(3.230.143.40) 您好!臺灣時間:2021/04/19 04:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:Alis Godana
研究生(外文):Alis Godana
論文名稱:Morphology and Photophysical Properties of Conjugated Polymer Nanoparticles Based on Rapid Precipitation and Self-Assembled π-Conjugated Systems
論文名稱(外文):Morphology and Photophysical Properties of Conjugated Polymer Nanoparticles Based on Rapid Precipitation and Self-Assembled π-Conjugated Systems
指導教授:游進陽
指導教授(外文):Chin-Yang Yu
口試委員:游進陽陳志堅王丞浩趙基揚堀江正樹
口試委員(外文):Chin-Yang YuJyh-Chien ChenChen-Hao WangChi-Yang ChaoMasaki Horie
口試日期:2019-01-25
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:142
中文關鍵詞:carbazoleconjugated polymerdiphenylaminefluorenenanoparticletriethylene glycol side chainsself-organizationsheet-like structures
外文關鍵詞:carbazoleconjugated polymerdiphenylaminefluorenenanoparticletriethylene glycol side chainsself-organizationsheet-like structures
相關次數:
  • 被引用被引用:0
  • 點閱點閱:29
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用奈米沉澱與分子自組裝製備共軛高分子。第一部分利用鈴木偶合反應合成出含芴—二苯胺、芴—咔唑(2,7位)、芴—咔唑(3,6位)等三種交替共軛高分子。由SEM觀察得知,這三種高分子的奈米尺寸介於35-65奈米之間。由吸收光譜發現,芴—二苯胺與芴—咔唑(2,7位)其水溶液分散狀態,與在THF溶劑中相比,具有藍位移的現象。由放射光譜發現,水溶液分散狀態芴—咔唑(2,7位)、芴—咔唑(3,6位)相較於THF溶劑中,具有約7nm的紅位移。而量子產率在這三種高分子中,從THF溶液至水溶液分散的過程中,都有降低的現象。第二部分利用鈴木偶合反應合成出芴—二苯胺之高分子,並探討其側鏈為疏水基團辛基烷和親水基團三乙二醇之自組裝現象。在THF/MeOH與THF/Acetone系統中由SEM及XRD發現,其形貌為晶形;在水中為非晶形結構。另外,在水溶液中的放射光譜相較於有機溶劑中具有紅位移的現象。
The design and synthesis of novel -conjugated materials is still an attractive research field due to their interesting optoelectronic properties, which make them potential candidates in various applications such as light emitting devices, solar cells and sensors. We have prepared conjugated polymer nanoparticles using rapid precipitation and self-assembled method. Self-assembly refers to the process by which nanoparticles or other discrete components spontaneously organize due to direct specific interactions, or indirectly, through their environment. Rapid precipitation was prepared by rapid injection of conjugated polymer (good solvent) solution into poor solvent under sonication. This dissertation is organized based on two independent sections.
In the first section, novel conjugated polymers containing fluorenes, PEGylated carbazoles and diphenylamines were synthesized by the palladium catalyzed Suzuki-Miyaura cross-coupling reaction. The dimensions of the conjugated polymer nanoparticles were in a range of 35–65 nm as observed by SEM analysis. A blue-shifted absorption of the conjugated polymer nanoparticles containing fluorenes and diphenyl amines or 2,7-linked carbazoles was observed compared to that of the polymer solution, this can be attributed to aggregation-induced disorder. The emission of the polymer nanoparticles containing fluorenes and carbazoles is red-shifted and this can be attributed to the increase in interchain interactions possibly due to conjugated polymer chains collapsing in water during nanoparticle formation. For all polymers, the decreases in emission quantum yields on going from polymer solution to nanoparticle dispersion were reflected the aggregation of the polymer chains in aqueous media.
In the second section, we synthesized conjugated copolymers containing fluorene and diphenylamine moieties containing octyl and triethylene glycol side chains via Suzuki-Miyaura cross-coupling reaction and their structures have been characterized. Conjugated polymer nanoparticles and self-organization of the polymers have been prepared by rapid precipitation and solvent diffusion methods, respectively. The morphologies of the conjugated polymers exhibited well-defined spherical amorphous structures and crystalline microspheres with the diameter ranging from several nanometer to micrometer. Self-assembled conjugated polymer aggregates were obtained in a selective good solvent/ poor solvent mixture. The emission maximum of the dispersed polymers in water was significantly red-shifted with dramatically reducing the photoluminescence quantum yield in comparison with those polymers in good solvents. In addition, the emission maximum of the self-assembled copolymers was barely red shifted with slightly decreasing the photoluminescence quantum yield.
Abstract iii
Acknowledgments v
List of Table x
List of Figure xi
List of Scheme xiii
Appendix xiv
1. Chapter 1: Introduction 1
2. Chapter 2: Background and literature review 4
2.1. Conjugated polymer nanoparticles and preparation methods 4
2.2. Backbone constructions and side chain modifications 6
2.3. Biological applications of conjugated polymer nanoparticle 9
2.3.1. Conjugated polymer nanoparticle for sensing and imaging 10
2.3.2. Conjugated polymer nanoparticle for drug delivery systems 14
2.4. Organic electronics 15
2.4.1. Organic solar cell 18
2.4.2. Organic light emitting devices 22
2.4.3. Optical sensors 24
2.5. Self-assembly of conjugated polymer 27
2.5.1. Organic electronics of self-assemblies 28
2.5.2. Supramolecular organic light emitting devices 28
2.5.3. Self-assembled nanomaterials for biomedical applications 29
2.5.4. Polymer micelles as drug delivery systems 30
2.5.5. Self-assembled nanomaterials for environmental sciences 31
2.6. Controlled and directed self-assembly 32
3. Chapter 3. Research Objectives 34
3.1. General objective 34
3.2. Specific objectives 34
4. Chapter 4: Experimental section and characterization 36
4.1. General considerations 36
4.2. Chemicals 38
4.3. Instruments 39
4.4. Synthesis of monomers 39
4.5. Polymerization and nanoparticle preparation 43
5. Chapter 5: Conjugated Polymer Nanoparticles Based on Fluorenes, PEGylated Carbazoles and Diphenylamines 45
5.1. Introduction 45
5.2. Results and Discussion 48
5.2.1. Characterization of polymers by NMR spectroscopy 49
5.2.2. Molecular weights of polymers 51
5.2.3. Nanoparticle preparation and characterization 52
5.2.4. Photophysical properties of copolymers 54
5.2.5. Thermal properties 57
5.2.6. Electrochemical properties of polymers 58
5.3. Summary 59
6. Chapter 6: Fluorescent Conjugated Polymer Nanoparticles and Aggregates Based on Rapid Precipitation and Self-Assembled π-Conjugated Systems 60
6.1. Introduction 60
6.2. Experimental section 62
6.3. Results and discussion 67
6.3.1. Characterization of polymers by NMR spectroscopy 68
6.3.2. Conjugated polymer nanoparticles and aggregates 71
6.3.3. Photophysical properties of the copolymers 74
6.4. Summary 77
7. Chapter 7: Conclusion and Outlook 78
7.1. Conclusion 78
7.2. Outlook 78
8. Reference 80
9. Appendix 111
[1] H. Yuan, B. Wang, F. Lv, L. Liu, S. Wang, Conjugated‐polymer‐based energy‐transfer systems for antimicrobial and anticancer applications, Advanced Materials 26(40) (2014) 6978-6982.
[2] Y. Jiang, J. McNeill, Light-harvesting and amplified energy transfer in conjugated polymer nanoparticles, Chemical Reviews 117(2) (2016) 838-859.
[3] A.P. Alivisatos, W. Gu, C. Larabell, Quantum dots as cellular probes, Annu. Rev. Biomed. Eng. 7 (2005) 55-76.
[4] J. Zhou, Y. Yang, C.-y. Zhang, Toward biocompatible semiconductor quantum dots: from biosynthesis and bioconjugation to biomedical application, Chemical Reviews 115(21) (2015) 11669-11717.
[5] A. Koch, F. Reynolds, M. Kircher, H. Merkle, R. Weissleder, L. Josephson, Uptake and metabolism of a dual fluorochrome Tat-nanoparticle in HeLa cells, Bioconjugate Chemistry 14(6) (2003) 1115-1121.
[6] K. Rombouts, K. Braeckmans, K. Remaut, Fluorescent labeling of plasmid DNA and mRNA: gains and losses of current labeling strategies, Bioconjugate Chemistry 27(2) (2015) 280-297.
[7] K. Nienhaus, G.U. Nienhaus, Fluorescent proteins for live-cell imaging with super-resolution, Chemical Society Reviews 43(4) (2014) 1088-1106.
[8] J. Wang, F. Lv, L. Liu, Y. Ma, S. Wang, Strategies to design conjugated polymer based materials for biological sensing and imaging, Coordination Chemistry Reviews (2017).
[9] M. Chen, M. Yin, Design and development of fluorescent nanostructures for bioimaging, Progress in Polymer Science 39(2) (2014) 365-395.
[10] G. Feng, J. Liang, B. Liu, Hyperbranched conjugated polyelectrolytes for biological sensing and imaging, Macromolecular Rapid Communications 34(9) (2013) 705-715.
[11] F. Wang, X. Liu, Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals, Chemical Society Reviews 38(4) (2009) 976-989.
