(3.235.25.169) 您好!臺灣時間:2021/04/20 03:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:傅俊霖
研究生(外文):Jun-Lin Fu
論文名稱:以鐵礦載氧體進行脫硝反應運用於化學迴路燃燒程序
論文名稱(外文):Using Iron Ores as Oxygen Carriers for the Denitration Process Based on Chemical Looping Technology
指導教授:郭俞麟郭俞麟引用關係
指導教授(外文):Yu-Lin Kuo
口試委員:顧洋曾堯宣李豪業
口試委員(外文):Young KuYao-Hsuan TsengHao-Yeh Lee
口試日期:2019-07-29
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:129
中文關鍵詞:化學迴路燃燒程序鐵礦載氧體脫硝反應
外文關鍵詞:Chemical Looping CombustionIron OresOxygen CarriersDenitration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:21
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來,火力發電迅速發展勢必種下隱憂,為了供應大量電力,隨之而來的則是空氣汙染,空氣汙染當中包括氮氧化物,本研究係在探討碳捕捉及封存之技術中,以化學迴路燃燒程序來進行脫硝反應,不需耗費大量成本即能解決空氣汙染之問題,又以大自然中容易取得之天然鐵礦,作為載氧體材料評估進行脫硝反應運用於化學迴路燃燒程序之可行性。
本實驗為研究以鐵礦作為載氧體材料與混有NO之空氣反應,模擬鍋爐燃燒後之煙道氣,評估脫硝反應之可行性。初始鐵礦載氧體材料相態為Fe2O3,鐵礦載氧體經還原3分鐘與10分鐘,經XRD分析結果為Fe3O4與FeO兩種相態,接著於實驗室級半套式流體化床反應器進行脫硝反應測試,並通入不同濃度之NO測試鐵礦載氧體之脫硝效果。
實驗結果顯示,應用半套式流體化床反應器進行脫硝反應測試,發現以FeO之還原相態載氧體進行實驗,可與100ppm與200ppm之NO氣體完全反應,在10分鐘內於尾氣端皆沒有偵測到NO與NO2排放,而提高濃度後,與400ppm與600ppm之NO氣體進行反應,尚具有部分效果,因此以鐵礦載氧體進行脫硝反應,具有相當的潛力。
In recent years, the rapid development of thermal power generation is bound to cause potential problems. In order to supply a large amount of electricity, air pollution is followed, and nitrogen pollution is included in the air pollution. This research is to explore the technologies of carbon capture and storage. The Chemical Looping Combustion is used to carry out the denitration reaction, which can solve the problem of the air pollution without much cost. The natural iron ore, which is easily available in nature, is evaluated as an oxygen carrier material for denitration reaction. The feasibility of use in Chemical Looping Combustion.
This experiment is to study the feasibility of using the iron ores oxygen carriers and the air mixed with NO to simulate the flue gas after combustion of the boiler and evaluate the denitration. The phase state of the initial iron ore oxygen carrier material is Fe2O3, and the iron ore oxygen carrier is reduced by 3 minutes and 10 minutes. The results of XRD analysis are Fe3O4 and FeO phase, followed by the fluidized bed reactor. The denitration effect of the iron ores oxygen carriers were tested by using different concentrations of NO.
Finally, it’s found that the experiment is carried out with the reduced phase oxygen carrier of FeO, which can completely react with 100 ppm and 200 ppm of NO gas, There were not NO and NO2 emissions at the exhaust gas end in 10 minutes. Therefore, the denitration reaction with iron ore carrier has considerable potential.
