|
[1] F. Zhang, Z.G. Liu, R.C. Zeng, et al., Corrosion resistance of Mg–Al-LDH coatingon magnesium alloy AZ31, Surf. Coat. Technol. 258 (2014) 1152-1158. [2] A. Atrens, G.L. Song, F. Cao, et al., Advances in Mg corrosion and researchsuggestions, J. Magnes. Alloys 1 (3) (2013) 177-200. [3] F.S. Pan, X.H. Chen, T. Yan, et al., A novel approach to melt purification ofmagnesium alloys, J. Magnes. Alloys 4 (1) (2016) 8-14. [4] G.L. Song, A. Atrens, Corrosion mechanisms of magnesium alloys, Adv. Eng.Mater. 1 (1) (1999) 11–33. [5] A. Atrens, M. Liu, N.I.Z. Abidin, Corrosion mechanism applicable to biodegradable magnesium implants, Mater. Sci. Eng.: B 176 (20) (2011)1609-1636. [6] C. Taltavull, Z. Shi, B. Torres, et al., Influence of the chloride ion concentrationon the corrosion of high-purity Mg, ZE41 and AZ91 in buffered Hank’ssolution, J. Mater. Sci. 25 (2) (2014) 329-345. [7] A. Atrens, G.L. Song, M. Liu, et al., Review of recent developments in the field of magnesium corrosion, Adv. Eng. Mater. 17 (4) (2015) 400-453. [8] H. Hornberger, S. Virtanen, A.R. Boccaccini, Biomedical coatings on magnesium alloys–a review, Acta Biomater. 8 (7) (2012) 2442-2455. [9] S. Pommiers, J. Frayret, A. Castetbon, M. Potin-Gautier, Alternative conversion coatings to chromate for the protection of magnesium alloys, Corros. Sci. 84 (2014) 135-146. [10] T. Lei, C. Ouyang, W. Tang, L. Li, L. Zhou, Preparation of MgO coatings onmagnesium alloys for corrosion protection, Surf. Coat. Technol. 204 (2010) 3798-3803. [11] C.H. Anja, G. Petra, S. Michael, J.U. Peter, On the biodegradation performance of an Mg-Y-RE alloy with various surface conditions in simulated body fluid, Acta Biomater. 5 (2009) 162-171. [12] W.J. Cheong, B.L. Luan, D.W. Shoesmith, Protective coating on Mg AZ91D alloy: the effect of electroless nickel (EN) bath stabilizers on corrosion behavior of Ni-P deposit, Corros. Sci. 49 (2007) 1777-1798. [13] B.L. Yu, X.L. Pan, J.Y. Uan, Enhancement of corrosion resistance of Mg-9 wt.% Al-1 wt.% Zn alloy by a calcite (CaCO3) conversion hard coating, Corros. Sci. 52 (2010) 1874–1878. [14] P. Mandal, S. C. Mondal, Investigation of Electro-Thermal property for Cu-MWCNT composite coating on anodized 6061 aluminium alloy, Appl. Surf. Sci. 454 (2018) 138-147. [15] L. Chen, X. Jin, Y. Qu, et al., High temperature tribological behavior of microarc oxidation film on Ti-39Nb-6Zr alloy, Surf. Coat. Technol. 347 (2018) 29-37. [16] H. Hoche, J. Schmidt, S. Groß, T. Troßmann, C. Berger, PVD coating and substrate pretreatment concepts for corrosion and wear protection of magnesium alloys, Surf. Coat. Technol. 205 (2011) S145-S150. [17] S. Tang, S. Gao, S. Wang, J. Wang, Q. Zhu, Y. Chen, X. Li, Characterization of CVD TiN coating at different deposition temperatures and its application in hydrocarbon pyrolysis, Surf. Coat. Technol. 258 (2014) 1060-1067. [18] S.E. Babayan, J.Y. Jeong, V.J. Tu, J. Park, G.S. Selwyn, R.F. Hicks, Deposition of silicon dioxide films with an atmospheric-pressure plasma jet, Plasma Sources Sci. Technol. 