|
[1] Y. Wang, C.-G. Niu, L. Wang, Y. Wang, X.-G. Zhang, G.-M. Zeng, Synthesis of fern-like Ag/AgCl/CaTiO3 plasmonic photocatalysts and their enhanced visible-light photocatalytic properties, RSC Advances, 6 (2016) 47873-47882. [2] S. Ahuja, Chapter One - Overview: Sustaining Water, the World's Most Crucial Resource, in: Chemistry and Water, Elsevier, 2017, pp. 1-22. [3] V. Paramarta, A. Taufik, L. Munisa, R. Saleh, Sono- and photocatalytic activities of SnO2 nanoparticles for degradation of cationic and anionic dyes, AIP Conference Proceedings, 1788 (2017) 030125. [4] M. Fazlzadeh, K. Rahmani, A. Zarei, H. Abdoallahzadeh, F. Nasiri, R. Khosravi, A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr(VI) from aqueous solutions, Advanced Powder Technology, 28 (2017) 122-130. [5] M. Naimi-Joubani, M. Shirzad-Siboni, J.-K. Yang, M. Gholami, M. Farzadkia, Photocatalytic reduction of hexavalent chromium with illuminated ZnO/TiO2 composite, Journal of Industrial and Engineering Chemistry, 22 (2015) 317-323. [6] P. Karthik, R. Vinoth, S.G. Babu, M. Wen, T. Kamegawa, H. Yamashita, B. Neppolian, Synthesis of highly visible light active TiO2-2-naphthol surface complex and its application in photocatalytic chromium(vi) reduction, RSC Advances, 5 (2015) 39752-39759. [7] M. Shirzad-Siboni, M. Farrokhi, R. Darvishi Cheshmeh Soltani, A. Khataee, S. Tajassosi, Photocatalytic Reduction of Hexavalent Chromium over ZnO Nanorods Immobilized on Kaolin, Industrial & Engineering Chemistry Research, 53 (2014) 1079-1087. 96 [8] Y. Li, Y. Bian, H. Qin, Y. Zhang, Z. Bian, Photocatalytic reduction behavior of hexavalent chromium on hydroxyl modified titanium dioxide, Applied Catalysis B: Environmental, 206 (2017) 293-299. [9] Z. He, Q. Cai, M. Wu, Y. Shi, H. Fang, L. Li, J. Chen, J. Chen, S. Song, Photocatalytic Reduction of Cr(VI) in an Aqueous Suspension of Surface-Fluorinated Anatase TiO2 Nanosheets with Exposed {001} Facets, Industrial & Engineering Chemistry Research, 52 (2013) 9556-9565. [10] Z. Zhou, Y. Li, K. Lv, X. Wu, Q. Li, J. Luo, Fabrication of walnut-like BiVO4@Bi2S3 heterojunction for efficient visible photocatalytic reduction of Cr(VI), Materials Science in Semiconductor Processing, 75 (2018) 334-341. [11] N. Tripathy, R. Ahmad, H. Kuk, D.H. Lee, Y.-B. Hahn, G. Khang, Rapid methyl orange degradation using porous ZnO spheres photocatalyst, Journal of Photochemistry and Photobiology B: Biology, 161 (2016) 312-317. [12] T. Ghosh, K.-Y. Cho, K. Ullah, V. Nikam, C.-Y. Park, Z.-D. Meng, W.-C. Oh, High photonic effect of organic dye degradation by CdSe–graphene–TiO2 particles, Journal of Industrial and Engineering Chemistry, 19 (2013) 797-805. [13] U. Tahir, A. Yasmin, U.H. Khan, Phytoremediation: Potential flora for synthetic dyestuff metabolism, Journal of King Saud University - Science, 28 (2016) 119-130. [14] B. Kumar, K. Smita, L. Cumbal, A. Debut, Sacha inchi (Plukenetia volubilis L.) shell biomass for synthesis of silver nanocatalyst, Journal of Saudi Chemical Society, 21 (2017) S293-S298. 97 [15] M. Mirzaie, A. Rashidi, H.-A. Tayebi, M.E. Yazdanshenas, Removal of Anionic Dye from Aqueous Media by Adsorption onto SBA-15/Polyamidoamine Dendrimer Hybrid: Adsorption Equilibrium and Kinetics, Journal of Chemical & Engineering Data, 62 (2017) 1365-1376. [16] M. Scholz, Chapter 3 - Sewage treatment, in: Wetland Systems to Control Urban Runoff, Elsevier, Amsterdam, 2006, pp. 11-13. [17] B.G. Loganathan, K.D. Hristovski, J.B. de Andrade, D.D. Dionysiou, S. Ahuja, Water Challenges and Solutions on a Global Scale, in: ACS Symposium Series, American Chemical Society, 2015 [18] W.-K. Jo, R.J. Tayade, Recent developments in photocatalytic dye degradation upon irradiation with energy-efficient light emitting diodes, Chinese Journal of Catalysis, 35 (2014) 1781-1792. [19] A.T. Le, S.