目錄
第一章 緒論 1
1.1前言 1
1.2研究動機 4
第二章 文獻回顧 5
2.1化學迴路燃燒程序 5
2.2載氧體之性質 7
2.2.1氧化還原性質 7
2.2.2載氧量 8
2.2.3機械強度 9
2.2.4抗團聚能力 9
2.2.5成本 10
2.2.6環境友善性 12
2.3載氧體的種類 12
2.3.1鐵系載氧體 12
2.3.2錳系載氧體 15
2.3.3銅系載氧體 19
2.3.4鎳系載氧體 21
2.3.5鈷系載氧體 23
2.4天然礦石載氧體 24
2.4.1鈦鐵礦 24
2.4.2赤鐵礦 25
2.4.3錳礦 26
2.5燃料種類 28
2.6反應器設計與種類 30
2.6.1固定床反應器 30
2.6.2流體化床反應器 31
2.6.3移動床反應器 33
2.7廢棄物與循環經濟 34
2.8固定排放源的氮氧化物減排 34
2.8.1熱式氮氧化物 36
2.8.2燃料式氮氧化物 37
2.8.3瞬間式氮氧化物 38
2.8.4由高氫氣燃料所生成之氮氧化物 39
2.9氮氧化物控制技術 40
2.9.1燃燒前處理 40
2.9.1.1燃料更換 40
2.9.1.2燃料除氮 41
2.9.1.3燃油添加劑 41
2.9.2燃燒中處理 41
2.9.2.1低過剩空氣法 42
2.9.2.2分段燃燒法 43
2.9.2.3低氮氧化物燃燒器 44
2.9.2.4煙道氣循環法 45
2.9.2.5水/水蒸氣注入法 45
2.9.2.6低空氣預熱法 46
2.9.3燃燒後處理 47
第三章 實驗設備與程序 52
3.1實驗藥品 53
3.2材料製備 54
3.2.1鐵礦載氧體製備流程 54
3.3實驗設備與分析儀器 55
3.3.1 X射線螢光光譜法 55
3.3.2 X光繞射儀 56
3.3.3場發射掃描式電子顯微鏡 57
3.3.4熱重分析儀 58
3.3.5磨耗測試儀 59
3.3.6實驗室級半套式流體化床反應器 60
第四章 結果與討論 62
4.1鐵礦載氧體作脫硝反應於化學迴路燃燒程序 62
4.1.1鐵礦載氧體之材料分析 62
4.2鐵礦載氧體材料還原特性分析與氧化性質分析 66
4.2.1鐵礦載氧體之理論最大攜氧量 74
4.3實驗室級半套式流體化床反應器作脫硝反應測試 75
4.3.1鐵礦載氧體材料之多圈脫硝反應實驗 100
第五章 結果與未來展望 104
5.1鐵礦載氧體作脫硝反應運用化學迴路燃燒程序 104
5.2未來展望 106
5.2.1評估實場廢液作為液體燃料進行後續脫硝反應之可行性 106
5.2.2設計100kW半套式流體化床反應器 107
第六章 參考資料 109
1. National Energy Technology Laboratory, DOE/NETL Carbon Dioxide Capture and Storage RD&D roadmap, U.S., 2010.
2. P. C. Chiu, Y. Ku, “Chemical Looping Process - A Novel Technology for Inherent CO2 Capture”, Aerosol and Air Quality Research, Vol. 14, 1421-1432 (2012).
3. H.J. Richter, K.F. Knoche, “Reversibility of Combustion Process, efficiency and costing”, ACS Symp. Ser. 235 (1983) 71-85.
4. J. Adánez, A. Abad, F. García-Labiano, P. Gayán, L. F. de Diego, “Progress in Chemical-looping Combustion and Reforming Technologies”, Prog. Energy Combust. Sci. 38 (2012) 215-282.
5. P. Moldenhauer, M. Ryden, A. Lyngfelt, “Testing of Minerals and Industrial by-products as Oxygen Carriers for Chemical-looping Combustion in a Circulating Fluidized-bed 300W Laboratory Reactor”, Fuel 93 (2012) 351-63.
6. K.S. Kang, C.H. Kim, K.K. Bae, W.C. Cho, S.H. Kim, C.S. Park, “Oxygen-carrier Selection and Thermal Analysis of the Chemical-looping Process for Hydrogen Poduction”, Int. J. Hydrogen Energy 35 (2010) 12246-12254.
7. B. Kronberger, G. Löffler, H. Hofbauer, “Simulation of Mss and Eergy Blances of a Cemical-looping Cmbustion Sstem”, Int. J. Energy Clean Env. 6 (2005) 1-14
8. A. Abad, J. Adánez, F. García-Labiano, L. F. de Diego, P. Gayán, J. Celaya, “Mapping of the Rnge of Oerational Cnditions for Cu-, Fe- and Ni-based Oygen Crriers in Cemical-looping Cmbustion”, Chem. Eng. Sci. 62 (2007) 533-549.
9. H. Fang, L. Haibin, Z. Zengli, “Advancements in Development of Chemical-looping Combustion: A Review”, Int. J. Greenh. Gas Con. 2009 (2009) 1-16.
10. Quddus, Mohammad Rezwanul. “A Novel Mixed Metallic Oxygen Carrier for Chemical-looping Combustion: Preparation, Characterization and Kinetic Modeling”, (2013).