[12] A.M. Smith, H. Duan, A.M. Mohs, S. Nie, Bioconjugated quantum dots for in vivo molecular and cellular imaging, Advanced Drug Delivery Reviews 60(11) (2008) 1226-1240.
[13] S.N. Baker, G.A. Baker, Luminescent carbon nanodots: emergent nanolights, Angewandte Chemie International Edition 49(38) (2010) 6726-6744.
[14] J.O. Escobedo, O. Rusin, S. Lim, R.M. Strongin, NIR dyes for bioimaging applications, Current Opinion in Chemical Biology 14(1) (2010) 64-70.
[15] K. Li, B. Liu, Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging, Chemical Society Reviews 43(18) (2014) 6570-6597.
[16] B. Liu, G.C. Bazan, Conjugated polyelectrolytes: fundamentals and applications, John Wiley & Sons2013.
[17] C. Zhu, L. Liu, Q. Yang, F. Lv, S. Wang, Water-soluble conjugated polymers for imaging, diagnosis, and therapy, Chemical Reviews 112(8) (2012) 4687-4735.
[18] C. Wu, D.T. Chiu, Highly fluorescent semiconducting polymer dots for biology and medicine, Angewandte Chemie International Edition 52(11) (2013) 3086-3109.
[19] L. Feng, C. Zhu, H. Yuan, L. Liu, F. Lv, S. Wang, Conjugated polymer nanoparticles: preparation, properties, functionalization and biological applications, Chemical Society Reviews 42(16) (2013) 6620-6633.
[20] D.T. McQuade, A.E. Pullen, T.M. Swager, Conjugated polymer-based chemical sensors, Chemical Reviews 100(7) (2000) 2537-2574.
[21] F. Qiu, C. Tu, Y. Chen, Y. Shi, L. Song, R. Wang, X. Zhu, B. Zhu, D. Yan, T. Han, Control of the Optical Properties of a Star Copolymer with a Hyperbranched Conjugated Polymer Core and Poly (ethylene glycol) Arms by Self‐Assembly, Chemistry–A European Journal 16(42) (2010) 12710-12717.
[22] N. Blouin, A. Michaud, M. Leclerc, A low‐bandgap poly (2, 7‐carbazole) derivative for use in high‐performance solar cells, Advanced Materials 19(17) (2007) 2295-2300.
[23] G. Sathiyan, E. Sivakumar, R. Ganesamoorthy, R. Thangamuthu, P. Sakthivel, Review of carbazole based conjugated molecules for highly efficient organic solar cell application, Tetrahedron Letters 57(3) (2016) 243-252.
[24] S. Chen, J. Liu, Y. Liu, H. Su, Y. Hong, C.K. Jim, R.T. Kwok, N. Zhao, W. Qin, J.W. Lam, An AIE-active hemicyanine fluorogen with stimuli-responsive red/blue emission: extending the pH sensing range by “switch+ knob” effect, Chemical Science 3(6) (2012) 1804-1809.
[25] Z. Zhao, J.W. Lam, B.Z. Tang, Tetraphenylethene: a versatile AIE building block for the construction of efficient luminescent materials for organic light-emitting diodes, Journal of Materials Chemistry 22(45) (2012) 23726-23740.
[26] Y. Hong, J.W. Lam, B.Z. Tang, Aggregation-induced emission, Chemical Society Reviews 40(11) (2011) 5361-5388.
[27] W.-L. Gong, B. Wang, M.P. Aldred, C. Li, G.-F. Zhang, T. Chen, L. Wang, M.-Q. Zhu, Tetraphenylethene-decorated carbazoles: synthesis, aggregation-induced emission, photo-oxidation and electroluminescence, Journal of Materials Chemistry C 2(34) (2014) 7001-7012.
[28] M.H. Chua, H. Zhou, T.T. Lin, J. Wu, J.W. Xu, Aggregation‐induced emission active 3, 6‐bis (1, 2, 2‐triphenylvinyl) carbazole and bis (4‐(1, 2, 2‐triphenylvinyl) phenyl) amine‐based poly (acrylates) for explosive detection, Journal of Polymer Science Part A: Polymer Chemistry 55(4) (2017) 672-681.
[29] J.F. Morin, M. Leclerc, D. Ades, A. Siove, Polycarbazoles: 25 years of progress, Macromolecular Rapid Communications 26(10) (2005) 761-778.
[30] D. Tuncel, H.V. Demir, Conjugated polymer nanoparticles, Nanoscale 2(4) (2010) 484-494.
[31] J. Pecher, S. Mecking, Nanoparticles of conjugated polymers, Chemical Reviews 110(10) (2010) 6260-6279.
[32] Z. Tian, J. Yu, C. Wu, C. Szymanski, J. McNeill, Amplified energy transfer in conjugated polymer nanoparticle tags and sensors, Nanoscale 2(10) (2010) 1999-2011.
[33] K. Li, B. Liu, Polymer encapsulated conjugated polymer nanoparticles for fluorescence bioimaging, Journal of Materials Chemistry 22(4) (2012) 1257-1264.
[34] A.J. Kuehne, Conjugated Polymer Nanoparticles toward In Vivo Theranostics–Focus on Targeting, Imaging, Therapy, and the Importance of Clearance, Advanced Biosystems 1(11) (2017) 1700100.
[35] N. Kurokawa, H. Yoshikawa, N. Hirota, K. Hyodo, H. Masuhara, Size‐Dependent Spectroscopic Properties and Thermochromic Behavior in Poly (substituted thiophene) Nanoparticles, ChemPhysChem 5(10) (2004) 1609-1615.
[36] Y.H. Chan, P.J. Wu, Semiconducting polymer nanoparticles as fluorescent probes for biological imaging and sensing, Particle & Particle Systems Characterization 32(1) (2015) 11-28.
[37] C. Wu, B. Bull, C. Szymanski, K. Christensen, J. McNeill, Multicolor conjugated polymer dots for biological fluorescence imaging, ACS Nano 2(11) (2008) 2415-2423.
[38] C. Wu, C. Szymanski, J. McNeill, Preparation and encapsulation of highly fluorescent conjugated polymer nanoparticles, Langmuir 22(7) (2006) 2956-2960.
[39] C.S. Fischer, M.C. Baier, S. Mecking, Enhanced brightness emission-tuned nanoparticles from heterodifunctional polyfluorene building blocks, Journal of the American Chemical Society 135(3) (2013) 1148-1154.
[40] J.M. Behrendt, Y. Wang, H. Willcock, L. Wall, M.C. McCairn, R.K. O'Reilly, M.L. Turner, Fluorescent nanoparticles from PEGylated polyfluorenes, Polymer Chemistry 4(5) (2013) 1333-1336.
[41] P. Sarrazin, D. Chaussy, L. Vurth, O. Stephan, D. Beneventi, Surfactant (TTAB) Role in the Preparation of 2, 7-Poly (9, 9-dialkylfluorene-co-fluorenone) Nanoparticles by Miniemulsion, Langmuir 25(12) (2009) 6745-6752.
[42] K. Landfester, R. Montenegro, U. Scherf, R. GüNTNER, U. Asawapirom, S. Patil, D. Neher, T. Kietzke, Semiconducting polymer nanospheres in aqueous dispersion prepared by a miniemulsion process, Advanced Materials 14(9) (2002) 651-655.
[43] K. Landfester, Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles, Angewandte Chemie International Edition 48(25) (2009) 4488-4507.
[44] C. Xing, Q. Xu, H. Tang, L. Liu, S. Wang, Conjugated polymer/porphyrin complexes for efficient energy transfer and improving light-activated antibacterial activity, Journal of the American Chemical Society 131(36) (2009) 13117-13124.
[45] J. Su, J. Chen, F. Zeng, Q. Chen, S. Wu, Z. Tong, Synthesis and photochromic property of nanoparticles with spiropyran moieties via one-step miniemulsion polymerization, Polymer Bulletin 61(4) (2008) 425-434.
[46] D. Muenmart, A.B. Foster, A. Harvey, M.-T. Chen, O. Navarro, V. Promarak, M.C. McCairn, J.M. Behrendt, M.L. Turner, Conjugated polymer nanoparticles by Suzuki–Miyaura cross-coupling reactions in an emulsion at room temperature, Macromolecules 47(19) (2014) 6531-6539.
[47] L. Dou, Y. Liu, Z. Hong, G. Li, Y. Yang, Low-bandgap near-IR conjugated polymers/molecules for organic electronics, Chemical Reviews 115(23) (2015) 12633-12665.
[48] S.b. Rochat, T.M. Swager, Conjugated amplifying polymers for optical sensing applications, ACS Applied Materials & Interfaces 5(11) (2013) 4488-4502.
[49] B. Meng, H. Song, X. Chen, Z. Xie, J. Liu, L. Wang, Replacing alkyl with oligo (ethylene glycol) as side chains of conjugated polymers for close π–π stacking, Macromolecules 48(13) (2015) 4357-4363.
[50] C. Kanimozhi, N. Yaacobi-Gross, E.K. Burnett, A.L. Briseno, T.D. Anthopoulos, U. Salzner, S. Patil, Use of side-chain for rational design of n-type diketopyrrolopyrrole-based conjugated polymers: what did we find out?, Physical Chemistry Chemical Physics 16(32) (2014) 17253-17265.
