(3.227.235.183) 您好!臺灣時間:2021/04/18 11:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蕭淳
研究生(外文):Chun Hsiao
論文名稱:奈米金棒/奈米碳材混成材料於表面增強拉曼散射之應用
論文名稱(外文):Fabrication of Gold Nanorods/Nanocarbon Materials Hybrids for Use as Dynamic Surface-Enhanced Raman Scattering Substrates
指導教授:邱智瑋
指導教授(外文):Chih-Wei Chiu
口試委員:孫亞賢劉定宇鄭智嘉
口試委員(外文):Ya-Sen SunTing-Yu LiuChih-Chia Cheng
口試日期:2019-07-11
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:91
中文關鍵詞:奈米金棒氧化石墨烯奈米碳管碳黑表面增強拉曼散射
外文關鍵詞:Gold nanorodsGraphene oxideCarbon nanotubesCarbon blackSurface-enhanced Raman Scattering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:74
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本研究是利用晶種成長法製備出不同長徑比的奈米金棒(AuNRs)結合不同維度的奈米碳材料,分別為氧化石墨烯(GO)、改質奈米碳管(CNT-COOH)、改質碳黑(OCB),應用於表面增強拉曼散射(Surface Enhanced Raman Scattering, SERS)。奈米分散的原理是以十六烷基三甲基溴化銨(cetyltrimethylammonium bromide, CTAB)包覆穩定AuNRs,且AuNRs表面帶正電,會因靜電吸引力而吸附在帶負電的奈米碳材料上,形成AuNRs/奈米碳材複合物,此奈米混成材料具有良好的光學穿透性且能提高對於偵測物的接觸面積,可作為高靈敏度表面增強拉曼散射基材,並比較AuNRs結合不同維度奈米碳材料於SERS上之訊號差異。實驗結果可以由紫外-可見光譜儀(Ultraviolet-visible spectroscopy, UV-Vis)及穿透式電子顯微鏡(Transmission Electron Microscope, TEM)來確認AuNRs穩定且均勻的吸附在奈米碳材料上,於SERS上的結果顯示,AuNRs/GO複合物之增強訊號最好,因GO為二維奈米材料其厚度小於5 nm,故吸附在GO上的AuNRs可以產生良好的3D熱點效應。在SERS檢測中,對於染料分子Rhodamine 6G(R6G)的增強因子(Enhancement Factor, EF)為1×107,偵測極限為10-8M,達到很好的增強效果。進一步用於D-SERS上,由於D-SERS是檢測樣品由濕到乾的過程,因此在溶劑蒸發的過程中,會自發的形成大量的3D熱點,進而使SERS訊號大大的提升,從實驗結果顯示,AuNRs/GO複合物於D-SERS上之訊號增強效果最好,對於染料分子Rhodamine 6G(R6G)的增強因子(Enhancement Factor, EF)為1.1×108,偵測極限為10-9M,因此,AuNRs/GO複合物作為SERS的分子感測元件上擁有極高的靈敏度,非常適合在水質及環境中的單分子進行快速檢測。
In this study, Gold nanorods (AuNRs) with different aspect ratios were prepared by seed-mediated growth method combined with different dimensions of nanocarbon materials (graphene oxide, carbon nanotubes, carbon black) for surface-enhanced Raman scattering (SERS). The principle of nanodispersion is to stabilize AuNRs with cetyltrimethylammonium bromide (CTAB), and the surface of AuNRs is positively charged, which will adsorb on negatively charged nanocarbon materials to form AuNRs/nanocarbon materials due to electrostatic attraction. This nano-mixed material has good optical penetration and can improve the contact area with the detector. It can be used as a high-sensitivity surface-enhanced Raman scattering substrate. We compared the signal differences between AuNRs and nanocarbon materials of different dimensions on SERS. The experimental results can be confirmed by Ultraviolet-visible spectroscopy (UV-Vis) and Transmission Electron Microscope (TEM) to confirm the stable and uniform adsorption of AuNRs on nanocarbon materials. The results on SERS show the AuNRs/GO complex has the best enhancement signal. Since GO is a two-dimensional nanomaterial with a thickness of less than 5 nm, the AuNRs adsorbed on GO can produce a good 3D hot junction effect. In the SERS test, the enhancement factor (EF) for the dye molecule Rhodamine 6G (R6G) is 1×107, and the limit of detection is 10-8M, which achieves a good enhancement effect. Further used on D-SERS, since D-SERS is a process for detecting samples from wet to dry, a large number of 3D hot spots are spontaneously formed during the evaporation of the solvent, thereby greatly improving the SERS signal. The experimental results show that the AuNRs/GO complex has the best signal enhancement effect on D-SERS. The enhancement factor (EF) for the dye molecule Rhodamine 6G (R6G) is 1.1×108, and the detection limit is 10-9M. Therefore, the AuNRs/GO complex acts as SERS's molecular sensing components are extremely sensitive and are ideal for rapid detection of single molecules in water and the environment.
