(3.230.76.48) 您好!臺灣時間:2021/04/12 15:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳信彬
研究生(外文):Shin-Bin Chen
論文名稱:開發一適用於細胞分選之掃流式過濾晶片
論文名稱(外文):The Development of a Filtration Chip Based on Crossflow Filtration for Cell Separation and Collection
指導教授:陳品銓
指導教授(外文):Pin-Chuan Chen
口試委員:陳品銓張復瑜王孟菊饒達仁曹嘉文
口試委員(外文):Pin-Chuan ChenFuh-Yu ChangMeng-Jiy WangDa-Jeng YaoChia-Wen Tsao
口試日期:2019-07-10
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:118
中文關鍵詞:微型過濾晶片掃流式過濾細胞分選黏合
外文關鍵詞:microfiltration chipCross-flow filtrationCell sortingBonding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:16
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究為開發一微型過濾晶片,利用掃流式過濾原理,可用於三種不同尺寸範圍的粒子分離,達成細胞分選之目的,使用商用濾膜將其整合於晶片中,此濾膜擁有成本低廉、易於取得的優點,然而此種濾膜為核孔聚碳酸酯(Nucleopore Polycarbonate Track-Etch)與晶片基材聚甲基丙烯酸甲酯 (PMMA, Polymethyl methacrylate)不同,在晶片封裝時屬於異質黏合,製程較為複雜,故本研究提出(1)以UV光固化膠黏合製程進行黏合兩種不同的材質,並透過螺旋型流道幾何改善檢體於晶片內流動情況,以降低檢體流動不順的現象;(2)雙層掃流式的結構設計,可使粒子不易阻塞於濾膜前,改善過濾時壓力過大等問題。為了提高過濾晶片的過濾效率,實驗將針對不同尺寸的流道設計進行測試,經由計算過濾效率,並分析其影響;再以人類全血作為分析濾膜孔徑對於血細胞的分離效率之影響,以及測量細胞的存活率。實驗結果顯示,流道寬度2 mm、流道深度3 mm之晶片,濾膜孔徑尺寸為12 um、8 um,三種尺寸範圍的粒子分離效率分別為96.9、33.27、78.23%。在血液測試的實驗結果顯示,流道寬度2 mm、流道深度3 mm之晶片,濾膜孔徑尺寸為5 um、0.8 um,可成功攔截67.83%的白血球、72.83%的紅血球、以及蒐集60%的血漿;細胞存活率皆維持在約90%。
The main purpose of this study is to develop a microfluidic chip, which can separate three different sizes of particles by the principle of cross-flow filtration, and achieve the purpose of cell separating. The filter integrated in the chip is a commercial filter, and the cost is low. The advantages are easy to obtain. However, the material of the filter is different from the chip substrate. It is heterogeneously bonded during chip packaging, and the process is complicated. In this study, two different materials are bonded by UV glue bonding process. The spiral channel improves the flow of the sample in the chip and reduces the phenomenon that the sample flow is not smooth. The double cross-flow filtration structure can make the particles not easily block on the filter, and improve the problems caused by excessive pressure. In order to improve the filtration efficiency of the filter chip, the experiment will test the microfluidic chip design of different sizes, calculate the filtration efficiency, and analyze its influence. Finally, the human’s whole blood is used as the sample to analyze the effect the membrane pore size on the separation efficiency of blood cells. And measure the survival rate of the cells. In the results 2 mm flow path width, 3 mm flow path depth of the wafer, the size of the filter is 12 um and 8 um, the three different sizes of particle separation efficiency are 96.9%, 33.27% and 78.23%. In the blood test experiment 2 mm flow path width, 3 mm flow path depth of the wafer, the size of filter is 5 um and 0.8 um, can intercept 67.83% of white blood cells, 72.83% of red blood cells, and collect 60% of plasma; cell viability was maintained at around 90%.