[51] Y. Li, J. Zou, H.-L. Yip, C.-Z. Li, Y. Zhang, C.-C. Chueh, J. Intemann, Y. Xu, P.-W. Liang, Y. Chen, Side-chain effect on cyclopentadithiophene/fluorobenzothiadiazole-based low band gap polymers and their applications for polymer solar cells, Macromolecules 46(14) (2013) 5497-5503.
[52] T. Lei, J.-Y. Wang, J. Pei, Roles of flexible chains in organic semiconducting materials, Chemistry of Materials 26(1) (2013) 594-603.
[53] H.N. Tsao, D.M. Cho, I. Park, M.R. Hansen, A. Mavrinskiy, D.Y. Yoon, R. Graf, W. Pisula, H.W. Spiess, K. Müllen, Ultrahigh mobility in polymer field-effect transistors by design, Journal of the American Chemical Society 133(8) (2011) 2605-2612.
[54] H.J. Son, W. Wang, T. Xu, Y. Liang, Y. Wu, G. Li, L. Yu, Synthesis of fluorinated polythienothiophene-co-benzodithiophenes and effect of fluorination on the photovoltaic properties, Journal of the American Chemical Society 133(6) (2011) 1885-1894.
[55] F. Lombeck, H. Komber, A. Sepe, R.H. Friend, M. Sommer, Enhancing phase separation and photovoltaic performance of all-conjugated donor–acceptor block copolymers with semifluorinated alkyl side chains, Macromolecules 48(21) (2015) 7851-7860.
[56] T. Umeyama, Y. Watanabe, E. Douvogianni, H. Imahori, Effect of fluorine substitution on photovoltaic properties of benzothiadiazole–carbazole alternating copolymers, The Journal of Physical Chemistry C 117(41) (2013) 21148-21157.
[57] B. Qiu, J. Yuan, X. Xiao, D. He, L. Qiu, Y. Zou, Z.-g. Zhang, Y. Li, Effect of fluorine substitution on photovoltaic properties of alkoxyphenyl substituted benzo [1, 2-b: 4, 5-b′] dithiophene-based small molecules, ACS Applied Materials & Interfaces 7(45) (2015) 25237-25246.
[58] Y. Fu, H. Cha, G.-Y. Lee, B.J. Moon, C.E. Park, T. Park, 3, 6-Carbazole Incorporated into Poly [9, 9-dioctylfluorene-alt-(bisthienyl) benzothiadiazole] s Improving the Power Conversion Efficiency, Macromolecules 45(7) (2012) 3004-3009.
[59] H. Zhou, L. Yang, A.C. Stuart, S.C. Price, S. Liu, W. You, Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency, Angewandte Chemie International Edition 50(13) (2011) 2995-2998.
[60] A.S. Stender, K. Marchuk, C. Liu, S. Sander, M.W. Meyer, E.A. Smith, B. Neupane, G. Wang, J. Li, J.-X. Cheng, Single cell optical imaging and spectroscopy, Chemical Reviews 113(4) (2013) 2469-2527.
[61] F. Lv, L. Liu, S. Wang, Signal amplifying optical DNA detection on solid support with fluorescent conjugated polymers, Current Organic Chemistry 15(4) (2011) 548-556.
[62] M. De, P.S. Ghosh, V.M. Rotello, Applications of nanoparticles in biology, Advanced Materials 20(22) (2008) 4225-4241.
[63] S. van de Linde, M. Heilemann, M. Sauer, Live-cell super-resolution imaging with synthetic fluorophores, Annual Review of Physical Chemistry 63 (2012) 519-540.
[64] L.A. Estroff, A.D. Hamilton, Water gelation by small organic molecules, Chemical Reviews 104(3) (2004) 1201-1218.
[65] H. Jiang, X. Zhao, K.S. Schanze, Effects of polymer aggregation and quencher size on amplified fluorescence quenching of conjugated polyelectrolytes, Langmuir 23(18) (2007) 9481-9486.
[66] H. Tang, C. Xing, L. Liu, Q. Yang, S. Wang, Synthesis of amphiphilic polythiophene for cell imaging and monitoring the cellular distribution of a cisplatin anticancer drug, Small 7(10) (2011) 1464-1470.
[67] P.K. Kandel, L.P. Fernando, P.C. Ackroyd, K.A. Christensen, Incorporating functionalized polyethylene glycol lipids into reprecipitated conjugated polymer nanoparticles for bioconjugation and targeted labeling of cells, Nanoscale 3(3) (2011) 1037-1045.
[68] Y. Yang, Q. Zhao, W. Feng, F. Li, Luminescent chemodosimeters for bioimaging, Chemical Review 113(1) (2013) 192-270.
[69] Y. Long, H. Chen, Y. Yang, H. Wang, Y. Yang, N. Li, K. Li, J. Pei, F. Liu, Electrospun nanofibrous film doped with a conjugated polymer for DNT fluorescence sensor, Macromolecules 42(17) (2009) 6501-6509.
[70] Y. Che, D.E. Gross, H. Huang, D. Yang, X. Yang, E. Discekici, Z. Xue, H. Zhao, J.S. Moore, L. Zang, Diffusion-controlled detection of trinitrotoluene: Interior nanoporous structure and low highest occupied molecular orbital level of building blocks enhance selectivity and sensitivity, Journal of the American Chemical Society 134(10) (2012) 4978-4982.
[71] B. Chen, S. Xiang, G. Qian, Metal− organic frameworks with functional pores for recognition of small molecules, Accounts of Chemical Research 43(8) (2010) 1115-1124.
[72] X. Feng, X. Ding, D. Jiang, Covalent organic frameworks, Chemical Society Reviews 41(18) (2012) 6010-6022.
[73] X. Wu, H. Li, B. Xu, H. Tong, L. Wang, Solution-dispersed porous hyperbranched conjugated polymer nanoparticles for fluorescent sensing of TNT with enhanced sensitivity, Polymer Chemistry 5(15) (2014) 4521-4525.
[74] P. Liu, S. Li, Y. Jin, L. Qian, N. Gao, S.Q. Yao, F. Huang, Q.-H. Xu, Y. Cao, Red-emitting DPSB-based conjugated polymer nanoparticles with high two-photon brightness for cell membrane imaging, ACS Applied Materials & Interfaces 7(12) (2015) 6754-6763.
[75] K. Ogawa, Y. Kobuke, Design of two-photon absorbing materials for molecular optical memory and photodynamic therapy, Organic & Biomolecular Chemistry 7(11) (2009) 2241-2246.
[76] W. Denk, J.H. Strickler, W.W. Webb, Two-photon laser scanning fluorescence microscopy, Science 248(4951) (1990) 73-76.
[77] C.C. Corredor, Z.L. Huang, K.D. Belfield, Two‐photon 3D optical data storage via fluorescence modulation of an efficient fluorene dye by a photochromic diarylethene, Advanced Materials 18(21) (2006) 2910-2914.
[78] D. Wang, J. Qian, S. He, J.S. Park, K.-S. Lee, S. Han, Y. Mu, Aggregation-enhanced fluorescence in PEGylated phospholipid nanomicelles for in vivo imaging, Biomaterials 32(25) (2011) 5880-5888.
[79] D. Xu, Y. Li, C.-Y. Poon, H.-N. Chan, H.-W. Li, M.S. Wong, A Zero Cross-Talk Ratiometric Two-Photon Probe for Imaging of Acid pH in Living Cells and Tissues and Early Detection of Tumor in Mouse Model, Analytical Chemistry 90(15) (2018) 8800-8806.
[80] K.V. Sudheesh, M.M. Joseph, D.S. Philips, A. Samanta, K. Kumar Maiti, A. Ajayaghosh, pH‐Controlled Nanoparticles Formation and Tracking of Lysosomal Zinc Ions in Cancer Cells by Fluorescent Carbazole–Bipyridine Conjugates, ChemistrySelect 3(8) (2018) 2416-2422.
[81] M.J. Joralemon, S. McRae, T. Emrick, PEGylated polymers for medicine: from conjugation to self-assembled systems, Chemical Communications 46(9) (2010) 1377-1393.
[82] R.K. Kulkarni, E. Moore, A. Hegyeli, F. Leonard, Biodegradable poly (lactic acid) polymers, Journal of Biomedical Materials Research 5(3) (1971) 169-181.
[83] A. Abuchowski, T. Van Es, N. Palczuk, F. Davis, Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol, Journal of Biological Chemistry 252(11) (1977) 3578-3581.
[84] S. Fredenberg, M. Wahlgren, M. Reslow, A. Axelsson, The mechanisms of drug release in poly (lactic-co-glycolic acid)-based drug delivery systems—a review, International Journal of Pharmaceutics 415(1-2) (2011) 34-52.
[85] H.K. Makadia, S.J. Siegel, Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier, Polymers 3(3) (2011) 1377-1397.
[86] A.T. Wee, C.H. Sow, C.W. Shong, Science at the nanoscale: an introductory textbook, Pan Stanford2016.
[87] M.E. Zugasti, A. Zornoza, M. del Mar Goñi, J.R. Isasi, I. Vélaz, C. Martín, M. Sánchez, M.C. Martínez-Ohárriz, Influence of soluble and insoluble cyclodextrin polymers on drug release from hydroxypropyl methylcellulose tablets, Drug Development and Industrial Pharmacy 35(10) (2009) 1264-1270.