摘要…..………………………………………………………...…...……I
Abstract………………………………....………………………..……...III
誌謝…….…………………………………………………..…….……...V
目錄…….……………………………………………………..………...VI
圖目錄….………………………………....……………………..….…...X
表目錄………………………...…………………….……..…………XVII
第一章 緒論 1
1.1 前言 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 奈米金材料的介紹 3
2.1.1 奈米材料的特點 3
2.1.2 奈米金棒(AuNRs)的結構及特性 5
2.1.3 奈米金棒的製備方法 7
2.1.4 奈米金棒的應用 9
2.2 界面活性劑 10
2.2.1 界面活性劑的介紹 10
2.2.2 陰離子界面活性劑 10
2.2.3 陽離子界面活性劑 11
2.3 碳材料(Carbon materials)的介紹 13
2.3.1 碳黑(Carbon black, CB)的結構性質 13
2.3.2 碳黑的製備方法 14
2.3.3 奈米碳管(Carbon nanotube, CNT)的結構性質 15
2.3.4 奈米碳管的製備方法 16
2.3.5 氧化石墨烯(Graphene oxide, GO)的結構性質 17
2.3.6 氧化石墨烯的製備方法 19
2.4 拉曼光譜儀(Raman scattering) 21
2.4.1 拉曼光譜的歷史 21
2.4.2 拉曼光譜的原理 21
2.4.3 表面增強拉曼光譜(SERS)的簡介 23
2.4.4 表面增強拉曼光譜機制 24
2.4.5 表面增強拉曼光譜之基材製備 27
2.4.6 表面增強拉曼光譜的應用 29
2.4.7 羅丹明6G(R6G)的SERS訊號 29
2.4.8 動態表面增強拉曼散射(Dynamic SERS) 31
第三章 實驗方法 33
3.1 實驗流程圖 33
3.2 實驗藥品與儀器 34
3.2.1 實驗藥品 34
3.2.2 實驗設備及儀器 35
3.3 實驗方法和原理 37
3.3.1 合成不同長徑比的AuNRs 37
3.3.2 AuNRs/OCB的合成 38
3.3.3 AuNRs/CNT-COOH的合成 39
3.3.4 AuNRs/GO的合成 39
3.3.5 鑑定及儀器分析 40
3.3.6 表面增強拉曼光譜實驗 43
3.3.7 動態表面增強拉曼光譜實驗 44
第四章 結果與討論 46
4.1 合成奈米金棒 46
4.1.1 不同長徑比之奈米金棒的合成 46
4.1.2 奈米金棒於SERS應用上之探討 49
4.2 合成奈米金棒/碳材複合物 52
4.2.1 AuNRs/OCB複合物之合成 52
4.2.2 AuNRs/CNT-COOH複合物之合成 55
4.2.3 AuNRs/GO複合物之合成 59
4.3 SERS效應與應用探討 63
4.3.1 AuNRs/OCB複合物之SERS效果及偵測極限 63
4.3.2 AuNRs/CNT-COOH複合物之SERS效果及偵測極限 ………………………………………………………...66
4.3.3 AuNRs/GO複合物之SERS效果及偵測極限 70
4.4 D-SERS效果之探討 75
4.4.1 AuNRs/OCB複合物之D-SERS效果 75
4.4.2 AuNRs/CNT-COOH複合物之D-SERS效果 77
4.4.3 AuNRs/GO複合物之D-SERS效果 80
第五章 結論 84
第六章 參考文獻 86
1. M. Fleischmann, P. J. Hendra and A. J. McQuillan, Raman Spectra of Pyridine Adsorbed At a Silver Electrode. Chem. Phys. Lett, 1974. 26, 163-166.
2. R. S. Wagner and W. C. Ellis, Vapor‐liquid‐solid Mechanism of Single Crystal Growth. Appl. Phys. Lett., 1964. 4, 89-90.
3. E. Masarovičová and K. Kráľová, Metal Nanoparticles and Plants / Nanocząstki Metaliczne I Rośliny. Ecol. Eng., 2013. 20, 9-22.
4. N. Weihai, K. Xiaoshan, Y. Zhi and W. Jianfang, Tailoring Longitudinal Surface Plasmon Wavelengths, Scattering and Absorption Cross Sections of Gold Nanorods. ACS Nano, 2008. 2, 677-686.
5. M. K. Abdul, W. El-Said, T. H. Kim and J. W. Choi, Cell Adhesion, Spreading, and Proliferation on Surface Functionalized with RGD Nanopillar Arrays. Biomaterials, 2012. 33, 731-739.
6. Z. Q. Tian, B. Ren and D. Y. Wu, Surface-enhanced Raman Scattering: From Noble to Transition Metals and from Rough Surfaces to Ordered Nanostructures. J. Phys. Chem. B, 2002. 106, 9463-9483.
