(3.236.228.250) 您好!臺灣時間:2021/04/22 04:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張紘瑋
研究生(外文):Hong-Wei Chang
論文名稱:添加不同比例MoS2及WS2製備AZ91鎂基複合材料之微觀結構以及機械性質研究
論文名稱(外文):Study on Microstructure and Mechanical Properties of AZ91 Magnesium Matrix Composites Prepared by Different Ratios of MoS2 and WS2
指導教授:黃崧任
指導教授(外文):Song-Jeng Huang
口試委員:向四海丘群陳元方
口試委員(外文):Su-Hai HsiangChun ChiuYuan-Fang Chen
口試日期:2019-7-8
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:124
中文關鍵詞:鎂基複合材料MoS2微米顆粒WS2奈米微米顆粒重力鑄造機械性質
外文關鍵詞:magnesium matrix compositesWS2 particlesMoS2 particlesGravity castingMechanical properties
相關次數:
  • 被引用被引用:1
  • 點閱點閱:27
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究利用鑄造方式製備AZ91鎂基複合材料,使用微米MoS2顆粒以及奈米和微米WS2顆粒作為所需添加的強化相,並以攪拌鑄造法的製程將強化相融入AZ91鎂合金中,強化相添加比例分別為0.5wt. %及1 wt. %,之後再對材料進行T4固溶處理,探討添加兩種不同強化相對鎂合金機械性質的影響。
從實驗結果中可以發現添加微米MoS2顆粒以及奈米和微米WS2顆粒能夠有效的達到晶粒細化效果,提升材料之降伏強度及延展性,而其中則以微米0.5wt. % WS2的強化效果最優良,透過T4熱處理能使得β-Mg_17 Al_12相溶解於機材中並析出鋁錳相,該相的析出有助於提升材料之延展性,並且可以從添加微米WS2的鎂基複合材料中發現Mg_2 Si相,此析出物有助於機械性質的提升。
The main purpose of this study is to use AZ91 magnesium alloy as matrix and use WS_2 and MoS2 as the reinforcement particles to produce Magnesium-based composites. In addition, the amount of 0.5, 1 wt.% reinforcement particles were added respectively into matrix by gravity casting. After casting the prepared ingot were used to test the mechanical properties, microstructure. Disscusions of effects about different ratio and reinforcement particles will be included in this study.
From the experimental results it can be found that the grain size tend to decrease compared with the pure magnesium alloys. Due to the grain refinement,the material's Yield strength, ultimate tensile strength and ductily can effectively improve. And the 0.5wt. % WS2 Magnesium-based composites have the best mechanical properties. After T4 heat treatment, the β-Mg_17 Al_12 phase can still found on the Magnesium-based composites, because the AZ91 magnesium alloy has more aluminium inside the alloy, and we can discover some Al-Mn phase, the precipitation of this phase increase the ductility of the material. Also it can be found that Mg_2 Si phase exist in the Magnesium-based composites added by micron WS_2 particles, this precipitations enhance the mechanical properties of the Magnesium-based composites.
摘要 I
目錄 II
圖表索引 VII
第一章 緒論 1
1.1. 前言 1
1.2. 研究動機與目的 4
1.3. 文獻回顧 4
1.3.1. 重力鑄造相關文獻 5
1.3.2. 熱處理對鎂合金的影響 7
1.3.3. 鎂基複合材料相關文獻 11
1.4. 文獻整理心得 22
第二章 研究理論基礎 24
2.1. 鎂合金與基本性質 24
2.1.1. 鎂合金命名規則 26
2.1.2. 合金元素對鎂合金之影響 29
2.2. 鎂合金之強化機制 34
2.2.1. 晶粒細化 34
2.2.2. 析出強化 35
2.2.3. 固溶強化 35
2.2.4. Orowan強化 36
2.2.5. 散佈強化 37
2.2.6. 負荷影響 37
2.2.7. 熱處理 38
第三章 實驗方法與步驟 41
3.1 實驗流程 41
3.2 實驗材料 43
3.3 實驗設備 44
3.3.1 電阻式熔煉爐 44
3.3.2 高溫熱處理爐 47
3.3.3 濕式研磨機/拋光機 48
3.3.4 動態拉伸試驗機 (Material Test System, MTS) 49
3.3.5 光學顯微鏡 (Optical Microscope, OM) 51
3.3.6 微型維克氏硬度機 (Micro-Vickers Hardness Tester) 52
3.3.7 X光繞射分析儀 (X-ray Diffraction, XRD) 53
3.3.8 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 54
3.4 實驗規劃 55
3.4.1 鎂基複合材料製備 55
3.4.2 拉伸試片規劃 56
第四章 結果與討論 58
4.1 鎂基複合材料微觀結構分析 58
4.1.1 OM金相分析 58
4.1.2 平均晶粒尺寸 73
4.1.3 SEM微觀結構分析 77
4.2 XRD分析 88
4.3 鎂基複合材料機械性質測試 92
4.1.1 硬度實驗 92
4.1.2 拉伸實驗 97
第五章 結論 104
參考文獻 106
[1] L.G. Hou , R.Z. Wu , X.D. Wang , J.H. Zhang , M.L. Zhang, A.P. Dong, and B.D. Sun “Microstructure, mechanical properties and thermal conductivity of the short carbon fiber reinforced magnesium matrix composites.” Journal of Alloys and Compounds, 695,(2017) ,2820-2826.