[88] N. Kamaly, B. Yameen, J. Wu, O.C. Farokhzad, Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release, Chemical Reviews 116(4) (2016) 2602-2663.
[89] G. Odian, Principles of Polymerization. New York: J, Wiley, 1991.
[90] H.R. Allcock, F.W. Lampe, J.E. Mark, H. Allcock, Contemporary polymer chemistry, Prentice Hall Englewood Cliffs, NJ1990.
[91] W.B. Liechty, D.R. Kryscio, B.V. Slaughter, N.A. Peppas, Polymers for drug delivery systems, Annual Review of Chemical and Biomolecular Engineering 1 (2010) 149-173.
[92] C.W. Tang, S.A. VanSlyke, Organic electroluminescent diodes, Applied Physics Letters 51(12) (1987) 913-915.
[93] H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH) x, Journal of the Chemical Society, Chemical Communications (16) (1977) 578-580.
[94] S. Hotta, S. Rughooputh, A. Heeger, F. Wudl, Spectroscopic studies of soluble poly (3-alkylthienylenes), Macromolecules 20(1) (1987) 212-215.
[95] M. Leclerc, F.M. Diaz, G. Wegner, Structural analysis of poly (3‐alkylthiophene) s, Die Makromolekulare Chemie: Macromolecular Chemistry and Physics 190(12) (1989) 3105-3116.
[96] J. Li, A.C. Grimsdale, Carbazole-based polymers for organic photovoltaic devices, Chemical Society Reviews 39(7) (2010) 2399-2410.
[97] S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki, F. Sato, Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices, Applied Physics Letters 83(3) (2003) 569-571.
[98] M. Sonntag, P. Strohriegl, Synthesis and characterization of novel conjugated bisindenocarbazoles, Tetrahedron 62(34) (2006) 8103-8108.
[99] R.C. Kwong, M.R. Nugent, L. Michalski, T. Ngo, K. Rajan, Y.-J. Tung, M.S. Weaver, T.X. Zhou, M. Hack, M.E. Thompson, High operational stability of electrophosphorescent devices, Applied Physics Letters 81(1) (2002) 162-164.
[100] Y.-J. Cheng, S.-H. Yang, C.-S. Hsu, Synthesis of conjugated polymers for organic solar cell applications, Chemical Reviews 109(11) (2009) 5868-5923.
[101] J. Potočnik, Renewable energy sources and the realities of setting an energy agenda, Science 315(5813) (2007) 810-811.
[102] P. Photovoltaics, A Practical Approach, ed. FC Krebs, SPIE Press Monograph, 2008.
[103] H.C. Hottel, Fifty years of solar energy research supported by the Cabot Fund, Solar energy 43(2) (1989) 107-128.
[104] Q. Ye, C. Chi, Conjugated polymers for organic solar cells, Solar Cells-New Aspects and Solutions, InTech2011.
[105] G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Polymer photovoltiac cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science 270(5243) (1995) 1789.
[106] H.J. Son, B. Carsten, I.H. Jung, L. Yu, Overcoming efficiency challenges in organic solar cells: rational development of conjugated polymers, Energy & Environmental Science 5(8) (2012) 8158-8170.
[107] D.M. Chapin, C. Fuller, G. Pearson, A new silicon p‐n junction photocell for converting solar radiation into electrical power, Journal of Applied Physics 25(5) (1954) 676-677.
[108] H. Spanggaard, F.C. Krebs, A brief history of the development of organic and polymeric photovoltaics, Solar Energy Materials and Solar Cells 83(2-3) (2004) 125-146.
[109] A. Becquerel, Compt Rend Acad Sci, 1839, 9, 145-149.(b) AE Becquerel, Compt. Rend. Acad. Sci 9 (1839) 561-567.
[110] A. Pochettino, A. Sella, Photoelectric behavior of anthracene, Acad. Lincei Rend 15 (1906) 355-363.
[111] M. Volmer, Different Photoelectric Phenomena in Anthracene, their Relation to one another, to Fluorescence and to the Formation of Dianthracene, Annalen der Physik 40 (1913) 775-96.
[112] N. Blouin, M. Leclerc, Poly (2, 7-carbazole) s: structure− property relationships, Accounts of Chemical Research 41(9) (2008) 1110-1119.
[113] N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletete, G. Durocher, Y. Tao, M. Leclerc, Toward a rational design of poly (2, 7-carbazole) derivatives for solar cells, Journal of the American Chemical Society 130(2) (2008) 732-742.
[114] C. Duan, K.-S. Chen, F. Huang, H.-L. Yip, S. Liu, J. Zhang, A.K.-Y. Jen, Y. Cao, Synthesis, characterization, and photovoltaic properties of carbazole-based two-dimensional conjugated polymers with donor-π-bridge-acceptor side chains, Chemistry of Materials 22(23) (2010) 6444-6452.
[115] M. Wang, C. Li, A. Lv, Z. Wang, Z. Bo, F. Zhang, Synthesis and photovoltaic behaviors of benzothiadiazole-and triphenylamine-based alternating copolymers, Polymer 53(2) (2012) 324-332.
[116] Z.-G. Zhang, Y.-L. Liu, Y. Yang, K. Hou, B. Peng, G. Zhao, M. Zhang, X. Guo, E.-T. Kang, Y. Li, Alternating copolymers of carbazole and triphenylamine with conjugated side chain attaching acceptor groups: synthesis and photovoltaic application, Macromolecules 43(22) (2010) 9376-9383.
[117] Y. Yao, C. Shi, G. Li, V. Shrotriya, Q. Pei, Y. Yang, Effects of C 70 derivative in low band gap polymer photovoltaic devices: Spectral complementation and morphology optimization, Applied Physics Letters 89(15) (2006) 153507.
[118] S.K. Lee, J.M. Cho, Y. Goo, W.S. Shin, J.-C. Lee, W.-H. Lee, I.-N. Kang, H.-K. Shim, S.-J. Moon, Synthesis and characterization of a thiazolo [5, 4-d] thiazole-based copolymer for high performance polymer solar cells, Chemical Communications 47(6) (2011) 1791-1793.
[119] E. Wang, L. Hou, Z. Wang, Z. Ma, S. Hellström, W. Zhuang, F. Zhang, O. Inganäs, M.R. Andersson, Side-chain architectures of 2, 7-carbazole and quinoxaline-based polymers for efficient polymer solar cells, Macromolecules 44(7) (2011) 2067-2073.
[120] U. Mitschke, P. Bäuerle, The electroluminescence of organic materials, Journal of Materials Chemistry 10(7) (2000) 1471-1507.
[121] D. Kim, H. Cho, C. Kim, Blue light emitting polymers, Progress in Polymer Science 25(8) (2000) 1089-1139.
[122] H. Nakanotani, T. Higuchi, T. Furukawa, K. Masui, K. Morimoto, M. Numata, H. Tanaka, Y. Sagara, T. Yasuda, C. Adachi, High-efficiency organic light-emitting diodes with fluorescent emitters, Nature Communications 5 (2014) 4016.
[123] X.-H. Zhu, J. Peng, Y. Cao, J. Roncali, Solution-processable single-material molecular emitters for organic light-emitting devices, Chemical Society Reviews 40(7) (2011) 3509-3524.
[124] M. Liang, J. Chen, Arylamine organic dyes for dye-sensitized solar cells, Chemical Society Reviews 42(8) (2013) 3453-3488.
[125] C.-W. Huang, F.-C. Chang, Y.-L. Chu, C.-C. Lai, T.-E. Lin, C.-Y. Zhu, S.-W. Kuo, A solvent-resistant azide-based hole injection/transporting conjugated polymer for fluorescent and phosphorescent light-emitting diodes, Journal of Materials Chemistry C 3(31) (2015) 8142-8151.
[126] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Highly efficient organic light-emitting diodes from delayed fluorescence, Nature 492(7428) (2012) 234.
[127] M. Kim, S.K. Jeon, S.H. Hwang, J.Y. Lee, Stable Blue Thermally Activated Delayed Fluorescent Organic Light‐Emitting Diodes with Three Times Longer Lifetime than Phosphorescent Organic Light‐Emitting Diodes, Advanced Materials 27(15) (2015) 2515-2520.
[128] T. Sudyoadsuk, P. Moonsin, N. Prachumrak, S. Namuangruk, S. Jungsuttiwong, T. Keawin, V. Promarak, Carbazole dendrimers containing oligoarylfluorene cores as solution-processed hole-transporting non-doped emitters for efficient pure red, green, blue and white organic light-emitting diodes, Polymer Chemistry 5(13) (2014) 3982-3993.
[129] S.-C. Lo, P.L. Burn, Development of dendrimers: macromolecules for use in organic light-emitting diodes and solar cells, Chemical Reviews 107(4) (2007) 1097-1116.
[130] S.-H. Hwang, C.N. Moorefield, G.R. Newkome, Dendritic macromolecules for organic light-emitting diodes, Chemical Society Reviews 37(11) (2008) 2543-2557.
[131] J. Li, D. Liu, Dendrimers for organic light-emitting diodes, Journal of Materials Chemistry 19(41) (2009) 7584-7591.
[132] J. Ding, J. Gao, Y. Cheng, Z. Xie, L. Wang, D. Ma, X. Jing, F. Wang, Highly efficient green‐emitting phosphorescent iridium dendrimers based on carbazole dendrons, Advanced Functional Materials 16(4) (2006) 575-581.
