跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/21 01:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭佳偉
研究生(外文):Chia-Wei Hsaio
論文名稱:環保型可水洗雙親性矽水膠之應用與探討
論文名稱(外文):The development of an environmental-friendly and amphiphilic silicone hydrogel
指導教授:楊銘乾
指導教授(外文):Ming-Chien Yang
口試委員:鄭詠馨劉定宇
口試委員(外文):Yung-Hsin ChengTing-Yu Liu
口試日期:2019-06-27
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:70
中文關鍵詞:可水洗雙親性矽氧烷大分子矽水膠雙親性透氧性
外文關鍵詞:Amphiphilic siloxane-macromersilicone hydrogelPDMS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前矽水膠在水化階段需經過醇類清洗程序以去除未反應的矽單體,因此需要大量的醇類,故而提高了處理的成本,且可能造成環境的污染。為了改善此問題,本研究目的為合成一可水洗雙親性矽氧烷大分子(Amphiphilic siloxane-macromer) 之矽水膠,主要分為雙親性及增加透氧性的合成。雙親性,係將聚二甲基矽氧烷-單羥基封端(Polydimethylsiloxane Hydroxyl-Monoterminal,PDMS-mono-OH)和異佛爾酮二異氰酸酯(IPDI)及聚(乙二醇)甲基丙烯酸酯(PEGMA),形成胺基甲酸酯(Carbamate);透氧性,則利用聚二甲基矽氧烷-雙羥基封端(Polydimethylsiloxane dihydroxyl-terminal,PDMS-diol)和異佛爾酮二異氰酸酯以及(羥乙基)甲基丙烯酸酯(HEMA)形成雙鍵尾端的胺基甲酸酯。最後將兩者依適當比例與交聯劑(EGDMA)和光起始劑(1173)混合,並於紫外光下形成一隱形眼鏡,利用傅立葉紅外線光譜佐證,並探討其接觸角、含水量、透氧率等結果。
Currently, alcohol solution is used to wash out the unreacted monomer after synthesizing silicone hydrogel contact lenses. This process will increase the costs of recycling solution and will contaminate the enviorment. In order to improve these problems, this study is aimed to synthesis an amphiphilic siloxane-macromer washable with DI-water. The synthesis included two parts. The first part was to synthesize an amphiphilic macromer from polydimethylsiloxane hydroxyl-monoterminal (PDMS-mono-OH), isophorone diisocyanate (IPDI), and poly (enthylene glycol) methacrylate (PEGMA). The second part was dedicated to increase the oxygen permeability by synthesizing a macromer from polydimethylsiloxane dihydroxyl-terminal (PDMS-diol), IPDI, and 2-hydroxyethyl methacrylate (HEMA). These two macromers were mixed with crosslinker (EGDMA) and photoinitiator (1173) and cured into silicone hydrogel contact lenses under UV light.
第壹章 緒論 1
1.1 研究背景 1
1.2 研究目的 2
第貳章 文獻回顧 3
2.1 水膠 3
2.2 水膠的合成與分類 3
2.2 功能性水膠 5
2.3 隱形眼鏡種類 9
2.4 隱形眼鏡材料特殊性質 10
2.5 高分子材料表面改質 15
2.6 紫外光硬化交聯處理 17
2.7 Polydimethylsiloxane,PDMS-diol: 19
2.8 Isophorone diisocyanate ,IPDI: 19
2.9 Poly(ethylene glycol) methacrylate,PEGMA: 20
第參章 實驗材料與方法 21
3.1 實驗材料: 21
3.2 實驗設備: 23
3.3 實驗流程: 24
3.4 實驗方法: 25
3.5 傅立葉紅外線光譜分析(Transmittance): 29
3.6 可見光透光率測定(Transmittance): 30
3.7 平衡含水量測定(Equilibrium water content): 30
3.8 透氧係數測定(Oxygen Permeability): 31
3.9 接觸角測試(Contact angle measurement): 31
3.10 拉力測試(Tensile test): 33
3.11 原子力顯微鏡(Atomic force microscope, AFM): 34
3.12 細胞毒性試驗 (In-vitro cytotoxicity): 34
3.13 蛋白質吸附試驗(Protein adsorption): 36
第肆章 結果與討論 38
4.1 傅立葉紅外線光譜分析(Transmittance): 38
4.2 可見光透光率測定(Transmittance): 40
4.3 衡含水量測定(Equilibrium water content): 41
4.4 透氧係數測定(Oxygen Permeability): 43
4.5 接觸角測試(Contact angle measurement): 44
4.6 拉力測試(Tensile test): 46
4.7 原子力顯微鏡測試(Atomic force microscope, AFM): 47
4.8 細胞毒性測試(In-vitro cytotoxicity): 48
4.9 蛋白質吸附試驗(Protein adsorption): 52
第伍章 結論 55
參考文獻 57
[1] L. W. Jones, M. Byrne, J. Ciolino, "Revolutionary Future Uses of Contact Lenses," Optometry & Vision Science, vol. 93, no. 4, pp. 325-327, 2016.