目錄
摘要 I
Abstract III
誌謝 V
目錄 VII
圖目錄 XI
表目錄 XV
符號表 XVI
第一章 導論 1
1.1研究背景 1
1.2研究動機 2
1.3研究方法 5
1.4論文架構 6
第二章 文獻回顧 9
2.1主動式分離技術 9
2.2被動式分離技術 11
2.3掃流式過濾 16
第三章 過濾晶片初步設計及結果 21
3.1晶片設計介紹 21
3.2結構設計 22
3.3流動情況相關設計 25
第四章 晶片製程介紹 27
4.1 微銑削 27
4.1.1前言 27
4.1.2 操作與使用方法 29
4.2晶片製造 32
4.2.1上層上蓋、下蓋晶片加工 34
4.2.2上層下蓋背部加工 36
4.2.3下層上蓋、下蓋晶片加工 37
4.2.4出口流道晶片加工 39
4.3晶片黏合 40
4.3.1塑膠材料化學黏合 40
4.3.2 UV膠黏合 43
第五章 研究設備與實驗方法 45
5.1研究設備 45
5.1.1製程設備與軟體 45
5.1.2量測設備與軟體 49
5.2實驗方法 54
5.2.1.1流速對過濾能力之影響 55
5.2.1.2影像處理 57
5.2.2流道深寬比對過濾效率之影響 60
5.2.3流道寬對過濾效率之影響 62
5.2.4血液分離實驗 64
5.2.5血細胞存活率測試 67
第六章 實驗結果與討論 69
6.1流速對過濾能力之影響結果 69
6.2流道深寬比例對過濾效率影響之結果 73
6.3流道寬對過濾效率影響之結果 75
6.4血液分離實驗結果 77
6.5血細胞存活率測試結果 81
第七章 結論與未來展望 83
7.1結論 83
7.2未來展望 86
參考文獻 89
附錄A 流速對過濾能力之影響實驗數據 97
附錄B 流道深寬比對過濾效率之影響實驗數據 98
附錄C流道寬對過濾效率之影響實驗結果 101
附錄D血液分析數據(12 µm、0.8 µm) 102
附錄E血液分析數據(8 µm、0.8 µm) 103
附錄F血液分析數據(5 µm、0.8 µm) 105
[1]S. C. Terry, J. H. Jerman, J. B. Angell, "A gas chromatographic air analyzer fabricated on a silicon wafer," IEEE Trans. Electron Devices 26, pp. 1880-1886, 1979.
[2]C. T. Wittwer, G. C. Fillmore, D. J. Garling, "Minimizing the time required for DNA amplification by efficient heat transfer to small samples," Analytical Biochemistry 186, pp. 328–331, 1990.
[3]C. T. Wittwer, D. J. Garling, "Rapid cycle DNA amplification: time and temperature optimization," BioTechniques 10, pp. 76–83, 1991.
[4]Lab-on-Chip.gene-quantification.info.Available:http://www.gene-quantification.de/lab-on-chip.html
[5]G. M. Whitesides, "The origins and the future of microfluidics," Nature 442, pp. 368-373, 2006.
[6]D. J. Beebe, G. A. Mensing, G. M. Walker, "Physics and application of microfluidics in biology," Annu. Rev. Biomed. Eng 4, pp. 261-286, 2002.
[7]J. E. Drewes, B. Christopher, O. Matthew, X. Pei, T. U. Kim, A. Gary, "Rejection of wastewater-derived micropollutants in high-pressure membrane applications leading to indirect potable reuse," Environmental Progress 24, pp. 400-409, 2005.
[8]K. Aran, A. Fok, L. A. Sasso, N. Kamdar, Y. Guan, Q. Sun, A. Ündar, J. D. Zahn, "Microfiltration platform for continuous blood plasma protein extraction from whole blood during cardiac surgery," Lab Chip 11, pp. 2858–2868, 2011.
[9]S. Thorslund, O. Klett, F. Nikolajeff, K. Markides, J. Bergquist, "A hybrid poly (dimethylsiloxane) microsystem for on-chip whole blood filtration optimized for steroid screening," Biomed Microdevices 8, pp. 73–79, 2006.
[10]Riedhammer, Christine, D. Halbritter, and R. Weissert. "Peripheral blood mononuclear cells: isolation, freezing, thawing, and culture." Multiple Sclerosis. Humana Press, pp. 53-61, 2014.