[133] T. Zhang, D. Liu, Y. Wang, S. Bao, S. Zhang, Novel carbazole dendronized oligofluorenes for solution-processed organic light-emitting diodes, Dyes and Pigments 122 (2015) 295-301.
[134] A.L. Vahrmeijer, M. Hutteman, J.R. Van Der Vorst, C.J. Van De Velde, J.V. Frangioni, Image-guided cancer surgery using near-infrared fluorescence, Nature Reviews Clinical Oncology 10(9) (2013) 507.
[135] D. Yi, L.R. Senesac, T.G. Thundat, Sensor for detecting and differentiating chemical analytes, Google Patents, 2011.
[136] M.E. Germain, M.J. Knapp, Optical explosives detection: from color changes to fluorescence turn-on, Chemical Society Reviews 38(9) (2009) 2543-2555.
[137] D. Banerjee, Z. Hu, J. Li, Luminescent metal–organic frameworks as explosive sensors, Dalton Transactions 43(28) (2014) 10668-10685.
[138] J. Hu, R. Liu, S. Zhai, Y. Wu, H. Zhang, H. Cheng, H. Zhu, AIE-active molecule-based self-assembled nano-fibrous films for sensitive detection of volatile organic amines, Journal of Materials Chemistry C 5(45) (2017) 11781-11789.
[139] T. Naddo, X. Yang, J.S. Moore, L. Zang, Highly responsive fluorescent sensing of explosives taggant with an organic nanofibril film, Sensors and Actuators B: Chemical 134(1) (2008) 287-291.
[140] T. Naddo, Y. Che, W. Zhang, K. Balakrishnan, X. Yang, M. Yen, J. Zhao, J.S. Moore, L. Zang, Detection of explosives with a fluorescent nanofibril film, Journal of the American Chemical Society 129(22) (2007) 6978-6979.
[141] K.K. Kartha, A. Sandeep, V.K. Praveen, A. Ajayaghosh, Detection of Nitroaromatic Explosives with Fluorescent Molecular Assemblies and π‐Gels, The Chemical Record 15(1) (2015) 252-265.
[142] L. Zang, Y. Che, J.S. Moore, One-dimensional self-assembly of planar π-conjugated molecules: adaptable building blocks for organic nanodevices, Accounts of Chemical Research 41(12) (2008) 1596-1608.
[143] C. Zhang, Y. Che, X. Yang, B.R. Bunes, L. Zang, Organic nanofibrils based on linear carbazole trimer for explosive sensing, Chemical Communications 46(30) (2010) 5560-5562.
[144] K.K. Kartha, A. Sandeep, V.C. Nair, M. Takeuchi, A. Ajayaghosh, A carbazole–fluorene molecular hybrid for quantitative detection of TNT using a combined fluorescence and quartz crystal microbalance method, Physical Chemistry Chemical Physics 16(35) (2014) 18896-18901.
[145] P.Z. Chen, H. Zhang, L.Y. Niu, Y. Zhang, Y.Z. Chen, H.B. Fu, Q.Z. Yang, A Solid‐State Fluorescent Material Based on Carbazole‐Containing Difluoroboron β‐Diketonate: Multiple Chromisms, the Self‐Assembly Behavior, and Optical Waveguides, Advanced Functional Materials 27(25) (2017) 1700332.
[146] E. Busseron, Y. Ruff, E. Moulin, N. Giuseppone, Supramolecular self-assemblies as functional nanomaterials, Nanoscale 5(16) (2013) 7098-7140.
[147] S. Ganda, M. Dulle, M. Drechsler, B. Förster, S. Förster, M.H. Stenzel, Two-Dimensional Self-Assembled Structures of Highly Ordered Bioactive Crystalline-Based Block Copolymers, Macromolecules 50(21) (2017) 8544-8553.
[148] P.A. Gale, J.W. Steed, Supramolecular chemistry: from molecules to nanomaterials, Wiley Online Library2012.
[149] E. Mattia, S. Otto, Supramolecular systems chemistry, Nature Nanotechnology 10(2) (2015) 111.
[150] C. Chen, R.A. Wylie, D. Klinger, L.A. Connal, Shape Control of Soft Nanoparticles and Their Assemblies, Chemistry of Materials 29(5) (2017) 1918-1945.
[151] C.S. Wagner, S. Shehata, K. Henzler, J. Yuan, A. Wittemann, Towards nanoscale composite particles of dual complexity, Journal of Colloid and Interface Science 355(1) (2011) 115-123.
[152] H. Yabu, Self-organized precipitation: an emerging method for preparation of unique polymer particles, Polymer Journal 45(3) (2013) 261.
[153] P. Cordier, F. Tournilhac, C. Soulié-Ziakovic, L. Leibler, Self-healing and thermoreversible rubber from supramolecular assembly, Nature 451(7181) (2008) 977.
[154] F.D. Jochum, P. Theato, Temperature-and light-responsive smart polymer materials, Chemical Society Reviews 42(17) (2013) 7468-7483.
[155] E. Moulin, F. Niess, M. Maaloum, E. Buhler, I. Nyrkova, N. Giuseppone, The Hierarchical Self‐Assembly of Charge Nanocarriers: A Highly Cooperative Process Promoted by Visible Light, Angewandte Chemie International Edition 49(39) (2010) 6974-6978.
[156] Y.L. Chu, C.C. Cheng, Y.C. Yen, F.C. Chang, A New Supramolecular Hole Injection/Transport Material on Conducting Polymer for Application in Light‐Emitting Diodes, Advanced Materials 24(14) (2012) 1894-1898.
[157] W.H. Binder, R. Zirbs, Supramolecular polymers and networkswith hydrogen bonds in the main-and side-chain, Hydrogen bonded polymers, Springer2006, pp. 1-78.
[158] R. Abbel, C. Grenier, M.J. Pouderoijen, J.W. Stouwdam, P.E. Leclere, R.P. Sijbesma, E. Meijer, A.P. Schenning, White-light emitting hydrogen-bonded supramolecular copolymers based on π-conjugated oligomers, Journal of the American Chemical Society 131(2) (2008) 833-843.
[159] C.-C. Cheng, C.-W. Chu, J.-J. Huang, Z.-S. Liao, Complementary hydrogen bonding interaction-mediated hole injection in organic light-emitting devices, Journal of Materials Chemistry C 5(19) (2017) 4736-4741.
[160] M. Irimia‐Vladu, P.A. Troshin, M. Reisinger, L. Shmygleva, Y. Kanbur, G. Schwabegger, M. Bodea, R. Schwödiauer, A. Mumyatov, J.W. Fergus, Edible Electronics: Biocompatible and Biodegradable Materials for Organic Field‐Effect Transistors, Advanced Functional Materials 20(23) (2010) 4017-4017.
[161] A. Campana, T. Cramer, P. Greco, G. Foschi, M. Murgia, F. Biscarini, Facile maskless fabrication of organic field effect transistors on biodegradable substrates, Applied Physics Letters 103(7) (2013) 153_1.
[162] P. Caliceti, F.M. Veronese, Pharmacokinetic and biodistribution properties of poly (ethylene glycol)–protein conjugates, Advanced Drug Delivery Reviews 55(10) (2003) 1261-1277.
[163] X. Feng, F. Lv, L. Liu, H. Tang, C. Xing, Q. Yang, S. Wang, Conjugated polymer nanoparticles for drug delivery and imaging, ACS Applied Materials & Interfaces 2(8) (2010) 2429-2435.
[164] K. Ulbrich, K. Hola, V. Subr, A. Bakandritsos, J. Tucek, R. Zboril, Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies, Chemical Reviews 116(9) (2016) 5338-5431.
[165] E. Blanco, H. Shen, M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery, Nature Biotechnology 33(9) (2015) 941.
[166] V.P. Torchilin, Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery, Nature Reviews Drug Discovery 13(11) (2014) 813.
[167] G.S. Kwon, T. Okano, Polymeric micelles as new drug carriers, Advanced Drug Delivery Reviews 21(2) (1996) 107-116.
[168] G.S. Kwon, K. Kataoka, Block copolymer micelles as long-circulating drug vehicles, Advanced Drug Delivery Reviews 16(2-3) (1995) 295-309.
[169] N. Nishiyama, Y. Bae, K. Miyata, S. Fukushima, K. Kataoka, Smart polymeric micelles for gene and drug delivery, Drug Discovery Today: Technologies 2(1) (2005) 21-26.
[170] T. Nicolai, O. Colombani, C. Chassenieux, Dynamic polymeric micelles versus frozen nanoparticles formed by block copolymers, Soft Matter 6(14) (2010) 3111-3118.
[171] L. Zhang, A. Eisenberg, Multiple morphologies of" crew-cut" aggregates of polystyrene-b-poly (acrylic acid) block copolymers, Science 268(5218) (1995) 1728-1731.
[172] C.-H. Chou, F.-C. Chen, Plasmonic nanostructures for light trapping in organic photovoltaic devices, Nanoscale 6(15) (2014) 8444-8458.
[173] M. Biyikal, M. Hecht, R. Martínez‐Máñez, K. Rurack, F. Sancenón, Supramolecular hybrid nanomaterials as prospective sensing platforms, Supramolecular Chemistry: From Molecules to Nanomaterials (2012).