7 (1998) 286-288. [19] C.L. Wu, C.Y. Yang, T.P. An, J.W. Lin, C.K. Sung, Anti-adhesion treatment for nanoimprint stamps using atmospheric pressure plasma CVD (APPCVD), Appl. Surf. Sci. 261 (2012) 441–446. [20] G. Arnoult, T. Belmonte, G. Henrion, Self organization of SiO2 nanodots deposited by chemical vapor deposition using an atmospheric pressure remote microplasma, Appl. Phys. Lett. 96 (2010) 101505–101505-3. [21] L. Kotte, H. Althues, G. Mader, J. Roch, S. Kaskel, I. Dani, T. Mertens, F.J. Gammel, Atmospheric pressure PECVD based on a linearly extended DC arc for adhesion promotion applications, Surf. Coat. Technol. 234 (2013) 8–13. [22] Y. L. Kuo, K. H. Chang, T. S. Hung , K. S. Chen, N. Inagaki, Atmospheric-pressure plasma treatment on polystyrene for the photo-induced grafting polymerization of N-isopropylacrylamide, Thin Solid Films 518 (2010) 7568-7573. [23] A. V. Deynse, P. Cools, C. Leys, R. Morent, N. D. Geyter, Surface modification of polyethylene in an argon atmospheric pressure plasma jet, Surf. Coat. Technol. 276 (2015) 384-390. [24] G.L. Song, Recent progress in corrosion and protection of magnesium alloys, Adv. Eng. Mater. 7 (2005) 563–586. [25] K.U. Kainer, P. Bala Srinivasan, C. Blawert, W. Dietzel, Shreir’s Corrosion, vol. 3, Elsevier, Oxford, 2010. [26] J.E. Gray, B. Luan, Protective coatings on magnesium and its alloys - a critical review, J. Alloys Compd. 336 (2002) 88-113. [27] R.G. Hu, S. Zhang, J.F. Bu, C.J. Lin, G.L. Song, Recent progress in corrosion protection of magnesium alloys by organic coatings, Prog. Org. Coat. 73 (2012) 129-141. [28] V.S. Y. Lin, K. Motesharei, K.-P.S. Dancil, M.J. Sailor, M.R. Ghadiri, A porous silicon- based optical interferometric biosensor, Science 278 (1997) 840-843. [29] S. Mariani, L.M. Strambini, G. Barillaro, Femtomole detection of proteins using a label-free nanostructured porous silicon interferometer for perspective ultrasensitive biosensing, Anal. Chem. 88 (2016) 8502–8509. [30] S. Mariani, L. Pino, L.M. Strambini, L. Tedeschi, G. Barillaro, 10 000-fold improvement in protein detection using nanostructured porous silicon interferometric aptasensors, ACS Sensors 1 (2016) 1471–1479. [31] R. Caroselli, D. Martín-Sanchez, S. Ponce Alcántara, F. Prats Quilez, L. Torrijos Morán, J. García-Ruperez, Real-time and in-flow sensing using a high sensitivity porous silicon microcavity-based sensor, Sensors 17 (2813) (2017) 1–12. [32] J.D. Verink,Simplified procedure for constructing Pourbaix diagrams Uhlig's Corros. Handb. (third ed.) (2011) 93-101. [33] G. Song, A. Atrens, D. Stjohn, J. Nairn, Y. Li, The electrochemical corrosion of pure magnesium in 1 N NaCl, Corros. Sci. 39 (1997) 855-875. [34] H.K. Lim, D.H. Kim, J.Y. Lee, W.T. Kim, D.H. Kim, Effects of alloying elements on microstructures and mechanical properties of wrought Mg–MM–Sn alloy, J. Alloys Compd. 468 (2009) 308-314. [35] R. Ambat, N. N. Aung, W. Zhou, Evaluation of microstructural effects on corrosion behavior of AZ91D magnesium alloy, Corros. Sci 42 (2000) 1433-1455. [36] R. Ambat, N. N. Aung, W. Zhou, Study on influence of chloride ion and pH on the corrosion and electrochemical behavior of AZ91D magnesium alloy, J. Appl. Electrochem. 