[1] ANSYS, Inc. (2013). “ANSYS Fluent Theory Guide”.
[2] ANSYS, Inc. (2013). “ANSYS Fluent UDF Manual”.
[3] ANSYS, Inc. (2013). “ANSYS Fluent User's Guide”.
[4] ASCE7-16. (2016). “Structural Engineering Institute Standard Minimum Design Loads for Buildings and Other Structures”, ASCE, New York.
[5] Baskaran, B.A., & Kashef, A. (1996). “Investigation of air flow around buildings using computational fluid dynamics techniques”, Engineering structures, 18(11), 861-875.
[6] Bitog, J.P., Lee, I.B., Hwang, H.S., Shin, M.H., Hong, S.W., Seo, I.H., Kwon, K.S., Mostafa, E., & Pang, Z.Z. (2012). “Numerical simulation study of a tree windbreak”, Biosystems Engineering, III, 40-48.
[7] Bitsuamlak, G.T., Stathopoulos T., ASCE F., & Bédard C. (2004). “Numerical Evaluation of Wind Flow over Complex Terrain: A Review”, Jnl. of Aero. Eng., Vol. 17, No. 4, 135-145.
[8] Blocken, B., & Carmeliet, J. (2004). “Pedestrian Wind Environment around Buildings: Literature Review and Practical Examples”, Journal of THERMAL ENV. & BLDG. SCI., Vol. 28, No. 2
[9] Blocken, B., Carmeliet, J., & Stathopoulos, T. (2007). “CFD evaluation of wind speed conditions in passages between parallel buildings—effect of wall-function roughness modifications for the atmospheric boundary layer flow”, Journal of Wind Engineering and Industrial Aerodynamics, 95, 941–962.
[10] Blocken, B., Janssen, W.D., & Van Hooff T. (2012). “CFD simulation for pedestrian wind comfort and wind safety in urban areas:General decision framework and case study for the Eindhoven University campus”, Environmental Modelling & Software, 30, 15–34.
[11] Blocken, B., & Persoon, J. (2009). “Pedestrian wind comfort around a large football stadium in an urban environment: CFD simulation, validation and application of the new Dutch wind nuisance standard”, Journal of Wind Engineering and Industrial Aerodynamics, 20.
[12] Blocken, B., Stathopoulos, T., & Carmeliet, J. (2007). “CFD simulation of the atmospheric boundary layer:wall function problems”, Atmospheric Environment, 41(2), 238-252.
[13] Bradford, G.R. (2015). “Investigations of surface roughness length modification in black rock city, NV”, Master of Science in Geographic Information Science, San Francisco State University.
[14] Buccolieria, R., Santiagob, J.L., Rivasb, E., & Sáanchezb, B. (2019). “Reprint of:Review on urban tree modelling in CFD simulations:Aerodynamic, deposition and thermal effects”, Urban Forestry & Urban Greening, 37,56–64.
[15] ERCOFTAC. (2000). “Best practices guidelines for industrial computational fluid dynamics”, Version 1.0.
[16] Flay, R.G.J., Nayyerloo M., King A.B., & Revell M. (2015). “Comparison of Wind Speed Hill-shape Multipliers Calculated by Seven Wind Loading Standards with Full-scale Measurements”, 17th Australasian Wind Engineering Society Workshop, Wellington, New Zealand.
[17] Franke, J., Hellsten, A., Schlünzen, H., & Carissimo, B., (2007). “Best practice guideline for the CFD simulation of flows in the urban environment”, Brussels: COST office.
[18] Franke, J., Hirsch, C., Jensen, A.G., Krüs, H.W., Schatzmann, M., Westbury, P.S., Miles, S.D., Wisse, J.A., & Wright, N.G., (2004). “Recommendations on the Use of CFD in Wind Engineering”, In:J.P.A.J van Beeck, ed. Proceedings of the International Conference on Urban Wind Engineering and Building Aerodynamics:COST Action C14 - Impact of Wind and Storm on City Life and Built Environment, Rhode-Saint-Genèse, Belgium.
[19] Gorrepati, D.P. (2015). “CFD based design and modelling of wind fence to mitigate high-speed wind loading on a modular data center”, Master of Science in Mechanical Engineering, The University of Texas at Arlington.
[20] Janssen, W.D., Blocken, B., & Van Hooff T. (2012). “Pedestrian wind comfort around buildings:comparison of wind comfort criteria based on whole-flow field data for a complex case study”, Building and Environment, 59, 547-562.
[21] Klemm, K., & Jablonski, M. (2004). “Wind speed at pedestrian level in a residential building complex”, The 21th Conference on Passive and Low Energy Architecture, Eindhoven, The Netherlands, 19-22.