11. W.C. Huang, Y.L. Kuo, Y.M. Su, Y.H. Tseng, H.Y. Lee, Y. Ku, “A facile method for sodium-modified Fe2O3/Al2O3 oxygen carrier by an air atmospheric pressure plasma jet for chemical looping combustion process”
12. Mineral commodity summaries. U.S. Geological Survey, ISBN 978-1-4113-2666-8 (2010).
13. J. Bessieres, A. Bessieres, J. J. Heizmann, “Iron Oxide Reduction Kinetics by Hydrogen,” International Journal of Hydrogen Energy,” Vol. 5, pp. 585-595 (1980).
14. H. Y. Lin, Y. W. Chen, C. Li, “The Mechanism of Reduction of Iron Oxide by Hydrogen,” Thermochimica Acta, Vol. 400, pp. 61-67 (2003).
15. W. K. Jozwiak, E. Kaczmarek, T. P. Maniecki, W. Ignaczak, W. Maniukiewicz, “Reduction Behavior of Iron Oxides in Hydrogen and Carbon Monoxide Atmospheres,” Applied Catalysis A: General, VOL. 326, PP. 17-27 (2007).
16. T. Song, L-H. Shen, J. Xiao, Z-P. Gao, H-M. Gu, S-W. Zhang, “Characterization of Hematite Oxygen Carrier in Chemical-Looping Combustion at High Reduction Temperature,” Journal of Fuel Chemistry and Technology, Vol. 39, pp. 567-574 (2011).
17. A. Abad, F. García-Labiano, L. F. de Diego, P. Gayán, J. Adánez, “Reduction Kinetics of Cu-, Ni- and Fe-Based Oxygen Carriers Using Syngas (CO+H2) for Chemical Looping Combustion,” Energy & Fuels, Vol. 21, pp. 184-153 ( 2007).
18. H. Leion, T. Mattisson, A. Lyngfelt, “The Use of Petroleum Coke as Fuel in Chemical-Looping Combustion,” Fuel, Vol. 86, pp. 1947-1958 (2007).
19. Q. Zafar, T. Mattisson, B. Gevert, “Integrated Hydrogen and Power Production with CO2 Capture Using Chemical-Looping Reforming-Redox Reactivity of Particles of CuO, Mn2O3, NiO, and Fe2O3 Using SiO2 as Support,” Industrial & Engineering Chemistry Research, Vol. 44, pp. 3485-3496 (2005).
20. M. M. Azis, E. Jerndal, H. Leion, T. Mattisson, A. Lyngfelt, “On the Evaluation of Synthetic and Natural Ilmenite Using Syngas as Fuel in Chemical-Looping Combustion (CLC),” Chemical Engineering Research and Design, Vol. 88, pp. 1505-1514 (2010).
21. 劉祐誠,「以合成氣為燃料評估Fe2TiO5載氧體在化學迴圈程序的應用」,碩士論文,國立台灣科技大學(2011)。
22. D-Q. Chen, L-H. Shen, J. Xiao, T. Song, H-M. Gu, S-W. Zhang, “Experimental Investigation of Hematite Oxygen Carrier Decorated with NiO for Chemical-Looping Combustion of Coal,” Journal of Fuel Chemistry and Technology, Vol. 40, pp. 267-272 (2012).
23. E.R. Stobbe, B.A. de Boer, J.W. Geus, “The Reduction and Oxidation Behaviour of Manganese Oxides,” Catalysis Today, Vol. 47, pp. 161-167 (1999).
24. Q. Zafar, A. Abad, T. Mattisson, B. Gevert, M. Strand, “Reduction and Oxidation Kinetics of Mn3O4/Mg-ZrO2 Oxygen Carrier Particles for Chemical-Looping Combustion,” Chemical Engineering Science, Vol. 62, pp. 655-666 (2007).
25. J. Adánez, P. Gayán, J. Celaya, L.F. de Diego, F. Garcia-Labiano, A. Abad,“Chemical Looping Combustion in a 10 kWth Prototype Using a CuO/Al2O3 Oxygen Carrier: Effect of Operating Conditions on Methane Combustion”Insustrial & Engineering Chemistry Research, Vol. 45,pp.6075-6080.
26. M. Johansson, T. Mattisson, A. Lyngfelt, “Investigation of Mn3O4 with Stabilized ZrO2 for Chemical Looping Combustion,” Institution of Chemical Engineers, Vol. 84, pp. 807-818 (2006).