[2] Nathalia C. Verissimo, Emmanuelle S. Freitas, Noe Cheung, Amauri Garcia,and Wislei R. Osorio” The effects of Zn segregation and microstructure length scale on the corrosion behavior of a directionally solidified Mg-25 wt.%Zn alloy.” Journal of Alloys and Compounds, 723,(2017), 649-660.
[3] T.T. Sasaki, F.R. Elsayed, T. Nakata, T. Ohkubo, S. Kamado, and K. Hono, “Strong and ductile heat-treatable Mg-Sn-Zn-Al wrought alloys”, Acta Mater. 99, (2015) 176-186.
[4] S.H. Park, S.-H. Kim, H.S. Kim, J. Yoon, and B.S. You, “High-speed indirect extrusion of Mg-Sn-Al-Zn alloy and its influence on microstructure and mechanical properties”, J. Alloy Comp. 667, (2016),170-177.
[5] F. Mirza, and D.L Chen.” A Unified Model for the Prediction of Yield Strength in Particulate-Reinforced Metal Matrix Nanocomposites.” Materials, 8, 5138–5153, (2015).
[6] 劉彥辰(2012),「AM60/Al2O3p鎂基複合材料擠型管之機械性質與微觀組織研究」,國立中正大學機械工程學系研究所碩士論文,嘉義。
[7] L. Zhang, Q.D. Wang, W.J. Liao, W. Guo, B. Ye, W.Z. Li, H.Y. Jiang, and W.J. Ding. “Effects of cyclic extrusion and compression on the microstructure and mechanical properties of AZ91D magnesium composites reinforced by SiC nanoparticles.” Mater. Charact, 126, (2017), 17–27,.
[8] Y.T. Yao, L. Jiang, G.F. Fu, and L.Q. Chen. “Wear behavior and mechanism of B4C reinforced Mg-matrix composites fabricated by metal-assisted pressureless infiltration technique”. Trans. Nonferrous Met. Soc. China, 25, (2015), 2543–2548,.
[9] L. Zhang, Q.D. Wang, W.J. Liao, W. Guo, W.Z. Li, H.Y. Jiang, and W.J. Ding. “Microstructure and mechanical properties of the carbon nanotubes reinforced AZ91D magnesium matrix composites processed by cyclic extrusion and compression.” Mat. Sci. Eng. A, 689, (2017), 427–434.
[10] N. Stanford, D. Atwell, and M.R. Barnett. “The effect of Gd on the recrystallisation, texture and deformation behaviour of magnesium-based alloys.” Acta Materialia, 58, (2010), 6773-6783.
[11] W. Lei, W. Liang, H. Wang, and Y. Sun, “Effect of annealing on the texture and mechanical properties of pure Mg by ECAP at room temperature.” Vacuum, 144 , (2017), 281-285.
[12] 吳懿璋(2014),強化相粒徑與含量對AZ61/SiCp鎂合金複合材料於擠製加工及後續退火製程在機械性質之研究,國立臺灣科技大學機械工程學系碩士論文。
[13] 陳辛樺(2014),改善鎂合金及鎂基複合材料AZ61/SiCp 鑄錠品質並探討製程對其機械性質的影響,國立臺灣科技大學機械工程學系碩士論文。
[14] Wang, X., Wang, N., Wang, L., Hu, X., Wu, K., Wang, Y., and Huang, Y.. “Processing, microstructure and mechanical properties of micro-SiC particles reinforced magnesium matrix composites fabricated by stir casting assisted by ultrasonic treatment processing.” Materials & Design, 57, (2014), 638-645.
[15] Naik, G. M., Gote, G. D., Narendranath, S., and Satheesh Kumar, S. S. “The impact of homogenization treatment on microstructure microhardness and corrosion behavior of wrought AZ80 magnesium alloys in 3.5 wt% NaCl solution.” Materials Research Express, 5(8), (2018), 086513.
