(18.204.2.190) 您好!臺灣時間:2021/04/19 08:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉家佑
研究生(外文):Chia-Yu Liu
論文名稱:添加Sn-10.0 wt.% Cu 於Sn-3.0 wt.% Ag-0.5 wt.% Cu 形成複合銲料之性質研究
論文名稱(外文):The Properties of Composite Solders of Sn-3.0 wt.% Ag- 0.5 wt.% Cu alloy Added with Sn-10.0 wt.% Cu alloy
指導教授:顏怡文莊鑫毅
指導教授(外文):Yee-Wen YenHsin-I Chuang
口試委員:陳志銘蔡孟霖
口試委員(外文):Chih-ming ChenMeng-Lin Tsai
口試日期:2019-06-19
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:87
中文關鍵詞:複合銲料Sn-Ag-Cu無鉛銲料
外文關鍵詞:Composite SoldersSn-Ag-Cu lead-free solder
相關次數:
  • 被引用被引用:0
  • 點閱點閱:38
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要i
Abstractiii
誌謝v
目錄vii
圖目錄ix
表目錄xii
第一章、前言1
第二章、文獻回顧3
2-1 電子構裝技術3
2-1.1電子構裝簡介3
2-1.2 回銲技術5
2-2無鉛銲料7
2-2.1 無鉛銲料介紹7
2-2.2 錫(Sn)9
2-2.3 錫-銅(Sn-Cu)9
2-2.4 錫-銀-銅(Sn-Ag-Cu)10
2-3 複合銲料相關研究文獻12
2-4 複合銲料性質分析15
2-4.1 熱分析15
2-4.2 溶解性質17
2-4.3 濕潤性質18
第三章、實驗方法20
3-1 銲料製備20
3-2 熱分析21
3-3 金相處理23
3-4 複合銲料觀察與分析23
3-5 溶解分析24
3-6 濕潤性質分析25
3-7 流動現象觀察27
第四章、結果與討論29
4-1 熱分析29
4-2 不同回銲次數後金相觀察40
4-3 溶解實驗金相觀察51
4-4 潤濕性質分析55
4-4.1潤濕性分析與計算55
4-4.2 SAC-xS10C銲料潤濕性質57
4-5 SAC-xS10C銲料流動現象觀察64
第五章、結論65
第六章、參考文獻67
[1] H. Y. Hsiao, C. M. Liu, H. W. Lin, T. C. Liu, C. L. Lu, Y. S. Huang, K. N. Tu, “Unidirectional growth of microbumps on (111)-oriented and nanotwinned Copper,” Science, 336(6084) (2012) 1007-1010
[2] C. M. L. Wu, D. Q. Yu, C. M. T. Law, L. Wang, “Properties of lead-free solder alloys with rare earth element additions,” Materials Science and Engineering: R: Reports, 44(1) (2004) 1-44
[3] “WEEE Regulations” EU-Directive 96/EC, (2002)
[4] “RoHS Regulations” EU-Directive 95/EC, (2002)
[5] H. Hao, Y. Shi, Z. Xia, Y. Lei, F. Guo, “Microstructure evolution of SnAgCuEr lead-free solders under high temperature aging,” Journal of Electronic Materials, 37(1) (2008) 2-8
[6] K. W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello, C. A. Handwerker, “Experimental and thermodynamic assessment of Sn-Ag-Cu solder alloys,” Journal of electronic materials, 29(10) (2000) 1122-1136
[7] D. P. Seraphim, R. C. Lasky, C. Y. Li, “Principles of electronic packaging,” McGraw-Hill College, New York, (1989)
[8] J. H. Lau, C. P. Wong, W. Nakayama, J. L. “Prince, electronic packaging: design, materials, process, and reliability,” McGraw-Hill, New York, (1998)
[9] 田民波/著、顏怡文/教訂,「半導體電子元件構裝技術」,五南圖書出版社,台北 (2005)
[10] J. E. Morris, Workshop, “The design and processing technology of electronic Packaging,” (1997)
[11] 林定皓,「電子構裝技術概論」,台灣電路板協會,(2010)
[12] E. H. Amalua, W. K. Lau, N. N. Ekere, R. S. Bhatti, S. Mallik, K. C. Otiaba, G. Takyi, “A study of SnAgCu solder paste transfer efficiency and effects of optimal reflow profile on solder deposits,” Microelectronic Engineering, 88(7) (2011) 1610-1617
[13] M. Abtew, G. Selvaduray, “Lead-free solders in microelectronics,” Materials Science and Engineering: R: Reports, 27(5-6) (2000) 95-141.