27. T. Mattisson, A. Lyngfelt, H. Leion, “Chemical-looping with oxygen uncoupling for combustion of solid fuels”, Int. J. Greenh. Gas Con. 3 (2009) 11-19.
28. A. Shulman, E. Cleverstam, T. Mattisson, A. Lyngfelt, “Chemical-looping with oxygen uncoupling using Mn/Mg-based oxygen carriers - oxygen release and reactivity with methane”, Fuel 90 (2011) 941-950.
29. A. Lyngfelt. "Chemical-looping combustion of solid fuels–status of development." Applied Energy 113 (2014): 1869-1873.
30. L.F. de Diego, F. Garcvía-Labiano, J. Adá nez, P. Gayan, A. Abad, B.M. Corbella, J.M. Palacios, “Development of Cu-based oxygen carriers for chemical-looping combustion” Fuel, Vol. 83 pp.1749-1757(2004).
31. T. Mattisson, A. Järdnäs, A. Lyngfelt, “Reactivity of Some Metal Oxides Supported on Alumina with Alternating Methane and Oxygen - Application for Chemical Looping Combustion,” Energy & Fuels, Vol. 17, pp. 643-651 (2003).
32. P. Gay´an, L. F. de Diego, F. Garc´ıa-Labiano, J. Ad´anez, A. Abad, C. Dueso, “Effect of Support on Reactivity and Selectivity of Ni-Based Oxygen Carriers for Chemical-Looping Combustion,” Fuel, Vol. 87, pp. 2641–2650 (2008).
33. D-Q. Chen, L-H. Shen, J. Xiao, T. Song, H-M. Gu, S-W. Zhang, “Experimental Investigation of Hematite Oxygen Carrier Decorated with NiO for Chemical-Looping Combustion of Coal,” Journal of Fuel Chemistry and Technology, Vol. 40, pp. 267-272 (2012).
34. M. Arjmand, “Copper in Chemical-Looping Combustion (CLC) and Chemical-Looping with Oxygen Uncoupling (CLOU),” Department of Chemical and Biological Engineering Chalmers University of Technology (2012).
35. L. F. de Diego, M. Ortiz, J. Adánez, F. García-Labiano, A. Abad, P. Gayán, “Synthesis Gas Generation by Chemical-Looping Reforming in a Batch Fluidized Bed Reactor Using Ni-Based Oxygen Carriers,” Chemical Engineering Journal, Vol. 144, pp. 289-298 (2008).
36. H. Jina, M. Ishida, “Reactivity study on a novel hydrogen fueled chemical-looping combustion”International Journal of Hydrogen Energy, Vol.26,pp.889-894(2001).
37. S. Wang, G. Wang, F. Jiang, M. Luo, H. Li, “Chemical Looping Combustion of Coke Oven Gas by Using Fe2O3/CuO with MgAl2O4 as Oxygen Carrier,” Energy & Environmental Science, Vol. 3, pp. 1353-1360 (2010).
38. 徐維懋,「鎳鐵氧化物尖晶石結構載氧體之材料特性與惰性擔體之選用應用於化學迴圈性能評估」,碩士論文,國立台灣科技大學(2012).
39. A. Lambert, C. Delquié, I. Clémençon, E. Comte, V. Lefebvre, J. Rousseau, B. Durand,“Synthesis and Characterization of Bimetallic Fe/Mn Oxides for Chemical Looping Combustion,” Energy Procedia, Vol. 1, pp. 375-381 (2009).
40. J. Adánez, F. García-Labiano, L. F. de Diego, P. Gayán, J. Celaya, A. Abad,“Nickel-Copper Oxygen Carriers to Reach Zero CO and H2 Emissions in Chemical-Looping Combustion,” Industrial & Engineering Chemistry Research, Vol. 45, pp. 2617-2625 (2006).
41. M. Ryden, M. Johansson, E. Cleverstam, A. Lyngfelt, T. Mattisson, “Ilmenite with Addition of NiO as Oxygen Carrier for Chemical-Looping Combustion,” Fuel, Vol. 89, pp. 3523-3533 (2010).
42. T. Song, J. Wu, H. Zhang, L. Shen, “Characterization of an Australia Hematite Oxygen Carrier in Chemical Looping Combustion with Coal,” International Journal of Greenhouse Gas Control, Vol. 11, 326-336 (2012).
43. L. Shen, J. Wu, J. Xiao, Q. Song, R. Xiao, “Chemical-Looping Combustion of Biomass in a 10 kW Reactor with Iron Oxide as an Oxygen Carrier,” Energy & Fuels, Vol. 23, 2498-2505 (2009).