7. C. Fuller, At What Scales Does Complexity Thrive, and Why. Medium, 2017.
8. S. E. Lohse and C.J. Murphy, The Quest for Shape Control: A History of Gold Nanorod Synthesis. Chem. Mater., 2013. 25, 1250-1261.
9. K. M. Mayer and J.H. Hafner, Localized Surface Plasmon Resonance Sensors. Chem. Rev., 2011. 111, 3828-3857.
10. F. K. Alsammarraie and M. Lin, Using Standing Gold Nanorod Arrays as Surface-enhanced Raman Spectroscopy (SERS) Substrates for Detection of Carbaryl Residues in Fruit Juice and Milk. J. Agr. Food Chem., 2017. 65, 666-674.
11. R. M. Pallares, X. Su, S. H. Limb and T. K. T. Nguyễn, Fine-tuning of Gold Nanorod Dimensions and Plasmonic Properties Using the Hofmeister Effects. J. Mater. Chem. C., 2016. 4, 53-61.
12. J. Cao, T. Sun and K. T. V. Grattan, Gold Nanorod-based Localized Surface Plasmon Resonance Biosensors: A Review. Sens. Actuators. B Chem., 2014. 195, 332-351.
13. Yu, S. S. Chang, C. L. Lee and C. R. Chris Wang, Gold Nanorods: Electrochemical Synthesis and Optical Properties. J. Phys. Chem. B, 1997. 101, 6661-6664.
14. F. Kim, J. H. Song and P. Yang, Photochemical Synthesis of Gold Nanorods. J. Am. Chem. Soc., 2002. 124, 14316-14317.
15. C. J. Brumlik and C. R. Martin, Template Synthesis of Metal Microtubules. J. Am. Chem. Soc., 1991. 113, 3174-3175.
16. H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang and Y. L. Wang, Highly Raman-enhancing Substrates Based on Silver Nanoparticle Arrays with Tunable Sub-10nm Gaps. Adv. Mater., 2006. 18, 491-495.
17. N. R. Jana, L. Gearheart and C. J. Murphy, Seed‐Mediated Growth Approach for Shape‐controlled Synthesis of Spheroidal and Rod‐like Gold Nanoparticles Using a Surfactant Template. Adv. Mater., 2001. 13, 1389-1393.
18. B. Nikoobakht and M. A. El-Sayed, Preparation and Growth Mechanism of Gold Nanorods (NRs) using Seed-Mediated Growth Method. Chem. Mater., 2003. 15, 1957-1962.
19. H. Chen, L. Shao, Q. Lia and J. Wang, Gold Nanorods and Their Plasmonic Properties. Chem. Soc. Rev., 2013. 42, 2679-2724.
20. P. J. Jorge, P. S. Isabel, L. M. Luis M. and P. Mulvaney, Gold Nanorods: Synthesis, Characterization and Applications. Coord. Chem. Rev., 2005. 249, 1870-1901.
21. D. P. O'Neal, L. R. Hirsch, N. J. Halas, J. D. Payne and J. L. West, Photo-thermal Tumor Ablation in Mice Using Near Infrared-absorbing Nanoparticles. Cancer Lett., 2004. 209, 171-176.
22. X. Huang, I. H. El-Sayed, Wei Qian and M. A. El-Sayed, Cancer Cell Imaging and Photothermal Therapy in the Near-infrared Region by Using Gold Nanorods. J. Am. Chem. Soc., 2006. 128, 2115-2120.
23. Y. Wang, K. Lee and J. Irudayaraj, SERS Aptasensor from Nanorod-nanoparticle Junction for Protein Detection. Chem. Commun., 2010. 46, 613-615.
24. R. Talbott, The Science of Forever: Nanofilm Lens Cleaning Solutions. Nanofilm, 2015.
25. R. Becker, B. Liedberg and P. O. Kall, CTAB Promoted Synthesis of Au Nanorods--Temperature Effects and Stability Considerations. ‎J. Colloid Interface Sci., 2010. 343, 25-30.
26. Z. Khan, T. Singh, J. I. Hussain and A. A. Hashmi, Au(III)-CTAB Reduction by Ascorbic Acid: Preparation and Characterization of Gold Nanoparticles. Colloid Surf. B-Biointerfaces, 2013. 104, 11-17.
27. J. B. Donnet, W. D. Wang and A. Vidal, Observation of Plasma-treated Carbon Black Surfaces by Scanning Tunnelling Microscopy. Carbon, 1994. 32, 199-206.
28. J. B. Donnet, Fifty Years of Research and Progress on Carbon Black. Carbon, 1994. 32, 1305-1310.
29. H. P. Boehm, Some Aspects of the Surface Chemistry of Carbon Blacks and Other Carbons. Carbon, 1994. 32, 759-769.
30. M. W. I. