.
[6] 涂乙平,平板對接銲件之三維熱傳分析,碩士論文,國立台灣海洋大學機械與輪機工程學系,2000年。
[7] 蔡曜隆,銲接溫度與應力之分析實驗,碩士論文,國立交通大學機械工程研所,2001 年。
[8] 蔡曜隆,S15C/SUS304易種金屬銲接之溫度與殘留應力研究,碩士論文,國立交通大學機械工程學系,2010年。
[9] 張鵬祥,對接圓管環縫銲接殘留應力之研究,碩士論文,中正理工學院兵器系統工程研究所,1997年
[10] 劉如峯、黃金城,核能電廠組件多層銲接之有限元素分析,中國機械工程學會第二十四屆全國學術研討會論文集,2007年。
[11] Primož, M., Jožef, M. and Sebastjan, K., “Welding Sequence Definition Using Numerical Calculation”, Welding Journal, Vol. 90, pp. 148-151, 2011.
[12] Loose, T. and Rohbrecht, J. “Equivalent Energy Method for Welding Structure Analysis”, Welding and Cutting, Vol. 17, pp. 210-216, 2018.
[13] Kirsch, G., “Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre”, Zeitschrift des Vereines deutscher Ingenieure, Vol. 42, pp. 797-807, 1898.
[14] Mathar, J., “Determination of Initial Stresses by Measuring the Deformation around Drilled Holes”, Trans. ASME, Vol. 56, pp. 249-254, 1934.
[15] Renidler, N. J. and Vigness, I., “Hole-drilling Strain-Gage Method of Measuring Residual Stress”, Experimental Mechanics, Vol. 6, pp. 577-586, 1966.
[16] Sandifer, J. P. and Bowie, G. E., “Residual Stress by Blind Hole Method with Off-Center Hole”, Experimental Mechanics, Vol. 18, pp. 173-179, 1978.
[17] Flaman, M. T., “Brief Investigation of Induced Drilling Stresses in the Center-Hole Method of Residual-Stress Measurement”, Experimental Mechanics, Vol. 22, pp. 26-30, 1982.
[18] Kabiri. M., “Measurement of Residual Stresses by the Hole-Drilling Method: Influences of Transverse Sensitivity of the Gages and Relieved Strain Coefficients”, Experimental Mechanics, Vol. 24, pp. 252-256, 1984.
[19] Schajer, G. S., “Application of Finite Element Calculations to Residual Stress Measurements”, Journal of Engineering Materials and Technology, Vol. 103, pp. 157-163, 1981.
[20] Niku-Lari, A., Lu, J., and Flavenot, J. F., “Measurement of Residual-Stress Distribution by the Incremental Hole-Drilling Method”, Journal of Mechanical Working Technology, Vol. 11, pp. 167-188, 1985.
[21] Schajer, G. S. and Altus, E., “Stress Calculation Error Analysis for Incremental Hole-Drilling Residual Stress Measurements”, Journal of Engineering Materials and Technology, Vol. 118, pp. 120-126, 1996.
[22] Mahmoudi, A. H., Truman, C. E., Smith, D. J., and Pavier, M. J., “The Effect of Plasticity on the Ability of the Deep Hole Drilling Technique to Measure Axisymmetric Residual Stress”, International Journal of Mechanical Sciences, Vol. 53, Vol. 53, pp. 978-988, 2011.
[23] Moharami, R. and Sattari-Far, I., “Experimental and Numerical Study of Measuring High Welding Residual Stresses by Using the Blind-Hole-Drilling Technique”, The Journal of Strain Analysis for Engineering Design, Vol. 43, pp. 141-148, 2008.
[24] 胡永祥,利用低速鑽孔對304L不鏽鋼銲接件殘留應力之檢測與評估,碩士論文,國立成功大學機械工程學系,1993年。
[25] 許富銓,應用放電加工鑽孔法量測殘留應力之可行性研究與評估,博士論文,國立成功大學機械工程系,2005年。
[26] 許志民,材料物理特性對放電加工鑽孔法引進殘留應力之影響,碩士論文,國立成功大學機械工程研究所,2006 年。
[27] Dally, J. W. and Rilley, W. F., Experimental Stress Analysis, McGraw-Hill Companies, NY, 1978.