[174] M.M. Adams, L.A. Joyce, E.V. Anslyn, Uses of differential sensing and arrays in chemical analysis, Supramolecular Chemistry: From Molecules to Nanomaterials (2012).
[175] L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal–organic framework materials as chemical sensors, Chemical reviews 112(2) (2011) 1105-1125.
[176] H.N. Kim, W.X. Ren, J.S. Kim, J. Yoon, Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions, Chemical Society Reviews 41(8) (2012) 3210-3244.
[177] Y. Song, W. Wei, X. Qu, Colorimetric biosensing using smart materials, Advanced Materials 23(37) (2011) 4215-4236.
[178] I. Yoshimura, Y. Miyahara, N. Kasagi, H. Yamane, A. Ojida, I. Hamachi, Molecular recognition in a supramolecular hydrogel to afford a semi-wet sensor chip, Journal of the American Chemical Society 126(39) (2004) 12204-12205.
[179] A. Wada, S.-i. Tamaru, M. Ikeda, I. Hamachi, MCM− enzyme− supramolecular hydrogel hybrid as a fluorescence sensing material for polyanions of biological significance, Journal of the American Chemical Society 131(14) (2009) 5321-5330.
[180] Z. Zhu, C. Wu, H. Liu, Y. Zou, X. Zhang, H. Kang, C.J. Yang, W. Tan, An aptamer cross‐linked hydrogel as a colorimetric platform for visual detection, Angewandte Chemie 122(6) (2010) 1070-1074.
[181] I. Escobar, E. Hoek, C. Gabelich, F. DiGiano, Y. Le Gouellec, P. Berube, K. Howe, J. Allen, K. Atasi, M. Benjamin, American water works association membrane technology research committee report: membrane fouling–recent advances and research needs, J. Am. Water Works Assoc. 97(8) (2005) 79-89.
[182] M. Barboiu, Dynamic interactive systems: dynamic selection in hybrid organic–inorganic constitutional networks, Chemical Communications 46(40) (2010) 7466-7476.
[183] E. Krieg, B. Rybtchinski, Noncovalent Water‐Based Materials: Robust yet Adaptive, Chemistry–A European Journal 17(33) (2011) 9016-9026.
[184] Y. Lu, T. Suzuki, W. Zhang, J.S. Moore, B.J. Mariñas, Nanofiltration membranes based on rigid star amphiphiles, Chemistry of Materials 19(13) (2007) 3194-3204.
[185] R.J. Petersen, Composite reverse osmosis and nanofiltration membranes, Journal of Membrane Science 83(1) (1993) 81-150.
[186] E. Krieg, H. Weissman, E. Shirman, E. Shimoni, B. Rybtchinski, A recyclable supramolecular membrane for size-selective separation of nanoparticles, Nature Nanotechnology 6(3) (2011) 141.
[187] T. Siebrands, M. Giersig, P. Mulvaney, C.-H. Fischer, Steric exclusion chromatography of nanometer-sized gold particles, Langmuir 9(9) (1993) 2297-2300.
[188] A. Chemseddine, H. Weller, Highly monodisperse quantum sized CdS particles by size selective precipitation, Berichte der Bunsengesellschaft für physikalische Chemie 97(4) (1993) 636-638.
[189] M. Hanauer, S. Pierrat, I. Zins, A. Lotz, C. Sönnichsen, Separation of nanoparticles by gel electrophoresis according to size and shape, Nano Letters 7(9) (2007) 2881-2885.
[190] L. Bai, X. Ma, J. Liu, X. Sun, D. Zhao, D.G. Evans, Rapid separation and purification of nanoparticles in organic density gradients, Journal of the American Chemical Society 132(7) (2010) 2333-2337.
[191] I.M. Krieger, F.M. O'Neill, Diffraction of light by arrays of colloidal spheres, Journal of the American Chemical Society 90(12) (1968) 3114-3120.
[192] A. Rogach, D. Talapin, H. Weller, F. Caruso, Colloids and colloid assemblies, Edited by Frank Caruso, 447 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 448 (2004).
[193] N. Nasongkla, E. Bey, J. Ren, H. Ai, C. Khemtong, J.S. Guthi, S.-F. Chin, A.D. Sherry, D.A. Boothman, J. Gao, Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems, Nano Letters 6(11) (2006) 2427-2430.
[194] Y. Mai, A. Eisenberg, Self-assembly of block copolymers, Chemical Society Reviews 41(18) (2012) 5969-5985.
[195] T. Smart, H. Lomas, M. Massignani, M.V. Flores-Merino, L.R. Perez, G. Battaglia, Block copolymer nanostructures, Nano Today 3(3-4) (2008) 38-46.
[196] F. Caruso, Nanoengineering of particle surfaces, Advanced Materials 13(1) (2001) 11-22.
[197] A.H. Gröschel, A.H. Müller, Self-assembly concepts for multicompartment nanostructures, Nanoscale 7(28) (2015) 11841-11876.
[198] J. Israelachvili, JN Israelachvili, DJ Mitchell, and BW Ninham, J. Chem. Soc., Faraday Trans. 2 72, 1525 (1976).
[199] P. Alexandridis, B. Lindman, Amphiphilic block copolymers: self-assembly and applications, Elsevier 2000.
[200] M. Antonietti, S. Förster, Vesicles and liposomes: a self‐assembly principle beyond lipids, Advanced Materials 15(16) (2003) 1323-1333.
[201] S. Förster, N. Hermsdorf, C. Böttcher, P. Lindner, Structure of polyelectrolyte block copolymer micelles, Macromolecules 35(10) (2002) 4096-4105.
[202] E. Zhulina, O. Borisov, Theory of block polymer micelles: recent advances and current challenges, Macromolecules 45(11) (2012) 4429-4440.
[203] L. Zhang, A. Eisenberg, Multiple morphologies and characteristics of “crew-cut” micelle-like aggregates of polystyrene-b-poly (acrylic acid) diblock copolymers in aqueous solutions, Journal of the American Chemical Society 118(13) (1996) 3168-3181.
[204] P.R. Cullis, M.J. Hope, C.P. Tilcock, Lipid polymorphism and the roles of lipids in membranes, Chemistry and Physics of Lipids 40(2-4) (1986) 127-144.
[205] J.H. Burroughes, D.D. Bradley, A. Brown, R. Marks, K. Mackay, R.H. Friend, P. Burns, A. Holmes, Light-emitting diodes based on conjugated polymers, Nature 347(6293) (1990) 539.
[206] L. Wang, M.H. Yoon, A. Facchetti, T.J. Marks, Flexible Inorganic/Organic Hybrid Thin‐Film Transistors Using All‐Transparent Component Materials, Advanced Materials 19(20) (2007) 3252-3256.
[207] J. Zaumseil, H. Sirringhaus, Electron and ambipolar transport in organic field-effect transistors, Chemical Reviews 107(4) (2007) 1296-1323.
[208] T. Adachi, L. Tong, J. Kuwabara, T. Kanbara, A. Saeki, S. Seki, Y. Yamamoto, Spherical Assemblies from π-Conjugated Alternating Copolymers: Toward Optoelectronic Colloidal Crystals, Journal of the American Chemical Society 135(2) (2013) 870-876.
[209] L. Tong, S. Kushida, J. Kuwabara, T. Kanbara, N. Ishii, A. Saeki, S. Seki, S. Furumi, Y. Yamamoto, Tetramethylbithiophene in π-conjugated alternating copolymers as an effective structural component for the formation of spherical assemblies, Polymer Chemistry 5(11) (2014) 3583-3587.
[210] K. Lee, J.C. Cho, J. DeHeck, J. Kim, Synthesis and functionalization of a highly fluorescent and completely water-soluble poly (para-phenyleneethynylene) copolymer for bioconjugation, Chemical Communications (18) (2006) 1983-1985.
[211] J. Zhang, R.E. Campbell, A.Y. Ting, R.Y. Tsien, Creating new fluorescent probes for cell biology, Nature Reviews Molecular Cell Biology 3(12) (2002) 906.
[212] J.P. Ryman-Rasmussen, J.E. Riviere, N.A. Monteiro-Riviere, Variables influencing interactions of untargeted quantum dot nanoparticles with skin cells and identification of biochemical modulators, Nano Letters 7(5) (2007) 1344-1348.
[213] C. Kirchner, T. Liedl, S. Kudera, T. Pellegrino, A. Muñoz Javier, H.E. Gaub, S. Stölzle, N. Fertig, W.J. Parak, Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles, Nano Letters 5(2) (2005) 331-338.
[214] C. Vauthier, K. Bouchemal, Methods for the preparation and manufacture of polymeric nanoparticles, Pharmaceutical Research 26(5) (2009) 1025-1058.
[215] B. Gilbert, F. Huang, H. Zhang, G.A. Waychunas, J.F. Banfield, Nanoparticles: strained and stiff, Science 305(5684) (2004) 651-654.
[216] A.J. Gesquiere, T. Uwada, T. Asahi, H. Masuhara, P.F. Barbara, Single molecule spectroscopy of organic dye nanoparticles, Nano Letters 5(7) (2005) 1321-1325.
[217] R.M. Adhikari, B.K. Shah, S.S. Palayangoda, D.C. Neckers, Solvent dependant optical switching in carbazole-based fluorescent nanoparticles, Langmuir 25(4) (2009) 2402-2406.