-Y. Pung, S. Sreekantan, A. Matsuda, D.P. Huynh, Mechanisms of removal of heavy metal ions by ZnO particles, Heliyon, 5 (2019) e01440. [20] E. Lombi, R.E. Hamon, Remediation of polluted soils, in: D. Hillel (Ed.) Encyclopedia of Soils in the Environment, Elsevier, Oxford, 2005, pp. 379-385. [21] P.K. Dutta, S.O. Pehkonen, V.K. Sharma, A.K. Ray, Photocatalytic Oxidation of Arsenic(III): Evidence of hydroxyl radicals, environmental science & technology, 39 (2005) 1827-1834. [22] S. Kaizra, B. Bellal, Y. Louafi, M. Trari, Improved activity of SnO for the photocatalytic oxygen evolution, Journal of Saudi Chemical Society, 22 (2018) 76-83. [23] O. Morton, A new day dawning?: Silicon Valley sunrise, Nature, 443 (2006) 19-22. [24] C. Li, F. Wang, J.C. Yu, Semiconductor/biomolecular composites for solar energy applications, Energy & Environmental Science, 4 (2011) 100-113. 98 [25] M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: A review, Water Research, 44 (2010) 2997-3027. [26] S.R. Salman, Electronic Spectroscopy, Study of Chemical Reactions A2 - Lindon, John C, in: G.E. Tranter, D.W. Koppenaal (Eds.) Encyclopedia of Spectroscopy and Spectrometry (Third Edition), Academic Press, Oxford, 2017, pp. 470-475. [27] E.L. Cates, Photocatalytic Water Treatment: So Where Are We Going with This?, Environmental Science & Technology, 51 (2017) 757-758. [28] A.B. Djurišić, Y.H. Leung, A.M. Ching Ng, Strategies for improving the efficiency of semiconductor metal oxide photocatalysis, Materials Horizons, 1 (2014) 400-410. [29] S. Chen, R. Yan, X. Zhang, K. Hu, Z. Li, M. Humayun, Y. Qu, L. Jing, Photogenerated electron modulation to dominantly induce efficient 2,4-dichlorophenol degradation on BiOBr nanoplates with different phosphate modification, Applied Catalysis B: Environmental, 209 (2017) 320-328. [30] F. Huang, A. Yan, H. Zhao, Influences of doping on photocatalytic properties of TiO2 photocatalyst, in: Semiconductor Photocatalysis-Materials, Mechanisms and Applications, IntechOpen, 2016. [31] M.S. Hamdy, R. Amrollahi, G. Mul, Surface Ti3+-Containing (blue) Titania: A Unique Photocatalyst with High Activity and Selectivity in Visible Light-Stimulated selective oxidation, ACS Catalysis, 2 (2012) 2641-2647. [32] P. Feng, X. Tang, J. Zhang, Y. Mei, H. Li, Persistent photocatalysis effect of black peony-like BiOCl and its potential full-time photocatalytic applications, RSC Advances, 7 (2017) 33241-33247. 99 [33] K. Afroz, M. Moniruddin, N. Bakranov, S. Kudaibergenov, N. Nuraje, A heterojunction strategy to improve the visible light sensitive water splitting performance of photocatalytic materials, Journal of Materials Chemistry A, 6 (2018) 21696-21718. [34] A. Elaziouti, N. Laouedj, A. Bekka, R.-N. Vannier, Preparation and characterization of p–n heterojunction CuBi2O4/CeO2 and its photocatalytic activities under UVA light irradiation, Journal of King Saud University - Science, 27 (2015) 120-135. [35] Q. Gao, Z. Liu, FeWO4 nanorods with excellent UV–Visible light photocatalysis, Progress in Natural Science: Materials International, 27 (2017) 556-560. [36] W. Raza, S.M. Faisal, M. Owais, D. Bahnemann, M. Muneer, Facile fabrication of highly efficient modified ZnO photocatalyst with enhanced photocatalytic, antibacterial and anticancer activity, RSC Advances, 6 (2016) 78335-78350. [37] A. Ajmal, I. Majeed, R.N. Malik, H. Idriss, M.A. Nadeem, Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview, RSC Advances, 4 (2014) 37003-37026. [38] J. Safaei, N.A. Mohamed, M.F. Mohamad Noh, M.F. Soh, N.A. Ludin, M.A. Ibrahim, W.N. Roslam Wan Isahak, M.A. Mat Teridi, Graphitic carbon nitride (g-C3N4) electrodes for energy conversion and storage: a review on photoelectrochemical water splitting, solar cells and supercapacitors, Journal of Materials Chemistry A, 6 (2018) 22346-22380. [39] Y. Li, J. Hao, H. Song, F. Zhang, X. Bai, X. Meng, H. Zhang, S. Wang, Y. Hu, J. Ye, Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation, Nature Communications, 10 (2019) 2359. [40] J. Xing, W.Q. Fang, H.J. Zhao, H.G. Yang, Inorganic Photocatalysts for Overall Water Splitting, Chemistry – An Asian Journal, 7 (2012) 642-657. 