[28] Coker, E. F. and Filon, L. N. G., Treatise on Photoelasticity, University Press, Cambridge, U.K., 1931.
[29] Mesnager, M., “Sur la Determination Optique des Tensions Interieures dans les Solides a Trois Dimension”, Comptes Rendus, Paris, Vol. 190, pp. 1249, 1930.
[30] Zandman, F. and Fleury, R., “Jauge D'effort Photoelastique (Photoelastic Strain Gage)”, Comptes Rendus des Seances de l'Academie des Sciences, T.238, 1559, April 12, 1954.
[31] Oppel, G., “Polarisationoptische Untersuchang Rammerlicher Spanmings und Deliunggzustande”, Forsh. Geb. Ingenieurw, Vol. 7, pp. 240-248, 1936.
[32] Drucker, D. C. and Mindlin, R. D. “Stress Analysis by Three-Dimensional Photoelastic Methods”, Journal of Applied Physics, Vol. 11, pp. 724-732, 1940.
[33] Cheng, Y. F., “Some New Techniques for Scattered-Light Photoelasticity”, Experimental Mechanics, Vol. 3, pp. 275-278, 1963.
[34] Cheng, Y. F., “A Dual-Observation Method for Determining Photoelastic Parameters in Scattered Light”, Experimental Mechanics, Vol. 7, pp. 140-144, 1967.
[35] Cheng, Y. F., “An Automatic System for Scattered-Light Photoelasticity”, Experimental Mechanics, Vol. 9, pp. 407-412, 1969.
[36] Srinath, L. S., “Analysis of Scattered-Light Method in Photoelasticity”, Experimental Mechanics, Vol. 9, pp. 463-468, 1969.
[37] Aderholdt, R. W. and Swinson, W. F., “Establishing the Boundary Retardation with Respect to the Observed Fringes in Scattered-Light Photoelasticity”, Experimental Mechanics, Vol. 11, pp. 512-523, 1971.
[38] Sanford, R. J. and Beaubien, L. A., “Stress Analysis of a Complex Part:Photoelasticity vs. Finite Elements”, Experimental Mechanics, Vol. 17, pp. 441-448, 1977.
[39] Fessler, H. and Pappalettere, C., “Plastic-Elastic Strains in Two-Dimensional Sections of Partial-Penetration Fillet Welds”, Journal of Strain Analysis, Vol. 24, pp. 15-21, 1989.
[40] Gambrell Jr, S. C., “Use of Photostress to Characterize the Mechanical Behavior of Weldments”, Experimental Techniques, Vol. 17, pp. 15-18, 1993.
[41] Gambrell Jr, S. C. and Kavikondala, K., “Yield Detection in Aluminum Welded Joints Using Photostress”, Experimental Techniques, Vol. 18, pp. 11-14, 1994.
[42] Raghavendran, N. S. and Fourney, M. E., “Stress Analysis of a Welded Joint”, Engineering Fracture Mechanics, Vol. 48, pp. 619-627, 1994.
[43] 郭錦龍、徐澤志、邵清安,金屬薄板之殘留應力量測,碩士論文,元智工學院機械工程研究所,1994 年。
[44] 張奇偉、連泓勝、詹前億與林鎮華,應用數位影像光彈與鑽孔法量測預力混凝土殘留應預應力之研究,第十二屆非破壞檢測技術研討會,2006年。
[45] 劉美丞、黃育熙,利用反射式光彈量測與分析銲接殘留應力,碩士論文,國立臺灣科技大學機械工程研究所,2018年。
[46] Ramesh, K. and Mangal, S. K., “Data Acquisition Techniques in Digital Photoelasticity:a review”, Optics and Lasers in Engineering, Vol. 30, pp. 53-75, 1998.
[47] Chen, T. Y. and Taylor, C. E. “Computerized Fringe Analysis in Photomechanics”, Experimental Mechanics, Vol. 29, pp. 323-329,1989.