30 (2000) 865-874. [37] W. M. Chan, F. T. Cheng, L. K. Leung, R. J. Horylev, T. M. Yue, Corrosion behavior of magnesium alloy AZ91 and its MMC in NaCl solution, Corrosion reviews, 16(1998) 43. [38] H. Inoue, K. Sugahara, A. Yamamoto, H. Tsubakino, Corrosion rate of magnesium and its alloys in buffered chloride solutions, Corros. Sci 44 (2000) 603-610. [39] O. Lunder, J. E. Lein, T. Kr. Aune, K. Nisancioglu, The role of Ma17Al12 phase in the corrosion of Mg alloy AZ91, Corrosion 45 (1989) 741. [40] P. Volovitch, T.N. Vu, C. Allely, A.A. Aal, K. Ogle, Understanding corrosion via corrosion product characterization: II. Role of alloying elements in improving the corrosion resistance of Zn–Al–Mg coatings on steel, Corros. Sci 53 (2011) 2437-2445. [41] X. Zhang, T.N. Vu, P. Volovitch, C. Leygraf, K. Ogle, I. Odnevall Wallinder, The initial release of zinc and aluminum from non-treated Galvalume and the formation of corrosion products in chloride containing media, Appl. Surf. Sci. 258 (2012) 4351-4359. [42] J. Duchoslav, M. Arndt, R. Steinberger, T. Keppert, et al., Nanoscopic view on the initial stages of corrosion of hot dip galvanized Zn-Mg-Al coatings Corros. Sci., 83 (2014) 327-334. [43] J. Sullivan, N. Cooze, C. Gallagher, et al., In situ monitoring of corrosion mechanisms and phosphate inhibitor surface deposition during corrosion of zinc-magnesium-aluminium (ZMA) alloys using novel time-lapse microscopy, Faraday Discuss. 180 (2015) 361-379. [44] T. Prosek, D. Persson, J. Stoulil, D. Thierry, Composition of corrosion products formed on Zn-Mg, Zn-Al and Zn-Al-Mg coatings in model atmospheric conditions, Corros. Sci. 86 (2014) 231-238, [45] R. Hausbrand, M. Stratmann, M. Rohwerder, Corrosion of zinc-magnesium coatings: mechanism of paint delamination, Corros. Sci. 51 (2009) 2107-2114. [46] H.Proffit, Magnesium and Magnesium Alloys, AMS Hanbook, vol. 2 [47] J. Duchoslav, M. Arndt, T. Keppert, G. Luckeneder, D. Stifter, XPS investigation on the surface chemistry of corrosion products on ZnMgAl-coated steel, Anal. Bioanal. Chem. 405 (2013) 7133-7144. [48] S. Schuerz, M. Fleischanderl, G.H. Luckeneder, K. Preis, et al., Corrosion behaviour of Zn-Al-Mg coated steel sheet in sodium chloride-containing environment, Corros. Sci. 51 (2009) 2355-2363. [49] J. Elvins, J.A. Spittle, D.A. Worsley, Microstructural changes in zinc aluminium alloy galvanising as a function of processing parameters and their influence on corrosion, Corros. Sci. 47 (2005) 2740-2759. [50] J. Elvins, J.A. Spittle, J.H. Sullivan, D.A. Worsley, The effect of magnesium additions on the microstructure and cut edge corrosion resistance of zinc aluminium alloy galvanised steel Corros. Sci. 50 (2008) 1650-1658. [51] Y. Wang, S. Lü, Z. Zhou, W. Zhou, J. Guo, Z. Lan, Effect of transition metal on the hydrogen storage properties of Mg-Al alloy, J. Mater. Sci. 52 (5) (2017) 392-399. [52] H. Ning, Z.Y. Zhou, Z.Y. Zhang, W.Z. Zhou, G.X. Li, J. Guo, Hydrogen dissociation and incorporation on Mg17Al12(100) surface: a density functional theory study, Appl. Surf. Sci. 396 (2017) 851-856. [53] Z.Y. Zhang, X.Y. Zhou, H.L. Zhang, J. Guo, H. Ning, Hydrogen penetration and diffusion on Mg17Al12 (110) surface: a density functional