100 [41] S. Wacławek, V.V.T. Padil, M. Černík, Major Advances and Challenges in Heterogeneous Catalysis for Environmental Applications: A Review, 25 (2018) 9. [42] J. Chen, J. Cen, X. Xu, X. Li, The application of heterogeneous visible light photocatalysts in organic synthesis, Catalysis Science & Technology, 6 (2016) 349-362. [43] O.A. Zelekew, D.-H. Kuo, J.M. Yassin, K.E. Ahmed, H. Abdullah, Synthesis of efficient silica supported TiO2/Ag2O heterostructured catalyst with enhanced photocatalytic performance, Applied Surface Science, 410 (2017) 454-463. [44] V.K. Yemmireddy, Y.-C. Hung, Using Photocatalyst Metal Oxides as Antimicrobial Surface Coatings to Ensure Food Safety—Opportunities and Challenges, Comprehensive Reviews in Food Science and Food Safety, 16 (2017) 617-631. [45] W.-C. Lu, L.-C. Tseng, K.-S. Chang, Fabrication of TiO2-Reduced Graphene Oxide Nanorod Composition Spreads Using Combinatorial Hydrothermal Synthesis and Their Photocatalytic and Photoelectrochemical Applications, ACS Combinatorial Science, 19 (2017) 585-593. [46] X. Lin, T. Huang, F. Huang, W. Wang, J. Shi, Photocatalytic activity of a Bi-based oxychloride Bi4NbO8Cl, Journal of Materials Chemistry, 17 (2007) 2145-2150. [47] H. Abdullah, D.-H. Kuo, X. Chen, High efficient noble metal free Zn(O,S) nanoparticles for hydrogen evolution, International Journal of Hydrogen Energy, 42 (2017) 5638-5648. [48] S. Shen, J. Chen, L. Cai, F. Ren, L. Guo, A strategy of engineering impurity distribution in metal oxide nanostructures for photoelectrochemical water splitting, Journal of Materiomics, 1 (2015) 134-145. 101 [49] Q. Zhang, D. Thrithamarassery Gangadharan, Y. Liu, Z. Xu, M. Chaker, D. Ma, Recent advancements in plasmon-enhanced visible light-driven water splitting, Journal of Materiomics, 3 (2017) 33-50. [50] A.B. Djurisic, Y.H. Leung, A.M. Ching Ng, Strategies for improving the efficiency of semiconductor metal oxide photocatalysis, Materials Horizons, 1 (2014) 400-410. [51] M. Humayun, F. Raziq, A. Khan, W. Luo, Modification strategies of TiO2 for potential applications in photocatalysis: a critical review, Green Chemistry Letters and Reviews, 11 (2018) 86-102. [52] K. Manjunath, L.S. Reddy Yadav, T. Jayalakshmi, V. Reddy, H. Rajanaika, G. Nagaraju, Ionic liquid assisted hydrothermal synthesis of TiO2 nanoparticles: photocatalytic and antibacterial activity, Journal of Materials Research and Technology, 7 (2018) 7-13. [53] A.A. Farghali, A.H. Zaki, M.H. Khedr, Control of Selectivity in Heterogeneous Photocatalysis by Tuning TiO2 Morphology for Water Treatment Applications, Nanomaterials and Nanotechnology, 6 (2016) 12. [54] Y. Xia, L. Yin, Core–shell structured α-Fe2O3@TiO2 nanocomposites with improved photocatalytic activity in the visible light region, Physical Chemistry Chemical Physics, 15 (2013) 18627-18634. [55] S. Ramkumar, G. Rajarajan, A comparative study of humidity sensing and photocatalytic applications of pure and nickel (Ni)-doped WO3 thin films, Applied Physics A, 123 (2017) 401. [56] Y. Peng, Q.-G. Chen, D. Wang, H.-Y. Zhou, A.-W. Xu, Synthesis of one-dimensional WO3-Bi2WO6 heterojunctions with enhanced photocatalytic activity, CrystEngComm, 17 (2015) 569-576. 102 [57] P. Dong, G. Hou, X. Xi, R. Shao, F. Dong, WO3-based photocatalysts: morphology control, activity enhancement and multifunctional applications, Environmental Science: Nano, 4 (2017) 539-557. [58] R. Gakhar, D. Chidambaram, Photoelectrochemical performance of ZnCdSe-sensitized WO3 thin films, Solar Energy Materials and Solar Cells, 144 (2016) 707-712. [59] S.V.P. Vattikuti, C. Byon, I.-L. Ngo, Highly crystalline multi-layered WO3 sheets for photodegradation of Congo red under visible light irradiation, Materials Research Bulletin, 84 (2016) 288-297. [60] R. Solarska, K. Bienkowski, S. Zoladek, A. Majcher, T. Stefaniuk, P.J. Kulesza, J. Augustynski, Enhanced Water Splitting at Thin Film Tungsten Trioxide Photoanodes Bearing Plasmonic Gold–Polyoxometalate Particles, Angewandte Chemie International Edition, 53 (2014) 14196-14200. [61] Z. Liu, Z.-G. Zhao, M. Miyauchi, Efficient Visible Light Active CaFe2O4/WO3 Based Composite Photocatalysts: Effect of Interfacial Modification, The Journal of Physical Chemistry C, 113 (2009) 17132-17137. [62] N. Li, H. Teng, L. Zhang, J. Zhou, M. Liu, Synthesis of Mo-doped WO3 nanosheets with enhanced visible-light-driven photocatalytic properties, RSC Advances, 5 (2015) 95394-95400. [63] F. Mehmood, J. Iqbal, T. Jan, W. Ahmed, W. Ahmed, A. Arshad, Q. Mansoor, S.Z. Ilyas, M. Ismail, I. Ahmad, Effect of Sn doping on the structural, optical, electrical and anticancer properties of WO3 nanoplates, Ceramics International, 42 (2016) 14334-14341. [64] J. Cao, B. Luo, H. Lin, S. Chen, Photocatalytic activity of novel AgBr/WO3 composite photocatalyst under visible light irradiation for methyl orange degradation, Journal of Hazardous Materials, 190 (2011) 700-706. 103 [65] X. Ma, W. Ma, D. Jiang, D. Li, S. Meng, M. Chen, Construction of novel WO3/SnNb2O6 hybrid nanosheet heterojunctions as efficient Z-scheme photocatalysts for pollutant degradation, Journal of Colloid and Interface Science, 506 (2017) 93-101. [66] J. Luo, X. Zhou, L. Ma, X. Ning, L. Zhan, X. Xu, L. Xu, L. Zhang, H. Ruan, Z. Zhang, Fabrication of WO3/Ag2CrO4 composites with enhanced visible-light photodegradation towards methyl orange, Advanced Powder Technology, 28 (2017) 1018-1027. [67] A. Mishra, A. Mehta, S. Basu, N.P. Shetti, K.R. Reddy, T.M. Aminabhavi, Graphitic carbon nitride (g–C3N4)–based metal-free photocatalysts for water splitting: A review, Carbon, 149 (2019) 693-721. [68] S. Patnaik, S. Martha, S. Acharya, K.M. Parida, An overview of the modification of g-C3N4 with high carbon containing materials for photocatalytic applications, Inorganic Chemistry Frontiers, 3 (2016) 336-347. [69] S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation of Rhodamine B and Methyl Orange over Boron-Doped g-C3N4 under Visible Light Irradiation, Langmuir, 26 (2010) 3894-3901. [70] H. Katsumata, Y. Tachi, T. Suzuki, S. Kaneco, Z-scheme photocatalytic hydrogen production over WO3/g-C3N4 composite photocatalysts, RSC Advances, 4 (2014) 21405-21409. [71] L. Cui, X. Ding, Y. Wang, H. Shi, L. Huang, Y. Zuo, S. Kang, Facile preparation of Z-scheme WO3/g-C3N4 composite photocatalyst with enhanced photocatalytic performance under visible light, Applied Surface Science, 391 (2017) 202-210. [72] Y. Zang, L. Li, Y. Zuo, H. Lin, G. Li, X. Guan, Facile synthesis of composite g-C3N4/WO3: a nontoxic photocatalyst with excellent catalytic activity under visible light, RSC Advances, 3 (2013) 13646-13650. 104 [73] L. Huang, H. Xu, Y. Li, H. Li, X. Cheng, J. Xia, Y. Xu, G. Cai, Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity, Dalton Transactions, 42 (2013) 8606-8616. [74] X. Liu, A. Jin, Y. Jia, T. Xia, C. Deng, M. Zhu, C. Chen, X. Chen, Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of WO3/g-C3N4, Applied Surface Science, 405 (2017) 359-371. [75] S. Chen, Y. Hu, S. Meng, X. Fu, Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3, Applied Catalysis B: Environmental, 150-151 (2014) 564-573. [76] P. Wang, N. Lu, Y. Su, N. Liu, H. Yu, J. Li, Y. Wu, Fabrication of WO3@g-C3N4 with core@shell nanostructure for enhanced photocatalytic degradation activity under visible light, Applied Surface Science, 423 (2017) 197-204. [77] L. Ye, X. Jin, Y. Leng, Y. Su, H. Xie, C. Liu, Synthesis of black ultrathin BiOCl nanosheets for efficient photocatalytic H2 production under visible light irradiation, Journal of Power Sources, 293 (2015) 409-415. [78] Z. Ma, P. Li, L. Ye, Y. Zhou, F. Su, C. Ding, H. Xie, Y. Bai, P.K. Wong, Oxygen vacancies induced exciton dissociation of flexible BiOCl nanosheets for effective photocatalytic CO2 conversion, Journal of Materials Chemistry A, 5 (2017) 24995-25004. [79] X. Li, C. Zhu, Y. Song, D. Du, Y. Lin, Solvent co-mediated synthesis of ultrathin BiOCl nanosheets with highly efficient visible-light photocatalytic activity, RSC Advances, 7 (2017) 10235-10241. 105 [80] Q. Wang, J. Hui, Y. Huang, Y. Ding, Y. Cai, S. Yin, Z. Li, B. Su, The preparation of BiOCl photocatalyst and its performance of photodegradation on dyes, Materials Science in Semiconductor Processing, 17 (2014) 87-93. [81] Y. Peng, D. Wang, H.-Y. Zhou, A.-W. Xu, Controlled synthesis of thin BiOCl nanosheets with exposed {001} facets and enhanced photocatalytic activities, CrystEngComm, 17 (2015) 3845-3851. [82] X. Liu, H. Yang, H. Dai, X. Mao, Z. Liang, A novel photoelectrocatalytic approach for water splitting by an I-BiOCl/bipolar membrane sandwich structure, Green Chemistry, 17 (2015) 199-203. [83] Y. Lei, G. Wang, S. Song, W. Fan, H. Zhang, Synthesis, characterization and assembly of BiOCl nanostructure and their photocatalytic properties, CrystEngComm, 11 (2009) 1857-1862. [84] J. Geng, W.-H. Hou, Y.-N. Lv, J.-J. Zhu, H.-Y. Chen, One-Dimensional BiPO4 Nanorods and Two-Dimensional BiOCl Lamellae: Fast Low-Temperature Sonochemical Synthesis,Characterization, and Growth Mechanism, Inorganic Chemistry, 44 (2005) 8503-8509. [85] X. Zhang, X. Liu, C. Fan, Y. Wang, Y. Wang, Z. Liang, A novel BiOCl thin film prepared by electrochemical method and its application in photocatalysis, Applied Catalysis B: Environmental, 132-133 (2013) 332-341. [86] M. Li, Y. Zhang, X. Li, S. Yu, X. Du, Y. Guo, H. Huang, In-depth insight into facet-dependent charge movement behaviors and photo-redox catalysis: A case of {001} and {010} facets BiOCl, Journal of Colloid and Interface Science, 508 (2017) 174-183. [87] X. Hu, Y. Xu, H. Zhu, F. Hua, S. Zhu, Controllable hydrothermal synthesis of BiOCl nanoplates with high exposed {001} facets, Materials Science in Semiconductor Processing, 41 (2016) 12-16. 106 [88] C. Hao, Y. Xu, M. Bao, X. Wang, H. Zhang, T. Li, Hydrothermal synthesis of sphere-like BiOCl using sodium lignosulphonate as surfactant and its application in visible light photocatalytic degradation of rodamine B, Journal of Materials Science: Materials in Electronics, 28 (2017) 3119-3127. [89] M. Chen, S. Yu, X. Zhang, F. Wang, Y. Lin, Y. Zhou, Insights into the photosensitivity of BiOCl nanoplates with exposing {001} facets: The role of oxygen vacancy, Superlattices and Microstructures, 89 (2016) 275-281. [90] M. Guan, C. Xiao, J. Zhang, S. Fan, R. An, Q. Cheng, J. Xie, M. Zhou, B. Ye, Y. Xie, Vacancy Associates Promoting Solar-Driven Photocatalytic Activity of Ultrathin Bismuth Oxychloride Nanosheets, Journal of the American Chemical Society, 135 (2013) 10411-10417. [91] D.-H. Wang, G.-Q. Gao, Y.-W. Zhang, L.-S. Zhou, A.-W. Xu, W. Chen, Nanosheetconstructed porous BiOCl with dominant {001} facets for superior photosensitized degradation, Nanoscale, 4 (2012) 7780-7785. [92] F.-t. Li, Y.-l. Li, M.-j. Chai, B. Li, Y.-j. Hao, X.-j. Wang, R.-h. Liu, One-step construction of {001} facet-exposed BiOCl hybridized with Al2O3 for enhanced molecular oxygen activation, Catalysis Science & Technology, 6 (2016) 7985-7995. [93] Y. Cai, D. Li, J. Sun, M. Chen, Y. Li, Z. Zou, H. Zhang, H. Xu, D. Xia, Synthesis of BiOCl nanosheets with oxygen vacancies for the improved photocatalytic properties, Applied Surface Science, 439 (2018) 697-704. [94] D. Cui, L. Wang, K. Xu, L. Ren, L. Wang, Y. Yu, Y. Du, W. Hao, Band-gap engineering of BiOCl with oxygen vacancies for efficient photooxidation properties under visible-light irradiation, Journal of Materials Chemistry A, 6 (2018) 2193-2199. 107 [95] K. Natarajan, H.C. Bajaj, R.J. Tayade, Photocatalytic efficiency of bismuth oxyhalide (Br, Cl and I) nanoplates for RhB dye degradation under LED irradiation, Journal of Industrial and Engineering Chemistry, 34 (2016) 146-156. [96] L. Ye, K. Deng, F. Xu, L. Tian, T. Peng, L. Zan, Increasing visible-light absorption for photocatalysis with black BiOCl, Physical Chemistry Chemical Physics, 14 (2012) 82-85. [97] Y. Jiang, J. Sun, S. Wu, BiOCl Nanosheets with Controlled Exposed Facets and Improved Photocatalytic Activity, Catalysis Letters, 147 (2017) 2006-2012. [98] A. Kanti Kole, C. Sekhar Tiwary, P. Kumbhakar, Morphology controlled synthesis of wurtzite ZnS nanostructures through simple hydrothermal method and observation of white light emission from ZnO obtained by annealing the synthesized ZnS nanostructures, Journal of Materials Chemistry C, 2 (2014) 4338-4346. [99] J.-S. Hu, L.-L. Ren, Y.-G. Guo, H.-P. Liang, A.-M. Cao, L.-J. Wan, C.-L. Bai, Mass Production and High Photocatalytic Activity of ZnS Nanoporous Nanoparticles, Angewandte Chemie, 117 (2005) 1295-1299. [100] J. Li, Y. Xu, Y. Liu, D. Wu, Y. Sun, Synthesis of hydrophilic ZnS nanocrystals and their application in photocatalytic degradation of dye pollutants, China Particuology, 2 (2004) 266- 269. [101] H. Abdullah, N.S. Gultom, D.-H. Kuo, A simple one-pot synthesis of a Zn(O,S)/Ga2O3 nanocomposite photocatalyst for hydrogen production and 4-nitrophenol reduction, New Journal of Chemistry, 41 (2017) 12397-12406. [102] X. Gao, J. Wang, J. Yu, H. Xu, Novel ZnO–ZnS nanowire arrays with heterostructures and enhanced photocatalytic properties, CrystEngComm, 17 (2015) 6328-6337. 108 [103] A.K. Abay, D.-H. Kuo, X. Chen, A.D. Saragih, A new V-doped Bi2(O,S)3 oxysulfide catalyst for highly efficient catalytic reduction of 2-nitroaniline and organic dyes, Chemosphere, 189 (2017) 21-31. [104] A.L. Pacquette, H. Hagiwara, T. Ishihara, A.A. Gewirth, Fabrication of an oxysulfide of bismuth Bi2O2S and its photocatalytic activity in a Bi2O2S/In2O3 composite, Journal of Photochemistry and Photobiology A: Chemistry, 277 (2014) 27-36. [105] N. Liang, J. Zai, M. Xu, Q. Zhu, X. Wei, X. Qian, Novel Bi2S3/Bi2O2CO3 heterojunction photocatalysts with enhanced visible light responsive activity and wastewater treatment, Journal of Materials Chemistry A, 2 (2014) 4208-4216. [106] Z. Zhang, W. Wang, L. Wang, S. Sun, Enhancement of Visible-Light Photocatalysis by Coupling with Narrow-Band-Gap Semiconductor: A Case Study on Bi2S3/Bi2WO6, ACS Applied Materials & Interfaces, 4 (2012) 593-597. [107] M. Li, J. Wang, P. Zhang, Q. Deng, J. Zhang, K. Jiang, Z. Hu, J. Chu, Superior adsorption and photoinduced carries transfer behaviors of dandelion-shaped Bi2S3@MoS2: experiments and theory, Scientific reports, 7 (2017) 42484. [108] Y. Haijing, H. Jing, Z. Hua, Z. Qingfei, Z. Xinhua, Nanostructure and charge transfer in Bi2S3 -TiO2 heterostructures, Nanotechnology, 25 (2014) 215702. [109] J. Rong, T. Zhang, F. Qiu, X. Rong, X. Zhu, X. Zhang, Preparation of hierarchical micro/nanostructured Bi2S3-WO3 composites for enhanced photocatalytic performance, Journal of Alloys and Compounds, 685 (2016) 812-819. [110] S. Bera, S. Ghosh, R.N. Basu, Fabrication of Bi2S3/ZnO heterostructures: an excellent photocatalyst for visible-light-driven hydrogen generation and photoelectrochemical properties, New Journal of Chemistry, 42 (2018) 541-554. 109 [111] X. Dan-Ni, H. Gui-Fang, Z. Bing-Xin, C. Shengli, W. Fei, H. Wei-Qing, Enhanced photocatalytic activity of hexagonal flake-like Bi2S3/ZnS composites with a large percentage of reactive facets, Journal of Physics D: Applied Physics, 49 (2016) 305105. [112] D.-N. Xiong, G.-F. Huang, B.-X. Zhou, Q. Yan, A.-L. Pan, W.-Q. Huang, Facile ionexchange synthesis of mesoporous Bi2S3/ZnS nanoplate with high adsorption capability and photocatalytic activity, Journal of Colloid and Interface Science, 464 (2016) 103-109. [113] Z. Wu, L. Chen, C. Xing, D. Jiang, J. Xie, M. Chen, Controlled synthesis of Bi2S3/ZnS microspheres by an in situ ion-exchange process with enhanced visible light photocatalytic activity, Dalton Transactions, 42 (2013) 12980-12988. [114] X. Chen, D.-H. Kuo, Nanoflower Bimetal CuInOS Oxysulfide Catalyst for the Reduction of Cr(VI) in the Dark, ACS Sustainable Chemistry & Engineering, 5 (2017) 4133-4143. [115] M.A. Zeleke, D.-H. Kuo, Synthesis of oxy-sulfide based nanocomposite catalyst for visible light-driven reduction of Cr(VI), Environmental Research, 172 (2019) 279-288. [116] Y. Liu, P. Stradins, S.-H. Wei, Air Passivation of Chalcogen Vacancies in Two- Dimensional Semiconductors, Angewandte Chemie International Edition, 55 (2016) 965-968. [117] L. Sun, X. Zhang, F. Liu, Y. Shen, X. Fan, S. Zheng, J.T.L. Thong, Z. Liu, S.A. Yang, H.Y. Yang, Vacuum level dependent photoluminescence in chemical vapor deposition-grown monolayer MoS2, Scientific reports, 7 (2017) 16714. [118] P.G. Collins, K. Bradley, M. Ishigami, A. Zettl, Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes, Science, 287 (2000) 1801-1804. [119] M. Yarali, J. Hao, M. Khodadadi, H. Brahmi, S. Chen, V.G. Hadjiev, Y.J. Jung, A. Mavrokefalos, Physisorbed versus chemisorbed oxygen effect on thermoelectric properties of 110 highly organized single walled carbon nanotube nanofilms, RSC Advances, 7 (2017) 14078- 14087. [120] F. Liu, Y.H. Leung, A.B. Djurišić, A.M.C. Ng, W.K. Chan, Native Defects in ZnO: Effect on Dye Adsorption and Photocatalytic Degradation, The Journal of Physical Chemistry C, 117 (2013) 12218-12228. [121] D. Wang, H. Sun, Q. Luo, X. Yang, R. Yin, An efficient visible-light photocatalyst prepared from g-C3N4 and polyvinyl chloride, Applied Catalysis B: Environmental, 156-157 (2014) 323-330. [122] M.H. Mirfasih, C. Li, A. Tayyebi, Q. Cao, J. Yu, J.-J. Delaunay, Oxygen-vacancy-induced photoelectrochemical water oxidation by platelike tungsten oxide photoanodes prepared under acid-mediated hydrothermal treatment conditions, RSC Advances, 7 (2017) 26992-27000. [123] L. Su, Z. Lu, All solid-state smart window of electrodeposited wo3 and tio2 particulate film with ptrefg gel electrolyte, Journal of Physics and Chemistry of Solids, 59 (1998) 1175- 1180. [124] A.I. Stadnichenko, S.V. Koshcheev, A.I. Boronin, Oxidation of the polycrystalline gold foil surface and XPS study of oxygen states in oxide layers, Moscow University Chemistry Bulletin, 62 (2007) 343-349. [125] M. Setvin, J. Hulva, G.S. Parkinson, M. Schmid, U. Diebold, Electron transfer between anatase TiO2 and an O2 molecule directly observed by atomic force microscopy, Proceedings of the National Academy of Sciences, 114 (2017) E2556-E2562. [126] H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, J. Wang, Z. Ni, Strong Photoluminescence Enhancement of MoS2 through Defect Engineering and Oxygen Bonding, ACS Nano, 8 (2014) 5738-5745. 