[48] Voloshin, A. S. and Burgur C. P., “Half-Fringe Phohoelasticity:A New Approach to Whole-Field Stress Analysis”, Experimental Mechanics, Vol. 23, pp. 304-314, 1983
[49] Toll, S. L., Tang, S. H., and Hovanesian, J. D., “Computerized Photoelastic Fringe Multiplication”, Experimental Techniques, Vol. 14, pp. 21-23, 1990.
[50] Gillies, A. C., “Image Processing Approach to Fringe Patterns”, Optical Engineering, Vol. 27, pp. 861-866, 1988.
[51] Chen, T. Y., “Digital Fringe Multiplication of Photoelastic Images - A New Approach”, Experimental Techniques, Vol. 18, pp. 15-18, 1994.
[52] Han, B., “Higher Sensitivity Moiré Interferometry for Micromechanics Studies”, Optical Engineering, Vol. 31, pp. 1517-1526, 1992.
[53] Han, B., “Interferometric Methods with Enhanced Sensitivity by Optical/Digital Fringe Multiplication”, Applied Optics, Vol. 32, pp. 4713−4718, 1993.
[54] Han, B. and Wang, L. “Isochromatic Fringe Sharpening and Multiplication”, Experimental Techniques, Vol. 18, pp. 11-13, 1994.
[55] Han, B. and Wang, L. “Isochromatic Fringe Sharpening and Interpolation Along an Isoclinic Contour, with Application to Fracture Mechanics”, Experimental Mechanics, Vol. 36, pp. 305-311, 1996.
[56] Chen, Y. C., Chen, C. H. and Chen, S. C., “Effects of Processing Conditions on Birefringence Development in Injection Molded Parts. II. Experimental measurement”, Polymer International, Vol. 40, pp. 251-259, 1996.
[57] 洪光民,圓盤與長條樑之理論解析與實驗光學全場量測,博士論文,國立臺灣大學機械工程研究所,2002年。
[58] 陳智榮,白光光彈術於塑膠成形平板殘留應力分析,機電整合科技應用研討會論文集暨全國大專生機電整合專題論文研討會,2009年。
[59] 洪光民、黃國興、林文輝,一維傅利葉分析應用在光彈影像上的相位擷取,二十六屆中國機械工程師學會年會,2009年。
[60] 洪譽碩,數位光彈之等色線條紋序自動判別法,碩士論文,國立臺灣科技大學機械工程研究所,2010年。
[61] “Measurement of Residual Stress by the Hole-Drilling Strain Gage Method”, Vishay Precision Group, Tech Note TN-503.
[62] Jaime F, C. C. and Sergio, P., “Solution of the Moiré Hole Drilling Method Using a Finite-Element-Method-Based Approach”, International Journal of Solids and Structures, Vol. 43, pp. 6751-6766, 2006.
[63] Oettel, R., “The Determination of Uncertainties in Residual Stress Measurement”, Standards Measurement & Testing Project No. SMT4-CT97-2165, 2000.
[64] 廖健宇,三維模擬不銹鋼圓管多道銲接之溫度與殘留應力,碩士論文,龍華科技大學工程技術研究所,2011年。
[65] 高彥豪,圓筒狀工件殘留應力量測,碩士論文,國立雲林科技大學機械工程系,2011年。
[66] 楊婷雅,利用光彈法研究光學薄膜之應力光學係數,碩士論文,國立臺灣科技大學機械工程研究所,2017年。
[67] Weld Overlay Design Report for the Hatch Nuclear Plant Unit 2 Recirculation Inlet N2G Nozzle N2G Weld 2B31-1RC-12AR-G-5, 2011.
[68] 林鉅程,三維暫態模擬溫度場與應力場應用於316L不銹鋼銲接分析之研究,碩士論文,國立台灣師範大學機電科技研究所,2009年。
[69] 張朝銑,電子光斑干涉術結合應變規鑽孔法之平坂面內應力場分析,碩士論文,國立中正大學機械工程系,2012年。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