theory investigation, Int. J. Hydrogen Energy 42 (41) (2017) 26013-26019. [54] H. Inoue, K. Sugahara, A. Yamamoto, H. Tsubakino, Corrosion rate of magnesium and its alloys in buffered chloride solutions, Corros. Sci. 44 (2002) 603-610. [55] C. R. S. Mathieu, J. Hazan, P. Steinmetz, "Corrosion behaviour of high pressure die-cast and semi-solid cast AZ91D alloys, Corros. Sci. 44 (2002) 2737-2756. [56] C. D. Yim K. S. Shin, Semi-solid processing of Magnesium alloys, Materials transactions 44 (2003) 558-561. [57] C. Gu, J. Lian, J. He, Z. Jiang, Q. Jiang, High corrosion-resistance nanocrystalline Ni coating on AZ91D magnesium alloy, Surf. Coat. Technol. 200 (2006) 5413-5418. [58] W.J. Cheong, B.L. Luan, D.W. Shoesmith, Protective coating on Mg AZ91D alloy –The effect of electroless nickel (EN) bath stabilizers on corrosion behaviour of Ni-P deposit, Corros. Sci. 49 (2007) 1777-1798. [59] J.E. Gray, B. Luan, Protective coatings on magnesium and its alloys-a critical review, J. Alloys. Compd. 336 (2002) 88-113. [60] H. Umehara, S. Terauchi, M. Takaya, Structure and Corrosion Behavior of Conversion Coatings on Magnesium Alloys, Materials Science Forum, 350-351 (2000) 273.-282. [61] A. U. Simaranov, S. L. Marshakov, Y. N. Mikhailovskii, The composition andprotective properties of chromate conversion coatings on magnesium, Protection of Metals 25 (1992) 576-580. [62] I. Azkarate, A. P. Cano, Del Barrio, M. Insausti, P. S. Coloma, Alternatives to Cr(VI) conversion coatings for magnesium alloys, International Congress Magnesium Alloys and their Applications (2000) 475-483. [63] M.A. Gonzalez-Nunez, C. A. Nunez-Lopez, P. Skeldon, G.E. Thompson, et al., A non-chromate conversion coating for magnesium alloys and magnesium-based metal matrix composites, Corros. Sci. 37 (1995) 1763-1772. [64] A.L. Rudd, C. B. Breslin, F. Mansfeld, The corrosion protection afforded by rare earth conversion coatings applied to magnesium, Corros. Sci. 42 (2000) 275-288. [65] L. Zaraska, W.J. Stępniowski, G.D. Sulka, E. Ciepiela, M. Jaskuła, Analysis of nanopore arrangement and structural features of anodic alumina layers formed by two-step anodizing in oxalic acid using the dedicated executable software, Appl. Phys. A 114 (2014) 571-577. [66] W.J. Stępniowski, A. Nowak-Stępniowska, M. Michalska-Domańska, M. Norek, T. Czujko, Z. Bojar, Fabrication and geometric characterization of highly-ordered hexagonally arranged arrays of nanoporous anodic alumina, Pol. J. Chem. Tech. 16 (2014) 63-69. [67] Z. Yao, P. Ju, Q. Xia, J. Wang, P. Su, H. Wei, D. Li, Z. Jiang, Preparation of thermal control coatings on Mg–Li alloys by plasma electrolytic oxidation, Surf. Coatings Technol. 307 (2016) 1236-1240. [68] Y. Liu, F.W. Yang, Z.L. Wei, Z. Zhang, Anodizing of AZ91D magnesium alloy using environmental friendly alkaline borate-biphthalate electrolyte, Trans. Nonferrous Met. Soc. China (English Ed. 22 (2012) 1778-1785. [69] Ch. Voulgaris, E. Amanatides, D. Mataras, S. Grassini, E. Angelini, F. Rosalbino, RF power and SiOxCyHz deposition efficiency in TEOS/O2 discharges for the corrosion protection of magnesium alloys, Surf. Coat. Technol. 200 (2006) 6618-6622. [70] H. Hoche, J. Schmidt, S. Groß, T. Troßmann, C. Berger, PVD coating and substrate pretreatment concepts for corrosion and wear protection of magnesium alloys, Surf. Coat. Technol. 205 (2011) S145-S150. [71] Y. T, Method for plating magnesium alloy (2007). [72] H. O. Pierson, Handbook of Refractory Carbides and Nitrides, Noyes publications, New Jersey (1996) 100-115. [73] I. Vlassiouk, P. Fulvio, H. Meyer, N. Lavrik, S. Dai, P. Datskos, et al., Large scale atmospheric pressure chemical vapor deposition of graphene, Carbon 54 (2013) 58-67. [74] C. Sella, J. Leceur, Y. Sampeur, and P. Catania, Layers of high speed steel with microstructures characteristics of heat-treated materials, Surf. Coat. Technol. (1993) 287-289. [75] B. Chapman, Glow Discharge: Sputtering and Plasma Etching, Wiley-Interscience, New York, 1980. [76] J. R. Roth, Industrial Plasma Engineering, Principles, of Physics Publishing, London 1 (1995). [77] S. Kanazawa, M. Kogoma, T. Moriwaki, S. Okazaki, Stable glow plasma at atmospheric pressure, J. Phys. D Appl. Phys. 21 (1988) 836-840. [78] J. Y. Jeong, S. E. Babayan, J. P. V. J. Tu, R. F. Hicks, S. Selwyn, Etching materials with an atmospheric-pressure plasma jet, Plasma Sources Sci. T. 7 (1998) 282-285. [79] T. Yokoyama, M Kogoma, T Moriwaki, S. Okazaki, T. Yokoyama, The mechanism of the stabilisation of glow plasma at atmospheric pressure, J. Phys. D Appl. Phys. 23 (1990) 1125-1128.vol. [80] K. Yamamoto, M. Tanaka, S. Tashiro , K. Nakata , K. Yamazaki , E. Yamamoto, K. Suzuki, A.B. Murphy, Numerical simulation of metal vapor behavior in arc plasma, Surf. Coat. Technol. 202 (2008) 5302-5305. [81] M. Bashir, Julia M. Rees, William B. Zimmerman, Plasma polymerization in a microcapillary using an atmospheric pressure dielectric barrier discharge, Surf. Coat. Technol. 234 (2013) 82-91. [82] D.J. Marchand, Z.R. Dilworth, R.J. Stauffer, et al., Atmospheric rf plasma deposition of superhydrophobic coatings using tetramethylsilane precursor, Surf. Coat. Technol. 234 (2013) 14-20. [83] M. Pantoja, N. Encinas, J. Abenojar, M.A. Martinez, Effect of tetraethoxysilane coating on the improvement of plasma treated polypropylene adhesion, Appl. Surf. Sci. 280 (2013) 850-857. [84] Y.W. Hsu, Y.J. Yang, C.Y. Wu, C.C. Hsu, Downstream characterization of an atmospheric pressure pulsed arc jet, Plasma Chem. Plasma Process. 30 (2010) 363-372. [85] J.-Y. Juang, T.-S. Chou, H.-T. Lin, Y.-F. Chou, C.-C. Weng, Trajectory effect on the properties of large area ZnO thin films deposited by atmospheric pressure plasma jet, Appl. Surf. Sci. 314 (2014) 1074-1081. [86] K.-M. Chang, S.-H. Huang, C.-J. Wu, W.-L. Lin, W.-C. Chen, C.-W. Chi, J.-W. Lin, C.-C.Chang, Transparent conductive indium-doped zinc oxidefilms prepared by atmospheric pressure plasma jet, Thin Solid Films 519 (2011) 5114-5117. [87] S. E. Babayan, J. Y. Jeong, V. J. Tu, A. Schutze, M. Moravej, G. S. Selwyn, et al., Deposition of silicon dioxide films with a non-equilibrium atmospheric-pressure plasma jet, Plasma Sources Sci. 10 (2001) 573-578. [88] L. Zhou, G.H. L, C. Ji, S.Z. Yang, Application of plasma polymerized siloxane films for the corrosion protection of titanium alloy, Thin Solid Films 520 (2012) 2505-2509. [89] U. Lommatzsch, J. Ihde, Plasma Polymerization of HMDSO with an Atmospheric Pressure Plasma Jet for Corrosion Protection of Aluminum and Low-Adhesion Surfaces, Plasma Process. Polym. 