[11]de Almeida, Marcos C., et al. "A simple method for human peripheral blood monocyte isolation." Memorias do Instituto Oswaldo Cruz 95.2 , pp. 221-223, 2000.
[12]I. Doh, Y. H. Cho, "A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process," Sensor and Actuators A 121, pp. 59-65, 2005.
[13]Gascoyne, Peter RC, and J. Vykoukal. "Particle separation by dielectrophoresis." Electrophoresis 23.13, pp. 1973-1983, 2002
[14]M. Yamada, M.Nakashima ,M. Seki, "Pinched Flow Fractionation:  Continuous Size Separation of Particles Utilizing a Laminar Flow Profile in a Pinched Microchannel,"Anal. Chem. 76, pp. 5465-5471, 2004.
[15]Hsu, Chia-Hsien, et al. "Microvortex for focusing, guiding and sorting of particles." Lab on a Chip 8.12, pp. 2128-2134, 2008.
[16]Kuntaegowdanahalli, Sathyakumar S., et al. "Inertial microfluidics for continuous particle separation in spiral microchannels." Lab on a Chip 9.20, pp. 2973-2980, 2009.
[17]Hur, S. Claire, H. T. K. Tse, and D. D. Carlo. "Sheathless inertial cell ordering for extreme throughput flow cytometry." Lab on a Chip 10.3, pp. 274-280, 2010.
[18]X. B. Zhang, Z. Q. Wu, K. Wang, J. Zhu, J. J. Xu, X. H. Xia, H. Y. Chen, "Gravitational Sedimentation Induced Blood Delamination for Continuous Plasma Separation on a Microfluidics Chip," Anal. Chem. 84, pp. 3780−3786, 2012.
[19]T. Tachi, N. Kaji, M. Tokeshi, Y. Baba, "Simultaneous separation, metering, and dilution of plasma from human whole blood in a microfluidic system," Anal. Chem . 81, pp. 3194–3198, 2009.
[20]Ji, H. Miao, et al. "Silicon-based microfilters for whole blood cell separation." Biomedical microdevices 10.2, pp. 251-257, 2008.
[21]Chen, Xing, C. C. Liu, and H. Li. "Microfluidic chip for blood cell separation and collection based on crossflow filtration." Sensors and Actuators B: Chemical 130.1, pp. 216-221, 2008.
[22]Z. Geng, Y. Ju, Q. Wang, W. Wang, Z. Li, "Multi-component continuous separation chip composed of micropillar arrays in a split-level spiral channel," RSC Adv. 3, pp. 14798–14806, 2013.
[23]T. G. Kang, Y. J. Yoon, H. Ji, P. Y. Lim, Y. Chen, "A continuous flow micro filtration device for plasma/blood separation using submicron vertical pillar gap structures," J. Micromech. Microeng. 24, pp.1-5, 2014.
[24]Yeh, Chia-Hsien, et al. "Using the developed cross-flow filtration chip for collecting blood plasma under high flow rate condition and applying the immunoglobulin E detection." Journal of Micromechanics and Microengineering 24.9, pp. 095013, 2014.
[25]K. Aran, A. Fok, L. A. Sasso, N. Kamdar, Y. Guan, Q. Sun, A. Ündar, J. D. Zahn, "Microfiltration platform for continuous blood plasma protein extraction from whole blood during cardiac surgery," Lab Chip 11, pp. 2858–2868, 2011.
[26]C. K. Malek and V. Saile, "Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and -systems: a review," Microelectronics Journal 35, pp. 131-143, 2004.
[27]S. C. Terry, J. H. Jerman, and J. B. Angell, "A gas chromatographic air analyzer fabricated on a silicon wafer," Electron Devices, IEEE Transactions on 26, pp. 1880-1886, 1979.
[28]D. J. Harrison, A. Manz, Z. Fan, H. Luedi, and H. M. Widmer, "Capillary electrophoresis and sample injection systems integrated on a planar glass chip," Analytical Chemistry 64, pp. 1926-1932, 1992.