111 [127] J. Meng, J. Pei, Z. He, S. Wu, Q. Lin, X. Wei, J. Li, Z. Zhang, Facile synthesis of g-C3N4 nanosheets loaded with WO3 nanoparticles with enhanced photocatalytic performance under visible light irradiation, RSC Advances, 7 (2017) 24097-24104. [128] N. Boonprakob, N. Wetchakun, S. Phanichphant, D. Waxler, P. Sherrell, A. Nattestad, J. Chen, B. Inceesungvorn, Enhanced visible-light photocatalytic activity of g-C3N4/TiO2 films, Journal of Colloid and Interface Science, 417 (2014) 402-409. [129] C. Song, X. Wang, J. Zhang, X. Chen, C. Li, Enhanced performance of direct Z-scheme CuS-WO3 system towards photocatalytic decomposition of organic pollutants under visible light, Applied Surface Science, 425 (2017) 788-795. [130] Q.W. Cao, Y.F. Zheng, X.C. Song, Enhanced visible-light-driven photocatalytic degradation of RhB by AgIO3/WO3 composites, Journal of the Taiwan Institute of Chemical Engineers, 70 (2017) 359-365. [131] T. Jafari, E. Moharreri, A. Amin, R. Miao, W. Song, S. Suib, Photocatalytic Water Splitting—The Untamed Dream: A Review of Recent Advances, Molecules, 21 (2016) 900. [132] Y. Yan, M. Han, A. Konkin, T. Koppe, D. Wang, T. Andreu, G. Chen, U. Vetter, J.R. Morante, P. Schaaf, Slightly hydrogenated TiO2 with enhanced photocatalytic performance, Journal of Materials Chemistry A, 2 (2014) 12708-12716. [133] Y. Jiang, Z. Xing, X. Wang, S. Huang, X. Wang, Q. Liu, Activity and characterization of a Ce–W–Ti oxide catalyst prepared by a single step sol–gel method for selective catalytic reduction of NO with NH3, Fuel, 151 (2015) 124-129. [134] Y. Xu, S. Xu, S. Wang, Y. Zhang, G. Li, Citric acid modulated electrochemical synthesis and photocatalytic behavior of BiOCl nanoplates with exposed {001} facets, Dalton Transactions, 43 (2014) 479-485. 112 [135] Y. Huang, H. Li, M.-S. Balogun, W. Liu, Y. Tong, X. Lu, H. Ji, Oxygen Vacancy Induced Bismuth Oxyiodide with Remarkably Increased Visible-Light Absorption and Superior Photocatalytic Performance, ACS Applied Materials & Interfaces, 6 (2014) 22920-22927. [136] S. Kang, R.C. Pawar, Y. Pyo, V. Khare, C.S. Lee, Size-controlled BiOCl–RGO composites having enhanced photodegradative properties, Journal of Experimental Nanoscience, 11 (2016) 259-275. [137] R. Abe, H. Takami, N. Murakami, B. Ohtani, Pristine Simple Oxides as Visible Light Driven Photocatalysts: Highly Efficient Decomposition of Organic Compounds over Platinum- Loaded Tungsten Oxide, Journal of the American Chemical Society, 130 (2008) 7780-7781. [138] B. Liu, X. Hu, X. Li, Y. Li, C. Chen, K.-h. Lam, Preparation of ZnS@In2S3 Core@shell Composite for Enhanced Photocatalytic Degradation of Gaseous o-Dichlorobenzene under Visible Light, Scientific reports, 7 (2017) 16396. [139] H.-P. Jiao, X. Yu, Z.-Q. Liu, P.-Y. Kuang, Y.-M. Zhang, One-pot synthesis of heterostructured Bi2S3/BiOBr microspheres with highly efficient visible light photocatalytic performance, RSC Advances, 5 (2015) 16239-16249. [140] G. Ahmed, M. Hanif, L. Zhao, M. Hussain, J. Khan, Z. Liu, Defect engineering of ZnO nanoparticles by graphene oxide leading to enhanced visible light photocatalysis, Journal of Molecular Catalysis A: Chemical, 425 (2016) 310-321. [141] M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni, Applied Surface Science, 257 (2011) 2717-2730. [142] Q. Qiao, K. Yang, L.-L. Ma, W.-Q. Huang, B.-X. Zhou, A. Pan, W. Hu, X. Fan, G.-F. Huang, Facile in situ construction of mediator-free direct Z-scheme g-C3N4/CeO2 heterojunctions 113 with highly efficient photocatalytic activity, Journal of Physics D: Applied Physics, 51 (2018) 275302. [143] F. Zeng, W.-Q. Huang, J.-H. Xiao, Y.-y. Li, W. Peng, W. Hu, K. Li, G.-F. Huang, Isotype heterojunction g-C3N4/g-C3N4 nanosheets as 2D support to highly dispersed 0D metal oxide nanoparticles: Generalized self-assembly and its high photocatalytic activity, Journal of Physics D: Applied Physics, 52 (2018) 025501. [144] X. Chen, D.-H. Kuo, J. Zhang, Q. Lu, J. Lin, Y. Liao, Tubular bimetal oxysulfide CuMgOS catalyst for rapid reduction of heavy metals and organic dyes, Applied Organometallic Chemistry, 33 (2019) e4824.
|