[14] K. N. Tu, J. C. M. Li, “Spontaneous whisker growth on lead-free solder finishes,” Materials Science and Engineering: A, 409(1-2) (2005) 131-139.
[15] K. Fakpan, R. Canyook, “Effects of Sb and Zn addition on mechanical properties and corrosion resistance of Sn-Ag-Cu Solders,” Key Engineering Materials, 728 (2017) 129-134
[16] N. C. Lee, “Getting ready for lead-free solders,” Soldering & surface mount technology, 9(2) (1997) 65-69
[17] 魏弘堯,「¬在BGA製程中以銦作為UBM層對接點界面型態與機械性質之探討」,碩士論文,國立台灣科技大學材料究所,(2006)
[18] S. K. Kang, D. Y. Shih, D. Leonard, D. W. Henderson, T. Gosselin, S. I. Cho, W. K. Choi, “Controlling Ag3Sn plate formation in near-ternary-eutectic Sn-Ag-Cu solder by minor Zn alloying,” JOM, 56(6) (2004) 34
[19] I. E. Anderson, “Development of Sn-Ag-Cu and Sn-Ag-Cu-X alloys for Pb-free electronic solder applications,” Journal of Materials Science: Materials in Electronics, 18(1-3) (2007) 55-76
[20] N. Saunders, A. P. Miodownik, “ASM Handbook vol. 3 Alloy Phase Diagrams,” edited by H. Baker, Materials Park, Ohio: ASM International, (1990)
[21] I. Karakaya, W. T. Thompson, “ASM Handbook vol. 3 Alloy Phase Diagrams,” edited by H. Baker, ASM International, Materials Park, Ohio, (1987)
[22] K. S. Kim, S. H. Huh, K. Suganuma, “Effects of cooling speed on microstructure and tensile properties of Sn-Ag-Cu alloys,” Materials science and engineering: a, 333(1-2) (2002) 106-114
[23] S. H. Huh, K. S. Kim, K. Suganuma, “Effect of Ag addition on the microstructural and mechanical properties of Sn-Cu eutectic solder,” Materials Transactions, 42(5) (2001) 739-744
[24] F. Guo, “Composite-lead free electronic solders,” Journal of Materials Science: Materials in Electronics, 18(1-3) (2007) 129-145
[25] S. Y. Hwang, J. W. Lee, Z.H. Lee, “Microstructure of a lead-free composite solder produced by an in-situ process,” Journal of Electronic Materials, 31(11) (2002) 1304-1308
[26] D. C. Lin, T. S. Srivatsan, G. X. Wang, R. Kovacevic, “Microstructural development of a rapidly cooled eutectic Sn-3.5% Ag solder reinforced with copper powder,” Powder Technology, 166(1) (2006) 38-46
[27] B. I. Noh, J. H. Choi, J. W. Yoon, S. B. Jung, “Effect of cerium content on wettability, microstructure and mechanical properties of Sn-Ag-Ce solder alloys,” Journal of Alloys and Compounds, 499(2) (2010) 154-159.
[28] P. Babaghorbani, S. M. L. Nai, M. Gupta, “Reinforcements at nanometer length scale and the electrical resistivity of lead-free solders,” Journal of Alloys and Compounds, 478(1-2) (2009) 458-461
[29] A. Nadia, A. S. M. A. Haseeb, “Effect of addition of copper particles of different size to Sn-3.5Ag solder,” Journal of Materials Science Materials in Electronics, 23(1) (2012) 86-93
[30] H. T. Lee, Y. H. Lee, “Adhesive strength and tensile fracture of Ni particles enhanced Sn-Ag composite solder joint,” Materials Science and Engineering: A, 419(1-2) (2006) 172-180.
[31] M. He, N. D. Leon, V. L. Acoff, “Effect of Bi on the microstructure and tensile behavior of Sn-3.7Ag solders,” Soldering & Surface Mount Technology, 22(3) (2010) 4-9
[32] L. Zhang, W. Tao, J. Liu, Y. Zhang, Z. Cheng, C. Andersson, Y. Gao, Q. Zhai, “Manufacture, microstructure and microhardness analysis of Sn-Bi lead-free solder reinforced with Sn-Ag-Cu nano-particles,” International Conference on Electronic Packaging Technology& High Density Packaging (ICEPT-HDP), (2008) 1-5
[33] B. An, C. M. L. Wu, “Evaluation of wettability of composite solder alloy reinforced with silver and copper particles,” International Conference on Electronic Packaging Technology (ICEPT), (2007) 1-6.
[34] K. Bukat, M. Koscielski, J. Sitek, M. Jakubowska, A. Mlozniak, der “Silver nanoparticles effect on the wettability of Sn-Ag-Cu sol pastes and solder joints microstructure on copper,” Soldering & Surface Mount Technology, 23(3) (2011) 150-160.