[2] O. Wichterle and D. Lím, "Hydrophilic Gels for Biological Use," Nature, vol. 185, no. 4706, pp. 117-118, 1960.
[3] I. V. Yannas, E. Lee, D. P. Orgill, E. M. Skrabut, and G. F. Murphy, "Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin," Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 3, pp. 933-937, 1989.
[4] L. Hovgaard and H. Brondsted, "Dextran hydrogels for colon-specific drug delivery," Journal of Controlled Release, vol. 36, no. 8, pp. 159-166, 1995.
[5] A. J. Kuijpers, G. H. Engbers, T. L. Meyvis, "Combined Gelatin−Chondroitin Sulfate Hydrogels for Controlled Release of Cationic Antibacterial Proteins," Macromolecules, vol. 33, no. 10, pp. 3705-3713, 2000.
[6] M. Czerner, L. A. Fasce, J. F. Martucci, R. Ruseckaite, and P. M. Frontini, "Deformation and fracture behavior of physical gelatin gel systems," Food Hydrocolloids, vol. 60, pp. 299-307, 2016.
[7] H. Cicek and A. Tuncel, "Immobilization of α-chymotrypsin in thermally reversible isopropylacrylamide-hydroxyethylmethacrylate copolymer gel," Journal of Polymer Science Part A: Polymer Chemistry, vol. 36, pp. 534-552, 1998.
[8] F. Yokoyama, I. Masada, K. Shimamura, T. Ikawa, and K. Monobe, "Morphology and structure of highly elastic poly(vinyl alcohol) hydrogel prepared by repeated freezing-and-melting," Colloid and Polymer Science, vol. 264, no. 7, pp. 595-601, 1986.
[9] D. W. Lim and T. G. Park, "Stereocomplex formation between enantiomeric PLA–PEG–PLA triblock copolymers: Characterization and use as protein-delivery microparticulate carriers,"Journal of Nanoparticle Research, vol. 75, no. 5, pp. 1615-1623, 2000.
[10] W. R. Gombotz and S. F. Wee, "Protein release from alginate matrices," Advanced Drug Delivery Reviews, vol. 64, no. 31, pp. 194-205, 2012.
[11] V. K. Gupta P, Garg S, "Hydrogels: from controlled release to pH-responsive drug delivery," Drug Discovery, vol. 7, no. 10, pp. 569-69, 2002.
[12] Y. Qiu and K. Park, "Environment-sensitive hydrogels for drug delivery," Advanced Drug Delivery Reviews, vol. 64, no. 12, pp. 49-60, 2012.
[13] K. A. Soppimath KS, "Aminabhavi TM.Chemically modified polyacrylamide-g-guar gum-based crosslinked anionic microgels as pH-sensitive drug delivery systems: preparation and characterization," Journal of Controlled Release, vol. 75, no. 3, pp. 331-345, 2001.
[14] S. Holtz and J. Bargon, "Laser-induced ablation of polymers using a patterned dopant generated from a leuco-dye precursor via flood exposure: A “portable conformable mask” approach to laser ablation of PMMA at 351 nm," Applied Physics A, vol. 60, no. 6, pp. 529-535, 1995.
[15] T.-m. Ong, W.-Z. Whong, J. Stewart, and H. E. Brockman, "Chlorophyllin: a potent antimutagen against environmental and dietary complex mixtures," Mutation Research Letters, vol. 173, no. 2, pp. 111-115, 1986.
