跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/15 11:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林弘
研究生(外文):Hung Lin
論文名稱:複合動力系統液壓驅動離合器之模型建立與驗證
論文名稱(外文):Modeling of Hydraulic Clutches in Hybrid Electric Power System
指導教授:姜嘉瑞
指導教授(外文):Chia-Jui - Chiang
口試委員:陳亮光顧詠元楊景龍
口試委員(外文):Liang-kuang ChenYong-Yuan KuJing-Long Yang
口試日期:2019-7-15
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:80
中文關鍵詞:混合動力離合器液壓系統
外文關鍵詞:hybridclutchhydraulic system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:95
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
有鑒於全球能源逐漸匱乏,國際油價不斷上漲,如何有效節約能源並找尋新的
替代能源來減少化石燃料的依賴,實為當前急需解決的問題。大量使用化石燃料背
後,對環境有害之污染也隨之上升,近幾年溫室效應所帶來的衝擊遠大於我們所想
像,所以此等議題已不容再忽視。其中溫室氣體部份又以CO2 與HC 為最大宗,所
以若能藉由混合動力的方式驅動車輛,不但有助於溫室效應之改善,並亦可提供車
輛所需之動力。混合動力車輛中,常常需要模式切換,在大多數混合動力車輛中離
合器正是模式切換最重要的部分,藉著離合器的接合或釋放,就可以達成模式切換
的功能。不過離合器要順利接合有許多條件需要考慮,像是兩端轉速、推動離合器
推力等。若一瞬間推動離合器力道太大,可能會導致離合器磨損、能量損耗或是使
乘坐者察覺車輛的頓挫感;兩端轉速相差太大,也可能會使接合時間變太長,近而
延緩模式切換所需時間。有鑒如此,本計畫乃利用華創車電股份有限公司所提供之
離合器來達成混合動力車輛的模式切換,並以液壓系統為基礎,藉著電磁閥控制進
油量,推動離合器達成接合或分離。由於離合器模式切換時,會導致離合器兩端轉
速變化,且接合時間的長短也可能會對整體傳輸效能有影響。因此,需要進行離合
器控制,期望在接合時間最小化,兩端轉速差異量最小化下,達成離合器平順化接
合的目標。而上述提及的控制發展,必須先藉由建立一個控制模型,並由華創車電
股份有限公司所提供之離合器平台驗證後,根據此控制模型,來發展控制器設計。
In view of the global energy scarcity, rising international oil prices, how to effectively save
energy and find new alternative energy sources to reduce dependence on fossil fuels, is currently
an urgent problem to be solved. With the increasing use of fossil fuels, pollution that
is harmful to the environment has also risen. In recent years, the impact of the greenhouse
effect is far greater than we thought, so these issues can no longer be ignored. CO2 and HC
are the most important part of the greenhouse gas. Therefore, if we can use hybrid way to
drive the car, it will not only help to improve the greenhouse effect, but also provide energy
application. In a hybrid vehicle, it is often necessary to switch the mode, and in many systems
the clutch is the most important part for the mode switching. By means of the clutch
engagement or disengagement, the mode switching function can be achieved. The clutch
must be smoothly engaged while controlling the slip ratio and the clutch thrust force. If the
force applied to the clutch is raised instantaneously, it may lead to clutch wear, energy loss
and vibration. On the other hand, if the engagement duration is too long, it may delay the
mode switching process. In view of this, based on the clutch system provided by HAITEC, a
hybrid vehicle mode switching control strategy will be developed. Specifically, the solenoid
valves will be used to control the pressures in the hydraulic system so as to achieve smooth
engagement and disengagement of the clutches. As the mode switching control will lead to
changes in speed at both ends of the clutch and the bonding time may also affect the overall
transmission performance, it is necessary to develop a controller that achieves the goals of minimizing the engaging time and reducing the slip ratio. For the purpose of the above
mentioned control development, a controloriented
model for the clutch system will be first
developed and validated using the platform provided by HAITEC. Based on the model, an
adaptive control algorithm can then be developed.