6 (2009) 642-648. [90] N.D. Boscher, P. Choquet, D. Duday, S. Verdier, Advantages of a Pulsed Electrical Excitation Mode on the Corrosion Performance of Organosilicon Thin Films Deposited on Aluminium Foil by Atmospheric Pressure Dielectric Barrier Discharge, Plasma Process. Polym. 7 (2010) 163-171. [91] C. Regula, J Ihde, U. Lommatzsch, R. Wilken, Corrosion protection of copper surfaces by an atmospheric pressure plasma jet treatment, Surf. Coat. Technol. 205 (2011) S355-S358. [92] R. Morent, N. D. Geyter, S. V. Vlierberghe , P. Dubruel, C. Leys, E. Schacht, Organic-inorganic behaviour of HMDSO films plasma-polymerized at atmospheric pressure, Surf. Coat. Technol. 203 (2009) 1366-1372. [93] N. Koshizaki, H. Umehara, T. Oyama, XPS characterization and optical properties of Si/SiO2, Si/Al2O3 and Si/MgO co-sputtered films, Thin Solid Films 325 (1998) 130-136. [94] L. J. Ward, W. C. E. Schofield, J. P. S. Badyal A. J. Goodwin P. J. Merlin, Atmospheric Pressure Glow Discharge Deposition of Polysiloxane and SiOx Films, Langmuir 19 (2003) 19 2110-2114. [95] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics, Inc., 1995. [96] G.R. Nowling, M. Yajima, S.E. Babayan, M. Moravej, X. Yang, W. Hoffman, R.F. Hicks, Chamberless plasma deposition of glass coatings on plastic, Plasma Sources Sci. Technol. 14 (2005) 477-484. [97] Y. Ding, Q. Pan, J. Jin, H.Jia, H. Shirai, Silicon oxide synthesized using an atmospheric pressure microplasma jet from a tetraethoxysilane and oxygen mixture, Thin Solid Films, 518 (2010) 3487-3491. [98] C. Huang, C.H. Liu; C.H. Su, W.T. Hsu, S.Y. Wu, Investigation of atmospheric-pressure plasma deposited SiOx films on polymeric substrates, Thin Solid Films 517 (2009) 5141-5145. [99] G.S. Chen, S.T. Chen, Y.W. Chen, Y.C. Hsu, Site-selective electroless metallization on porous organosilica films by multisurface modification of alkyl monolayer and vacuum plasma, Langmuir 29 (2013) 511-518. [100] J.S. Chou, S.C. Lee, Effect of porosity on infrared-absorption spectra of silicon dioxide, J. Appl. Phys. 77 (1995) 1805-1807. [101] S.E. Babayan, J.Y. Jeong, A. Sch¨utze1, V.J. Tu, M. Moravej, G.S. Selwyn, R.F. Hicks, Deposition of silicon dioxide films with a non-equilibrium atmospheric-pressure plasma jet, Plasma Sources Sci. Technol. 10 (2001) 573-578. [102]A. Sonnenfeld, T.M. Tun, L. Zajíˇckov ´, K.V. Kozlov, H.E. Wagner, J.F. Behnke, R. Hippler, Deposition process based on organosilicon precursors in dielectric barrier discharges at atmospheric pressure, Plasmas Polym. 6 (2002) 237-266. [103] A.C. Ritts, C.H. Liu, Q.S. Yu, SiOx plasma thin film deposition using a low-temperature cascade arc torch, Thin Solid Films 519 (2011) 4824-4829. [104] Y.L. Kuo, Y.M. Su, H.L. Chou, A facile synthesis of high quality nanostructured CeO2 and Gd2O3-doped CeO2 solid electrolytes for improved electrochemical performance, Phys. Chem. Chem. Phys. 17 (2015) 14193-14200.
|