44. P. Kolbitsch, J. Bolhàr-Nordenkampf, T. Pröll, H. Hofbauer, “Comparison of Two Ni-Based Oxygen Carriers for Chemical Looping Combustion of Natural Gas in 140 kW Continuous Looping Operation,” Industrial & Engineering Chemistry Research, Vol. 48, 5542-5547 (2009).
45. G.Bittner,O.Briggs,W.Lauer,“ABBC-E Services’RSFC(TM) Wall Burner For Oil ,Gas and Coal Retrofit Applications”,ABBC-E Services, Inc, 1994.
46. Angelos Kokkinos,“NOx Emissions Controls Gas and Oil-Fired Boilers”,ABBC-E Services, Inc, 1994
47. 翁瑞裕,“選擇性觸媒還原脫硝法”,工業污染防治, NO.57, 1996, pp.140-155.
48. Leslie L.Sloss et al,“Nitrogen Oxides Control Technology Fact Book”,Noyes Data Corp, 1992, pp.60-119.
49. 1.RichardLafiesh,DonMadure,p.e.,Groton,ct,“Field Demonstration of ABB C-E Services’RSFC(TM) Wall Burner For Oil and Gas Retrofit Applications”,ABBC-E Services, Inc, 1994
50. 張君正, 張木彬,“氮氧化物生成機制與控制技術之探討”,工業污染防治,NO.50, 1994, pp.19-35.
51. 劉蘭萍,“氮氧化物控制技術與應用實務”,化工技術, 第七卷第六期, 1999, pp.228-239.
52. S.C.Hill,L.DouglasSmoot,“Modeling of Nitrogen Oxides Formation and Destruction in Combustion Systems”,Progress in Energy and Combustion Science VO.26, 2000, pp.417-458.
53. A.A.Konnov,G.Colson,J.DeRuyck,“NO Formatio nRates For Hydrogen Combustion In Stirred Reactors”,FuelVol.80,2001,pp.49-65
54. Carl R.Bozzuto,Robert J.Moriarty,“Comparison of Current NOx Control Technologies”,ABBC-E Services, Inc, 1994.
55. A.Van der Rest, G.Crociani, M.Fontaine, W.Hafker, P.Goodsell, G.Lsaak, J.Marvillet, H.Sutherland, H.Schipper,‘Best Available Technigues to Reduce Emission Form Refineries-Air’, Concawe,1999,pp.17-26
56. KojiHaseandYasumichiKori,“Effect of Premixing of Fuel Gas and Air On NOx Formation”,Fuel Vol.75,1996,pp.1509-1514
57. 詹德隆,“鍋爐燃料與燃燒”,中華民國鍋爐協會, 1998, pp.67-87.
58. Ladislav Bebar,Vit Kermes,Petr Stehlik,Josef Canek,Jarosav Oral,“Low NOx Burners-Prediction of Emissions Concentration Based on Design, Measurements and Modelling”,Waste ManagementVO.22,2002,pp.443-451.
59. William P.Partridge Jr and Normand M.Laurendeau,“Nitric Oxide Formation By Inverse Diffusion Flames In Staged-Air Burners”,Fuel Vol.74,1995,pp.1424-1430
60. 楊士雲, 張志成,“簡介低氮氧化物燃燒技術”,化工技術, 第三卷第七期, 1995, pp146-159.
61. 羅成信,“以尿素溶液取代氨水或液氨應用於選擇性觸媒還原法(SCR)脫硝系統(De-NOx)”,工業污染防治, NO.57, 1996, PP.128-137
62. 賴正昕, 劉國棟, 黃自立,“選擇性觸媒還原法排煙脫硝系統(SCR De-NOx)控制實務”,工業污染防治, NO.57, 1996, pp.110-125
63. E. Jerndal, T. Mattisson, A. Lyngfelt, “Thermal Analysis of Chemical-Looping Combustion,” Chemical Engineering Research and Design, Vol. 84, 795-806 (2006)
64. T. Song, J. Wu, H. Zhang, L. Shen, “Characterization of an Australia Hematite Oxygen Carrier in Chemical Looping Combustion with Coal,” International Journal of Greenhouse Gas Control, Vol. 11, 326-336 (2012).
65. 張世翰,以交聯式流體化床運行化學迴圈程序於溶劑處理之應用,國立臺灣科技大學化學工程系碩士論文,(2017)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