摘要................................................................................................................................... i
英文摘要............................................................................................................................ ii
致謝................................................................................................................................... iv
目錄................................................................................................................................... v
圖目錄............................................................................................................................... vi
第一章導論...................................................................................................................... 1
1.1 研究背景........................................................................................................... 1
1.2 文獻回顧........................................................................................................... 4
1.2.1 液壓系統回顧................................................................................... 4
1.2.2 液壓離合器文獻回顧....................................................................... 5
1.3 研究目的........................................................................................................... 7
1.4 研究方法........................................................................................................... 7
1.4.1 Matlab ............................................................................................... 7
1.4.2 Simulink............................................................................................ 8
1.5 論文架構........................................................................................................... 8
第二章液壓離合器物理模型.......................................................................................... 9
2.1 液壓系統物理模型理論與推導....................................................................... 11
2.1.1 液壓系統物理模型理論................................................................... 11

2.1.2 上游端液壓系統物理模型............................................................... 14
2.1.3 電子油泵模型................................................................................... 15
2.1.4 調壓閥模型....................................................................................... 16
2.1.5 洩漏量模型....................................................................................... 17
2.1.6 下游端液壓系統物理模型............................................................... 17
2.1.7 板型彈簧模型................................................................................... 19
2.2 旋轉機械系統模型理論與推導....................................................................... 20
2.3 液壓離合器系統模型....................................................................................... 22
第三章實驗結果與分析.................................................................................................. 24
3.1 模型參數鑑別................................................................................................... 24
3.1.1 電子油泵參數鑑別........................................................................... 24
3.1.2 電磁閥參數鑑別............................................................................... 29
3.2 模型驗證........................................................................................................... 36
3.2.1 車輛啟動進入EV 模式................................................................... 37
3.2.2 從EV 模式進入Hybrid 模式.......................................................... 51
第四章結論與未來展望.................................................................................................. 65
4.1 結論................................................................................................................... 65
4.2 未來展望........................................................................................................... 65
附錄................................................................................................................................... 66
參考文獻............................................................................................................................ 70
[1] Y. Gao M. Ehsani and A. Emadi. Modern electric, hybrid electric, and fuel cell vehicles:
Fundamentals, theory, and design. In CRC Press, Energy Conversion and Management,
page 1000–1009, 2014.
[2] W. Lhomme, R. Trigui, P. Delarue, B. Jeanneret, A. Bouscayrol, and F. Badin. Switched
causal modeling of transmission with clutch in hybrid electric vehicles. In 2006 IEEE
Vehicle Power and Propulsion Conference, pages 1–6.
[3] 華擎機械工業股份有限公司.
[4] T. D. Burton. Introduction to dynamic systems analysis. McGrawHill,
New York,
1994.
[5] Gear pumps ship
service systems.
[6] Takeo Nakagawa, Kazubiko Nakamura, and Hiroyuki Amino. Various applications of
hydraulic counterpressure
deep drawing. Journal of Materials Processing Technology,
71(1):160–167, 1997.
[7] Petr Noskievič. Control of linear hydraulic actuator using the full hydraulic bridge.
pages 52–57, 2018.
[8] T. Letrouve, A. Bouscayrol, and W. Lhomme. Influence of the clutch model in a simulation
of a parallel hybrid electric vehicle. In 2009 IEEE Vehicle Power and Propulsion
Conference, pages 1330–1337.
[9] K. van Berkel, F. Veldpaus, T. Hofman, B. Vroemen, and M. Steinbuch. Fast and smooth
clutch engagement control for a mechanical hybrid powertrain. IEEE Transactions on
Control Systems Technology, 22(4):1241–1254, 2014.
[10] V. T. Minh and A. A. Rashid. Automatic control of clutches and simulations for parallel
hybrid vehicles. International Journal of Automotive Technology, 13(4):645–651, 2012.
[11] ES Bettis and ER Mann. A servo employing the magnetic fluid clutch. Review of
Scientific Instruments, 20(2):97–101, 1949.
[12] A. E. Balau and C. Lazar. Statespace
model of an electrohydraulic
actuated wet clutch.
IFAC Proceedings Volumes, 43(7):506–511, 2010.
[13] Shengdun Zhao, Ji Wang, Jun Wang, and Yupeng He. Expansionchamber
muffler for
impulse noise of pneumatic frictional clutch and brake in mechanical presses. Applied
Acoustics, 67(6):580–594, 2006.
[14] R. Gasper, M. G. Chávez, and D. Abel. Adaptive flatness based control of a hydraulic
clutch actuator *. IFAC Proceedings Volumes, 43(14):707–712, 2010.
[15] Abhishek Dutta, Clara M. Ionescu, Bart Wyns, Robin De Keyser, Julian Stoev, Gregory
Pinte, and Wim Symens. Switched nonlinear predictive control with adaptive references
for engagement of wet clutches. IFAC Proceedings Volumes, 45(17):460–465, 2012.
[16] A. Grancharova and T. A. Johansen. Design and comparison of explicit model predictive
controllers for an electropneumatic clutch actuator using on/off valves. IEEE/ASME
Transactions on Mechatronics, 16(4):665–673, 2011.
[17] Vijay A. Neelakantan, Gregory N. Washington, and Norman K. Bucknor. Model predictive
control of a two stage actuation system using piezoelectric actuators for controllable
industrial and automotive brakes and clutches. Journal of Intelligent Material Systems
and Structures, 19(7):845–857, 2007.
[18] 張智星. MATLAB 程式設計與應用. 清蔚科技股份有限公司.
[19] 李宜達. 控制系統設計與模擬. 全華科技圖書股份有限公司.
[20] Katsuhiko Ogata. System dynamics. Fourth edition. Upper Saddle River, NJ : Pearson/
Prentice Hall, [2004] ©2004, 2004.
[21] Per Nobrant. Driveline modelling using mathmodelica. Universität von Linköping,
Institute of Techology, Linköping (Schweden), 2001.
[22] Stéphane Guilain. Contribution à la réalisation d’un simulateur du comportement dynamique
des moteurs à allumage commandé équipant des véhicules automobiles. 1994.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top