[218] C. Wu, J. McNeill, Swelling-controlled polymer phase and fluorescence properties of polyfluorene nanoparticles, Langmuir 24(11) (2008) 5855-5861.
[219] Z. Ning, H. Tian, Triarylamine: a promising core unit for efficient photovoltaic materials, Chemical Communications (37) (2009) 5483-5495.
[220] C.-C. Lin, M. Velusamy, H.-H. Chou, J.T. Lin, P.-T. Chou, Synthesis and characterization of naphthalene diimide (NDI)-based near infrared chromophores with two-photon absorbing properties, Tetrahedron 66(45) (2010) 8629-8634.
[221] U. Geissler, M.L. Hallensleben, A. Rienecker, N. Rohde, Polyarylenes on the basis of alkylpyrrole and alkylcarbazole derivatives and their oligomeric model systems, Polymers for Advanced Technologies 8(2) (1997) 87-92.
[222] S.-i. Kato, H. Noguchi, A. Kobayashi, T. Yoshihara, S. Tobita, Y. Nakamura, Bicarbazoles: Systematic structure–property investigations on a series of conjugated carbazole dimers, The Journal of Organic Chemistry 77(20) (2012) 9120-9133.
[223] A. Kaeser, A.P. Schenning, Fluorescent nanoparticles based on self‐assembled π‐conjugated systems, Advanced Materials 22(28) (2010) 2985-2997.
[224] G. Padmanaban, S. Ramakrishnan, Conjugation length control in soluble poly [2-methoxy-5-((2 ‘-ethylhexyl) oxy)-1, 4-phenylenevinylene](MEHPPV): Synthesis, optical properties, and energy transfer, Journal of the American Chemical Society 122(10) (2000) 2244-2251.
[225] T.-Q. Nguyen, V. Doan, B.J. Schwartz, Conjugated polymer aggregates in solution: Control of interchain interactions, The Journal of Chemical Physics 110(8) (1999) 4068-4078.
[226] J. Kim, T. Swager, Control of conformational and interpolymer effects in conjugated polymers, Nature 411(6841) (2001) 1030.
[227] Y.-J. Ko, E. Mendez, J.H. Moon, Controlled Aggregation in Conjugated Polymer Nanoparticles via Organic Acid Treatments, Macromolecules 44(13) (2011) 5527-5530.
[228] R.K. Konidena, K.J. Thomas, S. Kumar, Y.-C. Wang, C.-J. Li, J.-H. Jou, Phenothiazine decorated carbazoles: effect of substitution pattern on the optical and electroluminescent characteristics, The Journal of Organic Chemistry 80(11) (2015) 5812-5823.
[229] H. Huang, Q. Fu, B. Pan, S. Zhuang, L. Wang, J. Chen, D. Ma, C. Yang, Butterfly-Shaped Tetrasubstituted Carbazole Derivatives as a New Class of Hosts for Highly Efficient Solution-Processable Green Phosphorescent Organic Light-Emitting Diodes, Organic Letters 14(18) (2012) 4786-4789.
[230] D. Tenery, J.G. Worden, Z. Hu, A.J. Gesquiere, Single particle spectroscopy on composite MEH-PPV/PCBM nanoparticles, Journal of Luminescence 129(5) (2009) 423-429.
[231] S. Wang, A. Singh, N. Walsh, G. Redmond, Surfactant-free, low band gap conjugated polymer nanoparticles and polymer: fullerene nanohybrids with potential for organic photovoltaics, Nanotechnology 27(24) (2016) 245601.
[232] B. Gu, W. Ji, X.-Q. Huang, P. Patil, S. Dharmaprakash, Concentration-dependent two-photon absorption and subsequent excited-state absorption in 4-methoxy-2-nitroaniline, Journal of Applied Physics 106(3) (2009) 033511.
[233] C.-Y. Yu, W.-L. Lin, Preparation and characterization of alternating copolymers containing fluorene and thiophene derivatives, European Polymer Journal 53 (2014) 246-252.
[234] P.-I. Wang, W.-R. Shie, J.-C. Jiang, L.-J. Li, D.-J. Liaw, Novel poly (triphenylamine-alt-fluorene) with asymmetric hexaphenylbenzene and pyrene moieties: synthesis, fluorescence, flexible near-infrared electrochromic devices and theoretical investigation, Polymer Chemistry 7(7) (2016) 1505-1516.
[235] J. Liu, R. Zhang, G. Sauvé, T. Kowalewski, R.D. McCullough, Highly disordered polymer field effect transistors: N-alkyl dithieno [3, 2-b: 2′, 3′-d] pyrrole-based copolymers with surprisingly high charge carrier mobilities, Journal of the American Chemical Society 130(39) (2008) 13167-13176.
[236] H. Otsuka, Y. Nagasaki, K. Kataoka, PEGylated nanoparticles for biological and pharmaceutical applications, Advanced Drug Delivery Reviews 64 (2012) 246-255.
[237] K.D. Wegner, N. Hildebrandt, Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors, Chemical Society Reviews 44(14) (2015) 4792-4834.
[238] J. Zhang, X. Liu, G. Neri, N. Pinna, Nanostructured Materials for Room‐Temperature Gas Sensors, Advanced Materials 28(5) (2016) 795-831.
[239] C.-G. Qian, S. Zhu, P.-J. Feng, Y.-L. Chen, J.-C. Yu, X. Tang, Y. Liu, Q.-D. Shen, Conjugated polymer nanoparticles for fluorescence imaging and sensing of neurotransmitter dopamine in living cells and the brains of zebrafish larvae, ACS Applied Materials & Interfaces 7(33) (2015) 18581-18589.
[240] J.-Y. Lin, B. Liu, M.-N. Yu, X.-H. Wang, L.-B. Bai, Y.-M. Han, C.-J. Ou, L.-H. Xie, F. Liu, W.-S. Zhu, X.-W. Zhang, H.-F. Ling, P.N. Stavrinou, J.-P. Wang, D.D.C. Bradley, W. Huang, Systematic investigation of self-organization behavior in supramolecular π-conjugated polymer for multi-color electroluminescence, Journal of Materials Chemistry C 6(6) (2018) 1535-1542.
[241] E. Mattia, S. Otto, Supramolecular systems chemistry, Nature Nanotechnology 10 (2015) 111.
[242] C. Chen, R.A.L. Wylie, D. Klinger, L.A. Connal, Shape Control of Soft Nanoparticles and Their Assemblies, Chemistry of Materials 29(5) (2017) 1918-1945.
[243] J. Lin, Z. Yu, W. Zhu, G. Xing, Z. Lin, S. Yang, L. Xie, C. Niu, W. Huang, A π-conjugated polymer gelator from polyfluorene-based poly (tertiary alcohol) via the hydrogen-bonded supramolecular functionalization, Polymer Chemistry 4(3) (2013) 477-483.
[244] J.Y. Lin, J. Wong, L.H. Xie, X.C. Dong, H.Y. Yang, W. Huang, Hydrogen‐Bonded Supramolecular Conjugated Polymer Nanoparticles for White Light‐Emitting Devices, Macromolecular Rapid Communications 35(9) (2014) 895-900.
[245] J.-Y. Lin, G.-Y. Zhu, B. Liu, M.-N. Yu, X.-H. Wang, L. Wang, W.-S. Zhu, L.-H. Xie, C.-X. Xu, J.-P. Wang, Supramolecular Polymer–Molecule Complexes as Gain Media for Ultraviolet Lasers, ACS Macro Letters 5(8) (2016) 967-971.
[246] P.A. Gale, C.J. Haynes, Anion Receptors Containing Heterocyclic Rings, Wiley Online Library2012.
[247] Y.Z. Chang, Q. Shao, L.Y. Bai, C.J. Ou, J.Y. Lin, L.H. Xie, Z.D. Liu, X. Chen, G.W. Zhang, W. Huang, Bottom‐up Synthesis of Nanoscale Conjugation‐Interrupted Frameworks and Their Electrical Properties, Small 9(19) (2013) 3218-3223.
[248] S. Kushida, D. Braam, C. Pan, T.D. Dao, K. Tabata, K. Sugiyasu, M. Takeuchi, S. Ishii, T. Nagao, A. Lorke, Whispering gallery resonance from self-assembled microspheres of highly fluorescent isolated conjugated polymers, Macromolecules 48(12) (2015) 3928-3933.
[249] S. Kushida, O. Oki, H. Saito, J. Kuwabara, T. Kanbara, M. Tashiro, M. Katouda, Y. Imamura, Y. Yamamoto, From Linear to Foldamer and Assembly: Hierarchical Transformation of a Coplanar Conjugated Polymer into a Microsphere, The Journal of Physical Chemistry Letters 8(18) (2017) 4580-4586.
[250] Y. Yamamoto, Spherical resonators from π-conjugated polymers, Polymer Journal 48(11) (2016) 1045.
[251] D. Okada, T. Nakamura, D. Braam, T.D. Dao, S. Ishii, T. Nagao, A. Lorke, T. Nabeshima, Y. Yamamoto, Color-tunable resonant photoluminescence and cavity-mediated multistep energy transfer cascade, ACS Nano 10(7) (2016) 7058-7063.
[252] S. Kushida, D. Okada, F. Sasaki, Z.H. Lin, J.S. Huang, Y. Yamamoto, Low‐threshold whispering gallery mode lasing from self‐assembled microspheres of single‐sort conjugated polymers, Advanced Optical Materials 5(10) (2017) 1700123.