[29]C. H. Ahn, C. Jin-Woo, G. Beaucage, J. H. Nevin, L. Jeong-Bong, A. Puntambekar, et al., "Disposable smart lab on a chip for point-of-care clinical diagnostics, " Proceedings of the IEEE 92, pp. 154-173, 2004.
[30]P. Mela, A. van den Berg, Y. Fintschenko, E. B. Cummings, B. A. Simmons, and B. J. Kirby, "The zeta potential of cyclo-olefin polymer microchannels and its effects on insulative (electrodeless) dielectrophoresis particle trapping devices,"ELECTROPHORESIS 26, pp.1792-1799, 2005.
[31]Y. Yang, C. Li, J. Kameoka, K. H. Lee, and H. G. Craighead, "A polymeric microchip with integrated tips and in situ polymerized monolith for electrospray mass spectrometry," Lab on a Chip 5, pp. 869-876, 2005.
[32]M. Bua, T. Melvin, G.J. Ensell, J.S. Wilkinson, A.G.R. Evans, "A new masking technology for deep glass etching and its microfluidic application," Sensors and Actuators A, 115, pp.476-482, 2004.
[33]A. Berthold, P. M. Sarro, M.J. Vellekoop, "Two-step glass wet-etching for micro-fluidic devices," Proceedings of the SeSens workshop, 2000.
[34]L. Ceriottia, K. Weibleb, N.F. de Rooija, E. Verpoortea, "R ectangular channels for lab-on-a-chip applications," Microelectronic Engineering, 67-68, pp.865-871, 2003.
[35]D. Mijatovic, J.C.T. Eijkel, A. van den Berg, "Technologies for nanofluidic systems: top-down vs. bottom-up—a review," Lab chip, 5, pp.492-500, 2005.
[36]T.D. Boone, Z.H. Fan, H.H. Hooper, A.J. Ricco, H. Tan, S.J. Williams, "Plastic advances microfluidic devices," Anal. Chem., 74, pp. 78A-86A, 2002.
[37]L. Martynova, L.E. Locascio, M. Gaitan, G.W. Kramer, R.G. Christensen, W.A. MacCrehan, "Fabrication of Plastic Microfluid Channels by Imprinting Methods," Anal. Chem., 69, pp.4783-4789, 1997.
[38]H.Takaoa, K. Miyamurab, H. Ebib, M. Ashikia, K. Sawadaa, M. Ishidaa, "A MEMS microvalve with PDMS diaphragm and two-chamber configuration of thermo-pneumatic actuator for integrated blood test," Sensors and Actuators A, 119, pp.468-475, 2005.
[39]J. Melin, N. Roxhed, G. Gimenez, P. Griss, W. van der Wijngaart, G. Stemme, "A liquid-triggered liquid microvalve for on-chip flow control," Sensors and Actuators B, 100, pp.463-468, 2004.
[40]R.Pal, M. Yang, B.N. Johnson, D.T. Burke, M.A. Burns, "Phase Change Microvalve for Integrated Devices," Anal. Chem., 76, pp.3740-3748, 2004.
[41]P. Vulto, T. Huesgen, B. Albrecht, G. A. Urban, "A full-wafer fabrication process for glass microfluidic chips with integrated electroplated electrodes by direct bonding of dry film resist, " J. Micromech. Microeng., 19, 077001, 2009.
[42]B.J. Polk, A. Stelzenmuller, G. Mijares,W. MacCrehanb, M. Gaitan, "Ag/AgCl microelectrodes with improved stability for microfluidics," Sensors and Actuators B, 114, pp.239-247, 2006.
[43]E.T. Enikov, J.G. Boyd, "Electroplated electro-fluidic interconnects for chemical sensors," Sensors and Actuators, 84, pp.161-164, 2000.
[44]J.Y. Cheng, M.H. Yen, C.W. Wei, Y.C. Chuang ,T.H. Young," Crack-free direct-writing on glass using a low-power UV laser in the manufacture of a microfluidic chip," J. Micromech. Microeng, 15, pp.1147-1156, 2005.
[45]C.G.K. Malek, "Laser processing for bio-microfluidics applications (part II), " Anal Bioanal Chem, 385, pp.1362-1369, 2006.