[16] J.-Y. Li, J.-X. Xie, J.-B. Jin and Z.-X. Wang, “Microstructural evolution of AZ91 magnesium alloy during extrusion and heat treatment”, Transactions of Nonferrous Metals Society of China, 22, (2012), 1028-1034.
[17] 李智堯(2018),不同轉角及道次之等徑轉角擠製對AZ31/WS2 INT鎂基複合材料微觀結構及機械性質影響之研究,國立台灣科技大學機械工程學系碩士論文。
[18] Han, G. Q., et al. “The influence of CNTs on the microstructure and ductility of CNT/Mg composites.” Materials Letters, 181, (2016), 300-304.
[19] Li, H., Cheng, L., Sun, X., Li, Y., Li, B., Liang, C., and Fan, J.” Fabrication and properties of magnesium matrix composite reinforced by urchin-like carbon nanotube-alumina in situ composite structure.” Journal of Alloys and Compounds, 746, (2018), 320–327.
[20] Rahmany Gorji, R. Alizadeh, A., and Jafari, H..” Microstructure and mechanical properties of stir cast ZX51/Al 2 O 3 p magnesium matrix composites.” Materials Science and Engineering: A, 674, (2016), 413–418.
[21] 林柏州(2014),等徑轉角擠型(ECAE)製程對AM60/Al2O3p鎂基複合材料微結構及機械性質之影響,國立中正大學機械工程學系研究所博士論文。
[22] 劉文勝(2000),「AZ61 鎂合金的疲勞性質與破壞分析」,國立中央大學機械工程學系研究所碩士論文。
[23] 許並社、李明照,「鎂冶煉與鎂合金熔煉工藝」,化學工業出版社,北京 (2005)。
[24] 黃曉鋒、朱凱、曹喜娟,「主要合金元素在鎂合金中的作用」,Foundry Technology, 29, (2008), 1574-1578.
[25] 潘復生、韓恩厚,「高性能變形鎂合金及加工技術」,科學出版社,北京 (2007)。
[26] Tingzhuang Han , Guangsheng Huang , Qianyuan Deng , Guangang Wang ,Bin Jiang , Aitao Tang , Yuntian Zhu , and Fusheng Pan .”Grain refining and mechanical properties of AZ31 alloy processed by accumulated extrusion bonding.” Journal of Alloys and Compounds 745, (2018), 599-608.
[27] 蔡承勳(2013),「不同製程對AZ61/Al2O3P鎂基複合材料機械性質及疲勞之影響」,國立台灣科技大學機械工程系研究所碩士論文。
[28] 陸仁凱(2006),7XXX系含鈧鋁合金的顯微結構與機械性質之分析,國立中央大學機械工程研究所碩士論文。
[29] Wang, Y., Liu, G., and Fan, Z.. “Microstructural evolution of rheo-diecast AZ91D magnesium alloy during heat treatment. Acta Materialia.” 54(3), (2006), 689-699.
[30] 蔡東霖(2001),利用ECAE及退火處理細化鋁鎂合金晶粒,國立中山大學材料科學研究所碩士論文。
[31] J. Buha, and T. Ohkubo,”Natural aging in Mg-Zn(-Cu) alloys.” Metall. Mater. Trans. A 39, (2008), 2259-2273.
[32] X. Chen, L. Liu, F. Pan, J. Mao, X. Xu, and T. Yan, “Microstructure, electromagnetic shielding effectiveness and mechanical properties of Mg-Zn-Cu-Zr alloys.” Mater. Sci. Eng. B 197, (2015), 67-74,.
[33] J. Wang, R. Liu, T. Luo, Y. Yang, “A high strength and ductility Mg-Zn-Al-Cu-Mn magnesium alloy.” Mater. Des. 47, (2013), 746-749,.
[34] 黃政揚(2015), "WS2 無機奈米管對鎂合金複合材料的機械性質與微觀組織影響之研究",國立台灣科技大學機械工程系研究所碩士論文。
[35] Zhou, M., Qu, X., Ren, L., Fan, L., Zhang, Y., Guo, Y., and Sun, H. “The Effects of Carbon Nanotubes on the Mechanical and Wear Properties of AZ31 Alloy.” Materials, 10(12), (2017), 1385.
[36] 周暾煜(2016),等徑轉角擠壓 (ECAP) 製程及添加物對AZ鎂合金儲氫性能之影響,國立台灣科技大學機械工程學系碩士論文。
[37] Valiev, R. Z., and Langdon, T. G. “Principles of equal-channel angular pressing as a processing tool for grain refinement.” Progress in materials science, 51(7), (2006), 881-981.
電子全文 電子全文(網際網路公開日期:20210801)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