[35] M. Koscielski, K. Bukat, M. Jakubowska, A. Mlozniak, “Application of silver nanoparticles to improve wettability of SnAgCu solder paste,” International Spring Seminar on Electronics Technology (ISSE), (2010) 473-477
[36] P. Liu, P. Yao, J. Liu, “Evolution of the interface and shear strength between SnAgCu-xNi solder and Cu substrate during isothermal aging at 150°C,” Journal of Alloys and Compounds, 486(1-2) (2009) 474-479
[37] M. M. Arafat, A. S. M. A. Haseeb, “Interfacial reaction and dissolution behavior of Cu substrate in molten Sn-3.8Ag-0.7Cu-nano Mo composite solder,” Electronics Packaging Technology Conference (EPTC) (2009) 953-956
[38] M. M. Arafat, A. S. M. A. Haseeb, Mohd Rafie Johan, “Interfacial reaction and dissolution behavior of Cu substrate in molten Sn-3.8Ag-0.7Cu in the presence of Mo nanoparticles,” Soldering & Surface Mount Technology, 23(3) (2011) 140-149
[39] V. Sivasubramaniam, N. S. Bosco, J. J. Rusch, J. Cugnoni, J. Botsis, “Interfacial intermetallic growth and strength of composite lead-free solder alloy through isothermal aging”, Journal of Electronic Materials, 37(10) (2008) 1598-1604.
[40] C. P Peng, J. Shen, W. D. Xie, J. Chen, C. P. Wu, X. C. Wang, “Influence of minor Ag nano-particles additions on the microstructure of Sn30Bi0.5Cu solder reacted with a Cu substrate,” Journal of Materials Science Materials in Electronics, 22(7) (2011) 797-806
[41] Q. Chen, G. Li, “Effect of dopants on wettability and microstructure evolution of lead-free solder joints,” International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP) (2010) 314-318
[42] S. M. L. Nai, M. Gupta, J. Wei, “Development of novel lead-free solder composites using carbon nanotube reinforcements,” International Journal of Nanoscience, 4 (2005) 423-429.
[43] S. M. L. Nai, J. Wei, M. Gupta, “Multi-walled carbon nanotubes reinforced lead-free solder composites,” SIMTech technical report, 9(4) (2008) 195-199.
[44] A. Sharif , Y. C. Chan, “Dissolution kinetics of BGA Sn–Pb and Sn–Ag solders with Cu substrates during reflow,” Materials Science and Engineering: B, 106(2) (2004) 126-131
[45] M. L. Huang, T. Loeher, A. Ostmann, H. Reichl, “Role of Cu in dissolution kinetics of Cu metallization in molten Sn-based solders,” Applied Physics Letter, 86 (2005)
[46] J. W. Han, H. G. Lee, J. Y. Park, “Numerical simulation of dynamic wetting behavior in the wetting balance method,” Materials Transactions, 43(8) (2002) 1816-1820
[47] J. Y. Park, C. S. Kang, J. P. Jung, “The analysis of the withdrawal force curve of the wetting curve using 63Sn-37Pb and 96.5Sn-3.5Ag eutectic solders,” Journal of Electronic Materials, 28(11) (1999) 1256-1262
[48] F. G. Yost, “The Metal Science of Joining,” edited by M. J. Cieslak (1992)
[49] S. W. Chen, C. C. Lin, C. M. Chen, “Determination of the melting and solidification characteristics of solders using differential scanning calorimetry,” Metallurgical and Materials Transactions A, 29(7) (1998) 1965-1972
[50] M. M. Billah, K. M. Shorowordi, A. Sharif, “Effect of micron size Ni particle addition in Sn-8Zn-3Bi lead-free solder alloy on the microstructure, thermal and mechanical properties,” Journal of Alloys and Compounds, 585 (2014) 32-39
[51] K. M. Kumar, V. Kripesh, A. A.O. Tay, “Single-wall carbon nanotube (SWCNT) functionalized Sn-Ag-Cu lead-free composite solders,” Journal of Alloys and Compounds, 450 (2008) 229-237
[52] W. Zhai, W.L. Wang, D.L. Geng, B. Wei, “A DSC analysis of thermodynamic properties and solidification characteristics for binary Cu–Sn alloys,” Acta Materialia, 60 (2012) 6518–6527
[53] 傅淑玫,「¬添加多壁奈米碳管於Sn-3.0Ag-0.5Cu無鉛銲料之性質研究」,碩士論文,國立台灣科技大學材料究所,(2011)
電子全文 電子全文(網際網路公開日期:20240626)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