[46]W.C. Jung, Y.M. Heo, G.S. Yoon, K.H. Shin, S.H. Chang, G.H. Kim, M.W. Cho," Micro Machining of Injection Mold Inserts for Fluidic Channel of Polymeric Biochips, " Sensors, 7, pp.1643-1654, 2007.
[47]D.S. Zhao, B. Roy, M.T. McCormick, W.G. Kuhr, S.A. Brazill, "Rapid fabrication of a poly(dimethylsiloxane) microfluidic capillary gel electrophoresis system utilizing high precision machining, " Lab chip, 3, pp.93-99, 2003.
[48]J.S. Mecombera, D. Hurdb, P.A. Limbach, "Enhanced machining of micron-scale features in microchip molding masters by CNC milling, " International Journal of Machine Tools & Manufacture, 45, pp.1542-1550, 2005.
[49]M.L. Huperta, W.J. Guya, S.D. Llopisa, C. Situmaa, S. Rania, D.E. Nikitopoulosa, S. A. Soper, "High-Precision Micromilling for Low-Cost Fabrication of Metal Mold Masters," Proc. of SPIE, 6112, pp.61120B1-12, 2005.
[50]M. Schilling, W. Nigge, A. Rudzinski, A. Neyerb, R. Hergenrödera, "A new on-chip ESI nozzle for coupling of MS with microfluidic devices, " Lab chip, 4, pp.220-224, 2004.
[51]G.S. Fiorini, D.T. Chiu, "Disposable microfluidic devices: fabrication, function, and application, " BioTechniques, 38, pp. 429-446, 2005.
[52]H. D. Rowland and W. P. King, "Polymer deformation and filling modes during microembossing", Journal of Micromechanics and Microengineering, 14, 1625, 2004.
[53]S. K. Sia and G. M. Whitesides,"Microfluidic devices fabricated in poly (dimethylsiloxane) for biological studies", Electrophoresis ,24,3563-3576, 2003.
[54]Y.-C. Su, J. Shah, and L. Lin, "Implementation and analysis of polymeric microstructure replication by micro injection molding", Journal of Micromechanics and Microengineering,14, 415, 2004.
[55]P.C. Chen, C.W. Pan, W.C. Lee, and K.M. Li, "An experimental study of micromilling parameters to manufacture microchannels on a PMMA substrate", The International Journal of Advanced Manufacturing Technology, 71, 1623-1630, 2014.
[56]M.L. Huperta, W.J. Guya, S.D. Llopisa, C. Situmaa, S. Rania, D.E. Nikitopoulosa, S. A. Soper,"High-Precision Micromilling for Low-Cost Fabrication of Metal Mold Masters", Proc. of SPIE, 6112, 61120B1-61120B 12, 2005.
[57]Hoogenboom, Richard, et al. "Solubility and thermoresponsiveness of PMMA in alcohol-water solvent mixtures." Australian journal of chemistry 63.8, pp. 1173-1178, 2010.
[58].Tanisugi, Hideaki, H. Ohnuma, and T. Kotaka. "Swelling Behavior of Bisphenol-A Polycarbonate–Polyoxyethylene Multiblock Copolymers in Ethanol/Water Mixtures." Polymer journal 16.8, pp. 633, 1984.
[59]Duong Huyen Lynh,應用於熱塑性材料微流體晶片之新型溶劑黏合方法,國立台灣科技大學機械工程研究所,2016.
[60]Segre, G., and A. Silberberg, "Radial particle displacements in Poiseuille flow of suspensions.", Nature 189.4760 (1961): 209.
[61]V. Liu, M. Patel and A. Lee, "A microfludic device for blood cell sorting and morphology analysis", 978-0-9798064-6-9/μTAS 2013.
[62]S. Tripathi, Y. V. Bala Varun Kumarl, A. Prabhakar, S. S. Joshi and A. Agrawal, "Performance study of microfluidic devices for blood plasma separation-a designer’s perspective", J. Micromech. Microeng. 25 , 2015.
電子全文 電子全文(網際網路公開日期:20240822)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