[16] L. Xinming, C. Yingde, L. W. Andrew, M. V. Sergey, "Polymeric hydrogel for novel contact lens-based ophthalmic drug delibery systems: A review," Contact lens & Anterior Eye, vol. 31, no. 2 , pp. 57-64, 2008.
[17] 鄧日青, "眼鏡配置原理及實作," 徐氏基金會, 1999.
[18] M. G. Kodzwa, M. E. Staben, and D. G. Rethwisch, "Photoresponsive control of ion-exchange in leucohydroxide containing hydrogel membranes," Journal of Membrane Science, vol. 158, no. 1–2, pp. 85-92, 1999.
[19] K. A. Polse and M. Decker, "Oxygen tension under a contact lens," Investigative Ophthalmology & Visual Science, vol. 18, no. 2, pp. 188-193, 1979.
[20] N. B. Carlson, D. Kurtz, D. A. Heath, C. Hines, and R. Flom, Clinical procedures for ocular examination, 4th ed, New York: McGraw-Hill, 2004.
[21] A. A. Azari and D. M. Albert, Ocular pathology case reviews, 1st ed, New York: Elsevier Health Sciences, 2014.
[22] J. M. Goddard and J. H. Hotchkiss, "Polymer surface modification for the attachment of bioactive compounds," Progress in Polymer Science, vol. 32, no. 7, pp. 698-725, 2007.
[23] Y. Wang, J.-H. Kim, K.-H. Choo, Y.-S. Lee, and C.-H. Lee, "Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization," Journal of Membrane Science, vol. 169, no. 2, pp. 269-276, 2000.

[24] I. L. J. Dogué, R. Förch, and N. Mermilliod, "Plasma-induced hydrogel grafting of vinyl monomers on polypropylene," Journal of Adhesion Science and Technology, vol. 9, no. 12, pp. 1531-1545, 1995.
[25] R. H. Pelton. "Polystyrene and Poly styrene-butadiene Latexes Stabilized by Poly (N-isopropylacrylamide)," Journal of Polymer Science: Part A, vol. 26, no.1, pp. 9-18, 1988.
[26] S. L. Cooper, T. A. Speckhard, K. K. S. Hwang, C. Z. Yang, and W. R. Laupan, "Properties of segmented polyurethane zwitterionomer elastomers," Journal of Macromolecular Science, vol. 23, no. 2, pp. 175-199, 1984.
[27] T. A. Speckhard and S. L. Cooper, "Ultimate tensile properties of segmented polyurethane elastomers: factors leading to reduced properties for polyurethanes based on nonpolar soft segments," Rubber chemistry and technology, vol. 59, no. 3, pp. 405-431, 1986.
[28] 王朝陽, 趙耀明, 王浚, and 李雄武, "異佛爾酮二異氰酸酯溶液擴鏈合成聚乳酸類藥物緩試劑," 精細化工, vol. 23, pp. 913, 2006.
[29] B. M. A. Pizzi and W. Parsons, "Wood-induced catalytic activation of PF adhesives autopolymerization vs. PF/wood covalent bonding," Journal of Applied Polymer Science, vol. 52, no. 13, pp. 1847-1856, 1994.
[30] I. Sava, M. Bruma, B. Schulz, F. Mercer, V. Reddy, and N. Belomoina, "Synthesis and properties of silicon‐containing polyamides," Journal of applied polymer science, vol. 65, no. 8, pp. 1533-1538, 1997.
[31] G. Sara, L. Ana, K. Theo, D. Fernando, R. Lígia, " Physicochemical and biological evaluation of poly(ethylene glycol) methacrylate grafted onto poly(dimethyl siloxane) surfaces for prosthetic devices," Colloids and Surfaces B: Biointerfaces, vol. 109, no. 1, pp. 228-235, 2013.
[32] A. Venault, Y.H. Liu, J.R. Wu, H.S. Yang, Y. Chang, J.Y. Lai, P. Aimar, " Low-biofouling membranes prepared by liquid-induced phase separation of the PVDF/polystyrene-b-poly (ethylene glycol) methacrylate blend," Journal of Membrane Science, vol. 450, no. 15, pp. 340-350, 2014.
[33] L. Makkonen, "Young's equation revisited," Journal of Physics: Condensed Matter, vol. 28, no. 13, pp. 135-139, 2016.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top