[253] A.J. Kuehne, M.C. Gather, J. Sprakel, Monodisperse conjugated polymer particles by Suzuki–Miyaura dispersion polymerization, Nature Communications 3 (2012) 1088.
[254] N. Liu, Q. He, W. Bu, Self-Assembly of Star Micelle into Vesicle in Solvents of Variable Quality: The Star Micelle Retains Its Core–Shell Nanostructure in the Vesicle, Langmuir 31(8) (2015) 2262-2268.
[255] H. Huang, Y. Liao, W. Bu, W. Wang, J.Z. Sun, Going beyond the classical amphiphilicity paradigm: the self-assembly of completely hydrophobic polymers into free-standing sheets and hollow nanostructures in solvents of variable quality, Soft Matter 12(22) (2016) 5011-5021.
[256] J. Lin, B. Liu, M. Yu, X. Wang, Z. Lin, X. Zhang, C. Sun, J. Cabanillas‐Gonzalez, L. Xie, F. Liu, Ultrastable Supramolecular Self‐Encapsulated Wide‐Bandgap Conjugated Polymers for Large‐Area and Flexible Electroluminescent Devices, Advanced Materials (2018) 1804811.
[257] J.-Y. Lin, W.-S. Zhu, F. Liu, L.-H. Xie, L. Zhang, R. Xia, G.-C. Xing, W. Huang, A rational molecular design of β-phase polydiarylfluorenes: synthesis, morphology, and organic Lasers, Macromolecules 47(3) (2014) 1001-1007.
[258] T. Lei, J.H. Dou, J. Pei, Influence of Alkyl Chain Branching Positions on the Hole Mobilities of Polymer Thin‐Film Transistors, Advanced Materials 24(48) (2012) 6457-6461.
[259] S. Sato, S. Ohisa, Y. Hayashi, R. Sato, D. Yokoyama, T. Kato, M. Suzuki, T. Chiba, Y.J. Pu, J. Kido, Air‐Stable and High‐Performance Solution‐Processed Organic Light‐Emitting Devices Based on Hydrophobic Polymeric Ionic Liquid Carrier‐Injection Layers, Advanced Materials 30(18) (2018) 1705915.
[260] C. Kanimozhi, N. Yaacobi-Gross, K.W. Chou, A. Amassian, T.D. Anthopoulos, S. Patil, Diketopyrrolopyrrole–diketopyrrolopyrrole-based conjugated copolymer for high-mobility organic field-effect transistors, Journal of the American Chemical Society 134(40) (2012) 16532-16535.
[261] M. Shao, Y. He, K. Hong, C.M. Rouleau, D.B. Geohegan, K. Xiao, A water-soluble polythiophene for organic field-effect transistors, Polymer Chemistry 4(20) (2013) 5270-5274.
[262] C. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics, Chemical Reviews 112(4) (2011) 2208-2267.
[263] W.-S. Li, Y. Yamamoto, T. Fukushima, A. Saeki, S. Seki, S. Tagawa, H. Masunaga, S. Sasaki, M. Takata, T. Aida, Amphiphilic molecular design as a rational strategy for tailoring bicontinuous electron donor and acceptor arrays: photoconductive liquid crystalline oligothiophene− C60 dyads, Journal of the American Chemical Society 130(28) (2008) 8886-8887.
[264] J.H. Moon, W. McDaniel, P. MacLean, L.F. Hancock, Live‐cell‐permeable poly (p‐phenylene ethynylene), Angewandte Chemie 119(43) (2007) 8371-8373.
[265] F. Huang, H. Wu, Y. Cao, Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices, Chemical Society Reviews 39(7) (2010) 2500-2521.
[266] S. Torabi, F. Jahani, I. Van Severen, C. Kanimozhi, S. Patil, R.W.A. Havenith, R.C. Chiechi, L. Lutsen, D.J.M. Vanderzande, T.J. Cleij, J.C. Hummelen, L.J.A. Koster, Strategy for Enhancing the Dielectric Constant of Organic Semiconductors Without Sacrificing Charge Carrier Mobility and Solubility, Advanced Functional Materials 25(1) (2015) 150-157.
[267] L. Yang, H. Zhou, W. You, Quantitatively Analyzing the Influence of Side Chains on Photovoltaic Properties of Polymer−Fullerene Solar Cells, The Journal of Physical Chemistry C 114(39) (2010) 16793-16800.
[268] D. Choi, B.-S. Jeong, B. Ahn, D.S. Chung, K. Lim, S.H. Kim, S.U. Park, M. Ree, J. Ko, C.E. Park, Effects of Side-Chain Interdigitation on Stability: An Environmentally, Electrically, and Thermally Stable Semiconducting Polymer, ACS Applied Materials & Interfaces 4(2) (2012) 702-706.
[269] P.-T. Wu, H. Xin, F.S. Kim, G. Ren, S.A. Jenekhe, Regioregular Poly(3-pentylthiophene): Synthesis, Self-Assembly of Nanowires, High-Mobility Field-Effect Transistors, and Efficient Photovoltaic Cells, Macromolecules 42(22) (2009) 8817-8826.
[270] X. Guo, F.S. Kim, S.A. Jenekhe, M.D. Watson, Phthalimide-Based Polymers for High Performance Organic Thin-Film Transistors, Journal of the American Chemical Society 131(21) (2009) 7206-7207.
[271] M. Yu, B. Liu, J. Lin, L. Bai, H. Ling, W. Zhu, L. Xie, M. Yi, J. Wang, W. Huang, One-step preparation of conjugated homopolymer sub-microspheres via a controllable supramolecular approach toward optoelectronic applications, RSC Advances 7(24) (2017) 14688-14693.
[272] M. Xu, W.-B. Wang, L.-B. Bai, M.-N. Yu, Y.-M. Han, J.-Y. Lin, X.-W. Zhang, H. Ling, Z.-Q. Lin, L. Huang, Controllable Supramolecular Chain Aggregation through Nano-steric Hindrance Functionalization for Multi-color Larger-area Electroluminescence, Journal of Materials Chemistry C (2018).
[273] L.-H. Xie, C.-R. Yin, W.-Y. Lai, Q.-L. Fan, W. Huang, Polyfluorene-based semiconductors combined with various periodic table elements for organic electronics, Progress in Polymer Science 37(9) (2012) 1192-1264.
[274] Z.a. Li, T. Ye, S. Tang, C. Wang, D. Ma, Z. Li, Triphenylamine-based π-conjugated dendrimers: convenient synthesis, easy solution processability, and good hole-transporting properties, Journal of Materials Chemistry C 3(9) (2015) 2016-2023.
[275] T. Kurosawa, T. Higashihara, M. Ueda, Polyimide memory: a pithy guideline for future applications, Polymer Chemistry 4(1) (2013) 16-30.
[276] C.-Y. Yu, A.S. Godana, Conjugated polymer nanoparticles based on fluorenes, PEGylated carbazoles and diphenylamines, European Polymer Journal 99 (2018) 165-171.
[277] J. Noh, S. Jung, D.G. Koo, G. Kim, K.S. Choi, J. Park, T.J. Shin, C. Yang, J. Park, Thienoisoindigo-Based Semiconductor Nanowires Assembled with 2-Bromobenzaldehyde via Both Halogen and Chalcogen Bonding, Scientific Reports 8(1) (2018) 14448.
[278] X. Yang, J. Loos, S.C. Veenstra, W.J.H. Verhees, M.M. Wienk, J.M. Kroon, M.A.J. Michels, R.A.J. Janssen, Nanoscale Morphology of High-Performance Polymer Solar Cells, Nano Letters 5(4) (2005) 579-583.
[279] Y. KIM, S. COOK, S.M. TULADHAR, S.A. CHOULIS, J. NELSON, J.R. DURRANT, D.D.C. BRADLEY, M. GILES, I. MCCULLOCH, C.-S. HA, M. REE, A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells, Materials for Sustainable Energy, pp. 63-69.
[280] M.-n. Yu, B. Liu, J.-y. Lin, T. Li, D. Lu, F. Liu, W.-s. Zhu, L.-h. Xie, W. Huang, Nondilute 1, 2-dichloroethane solution of poly (9, 9-dioctylfluorene-2, 7-diyl): A study on the aggregation process, Chinese Journal of Polymer Science 34(11) (2016) 1311-1318.
[281] J. Kim, T.M. Swager, Control of conformational and interpolymer effects in conjugated polymers, Nature 411 (2001) 1030.
[282] A. Kaeser, A.P.H.J. Schenning, Fluorescent Nanoparticles Based on Self-Assembled π-Conjugated Systems, Advanced Materials 22(28) (2010) 2985-2997.
[283] G. Padmanaban, S. Ramakrishnan, Fluorescence Spectroscopic Studies of Solvent- and Temperature-Induced Conformational Transition in Segmented Poly[2-methoxy-5-(2‘-ethylhexyl)oxy-1,4-phenylenevinylene] (MEHPPV), The Journal of Physical Chemistry B 108(39) (2004) 14933-14941.
[284] V. Karunakaran, D.D. Prabhu, S. Das, Optical Investigation of Self-Aggregation of a Tetrazole-Substituted Diphenylacetylene Derivative: Steady and Excited State Dynamics in Solid and Solution State, The Journal of Physical Chemistry C 117(18) (2013) 9404-9415.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