[22] Moukalled, F., Mangani, L., & Darwish, M. (2016). “The Finite Volume Method
in Computational Fluid Dynamics:An Advanced Introduction with OpenFOAM and Matlab”, Switzerland:Springer.
[23] Menter, F., Hemstrom, B., Henrikkson, M., Karlsson, R., Latrobe, A., Martin, A., Muhlbauer, P., Scheuerer, M., Smith, B., Takacs, T., & Willemsen, S. (2002). “CFD Best Practice Guidelines for CFD Code Validation for Reactor-Safety Applications”, Report EVO-ECORA-D01, Contract No.FIKS-CT-2001-00154.
[24] Mochida, A., Tabata, Y., Iwata, T., & Yoshino, H. (2008). “Examining tree canopy models for CFD prediction of wind environment at pedestrian level”, Journal of Wind Engineering and Industrial Aerodynamics, 96, 1667–1677.
[25] Mochida, A., Tominaga, Y., Murakami, S., Yoshie, R., Ishihara, T., & Ooka, R. (2002). “Comparison of various k-ε model and DSM applied to flow around a high-rise building - report on AIJ cooperative project for CFD prediction of wind environment”, Wind & Structures 5, No.2-4, 227-244.
[26] NBCC. (2005). “User's Guide — NBC 2005 Structural Commentaries (Part 4), Commentary I:Wind Load and Effects”, Canadian Commission on Building and Fire Codes, NRC, Ottawa Canada.
[27] NEN 8100. (2006). “Wind comfort and wind danger in the built environment, NEN 8100:2006”, Dutch Standard.
[28] Lazaridi, M. (2011). “First Principles of Meteorology and Air Pollution”, London:Springer.
[29] Simiu, E., & Scanlan, R. H. (1996). “Wind effects on structures: Fundamentals and applications to design”, New York:Wiley.
[30] Stathopoulos, T., Baskaran, B.A., (1996). “Computer simulation of wind environmental conditions around buildings”, Engineering structures, 18(11), 876-885.
[31] Straube, J. (2010). “Simplified Prediction of Driving Rain on Buildings: ASHRAE 160P and WUFI 4.0”, Building Science Digest 148.
[32] Tamura, T., Nozawa, K., & Kondo, K. (2008). “AIJ guide for numerical prediction of wind loads on buildings”, Journal of Wind Engineering and Industrial Aerodynamics, 96,1974–1984.
[33] Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M., & Shirasawa, T. (2008). “AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings”, Journal of Wind Engineering and Industrial Aerodynamics, 96, 1749–1761.
[34] VDI. (2005). “VDI guideline 3783 Part 9 2005-11, Environmental meteorology – Prognostic micro-scale wind field models – Evaluation for flow around buildings and obstacles”, Berlin:Beuth.
[35] Yoshie, R., Mochida, A., Tominaga, T., Kataoka, H., & Yoshikawa, M. (2005). “Cross Comparisons of CFD Prediction for Wind Environment at Pedestrian Level around Buildings. Part 1 Comparison of Results for Flow-field around a High-rise Building Located in Surrounding City Blocks”, The Sixth Asia-Pacific Conference on Wind Engineering (APCWE-VI) Seoul, Korea.
[36] Yoshie, R., Mochida, A., Tominaga, Y., Kataoka, H., Harimoto, K., Nozu, T., Shirasawa, T. (2005). “Cooperative project for CFD prediction of pedestrian wind environment in the Architectural Institute of Japan”, Journal of Wind Engineering and Industrial Aerodynamics, 95(9-11), 1551-1578.
[37] 丁育群、朱佳仁,(民國89年),「高層建築物風場環境評估研議」,內政部建築研究所研究計劃報告。
[38] 內政部營建署,(民國104年),「建築物耐風設計規範及解說」。
[39] 中華民國風工程學會,(民國105年),「風工程理論與應用」,科技圖書。
[40] 方富民、鍾政洋、梁琮琪、楊峻,(民國100年),「山區地形中風速壓剖面之檢討」,台灣建築學會「建築學報」第78期,63~80頁。
[41] 朱佳仁,(民國95年),「風工程概論」,科技圖書。
[42] 何明錦、方富民、黎益肇,(民國104年),「都市地區風環境流通效應影響評估分析研究」,內政部建築研究所協同研究報告。
[43] 余晟驥,(民國105年),「以CFD 模擬風速加速效應之初探」,碩士論文,臺灣科技大學營建工程學系。[44] 吳黛岑,(民國96年),「集合住宅中庭植栽微氣候之數值模擬研究」,碩士論文,國立成功大學建築研究所。[45] 黎益肇、劉介元,(民國100年),「風場通透樹木特性模式之建立與應用」,內政部建築研究所自行研究報告。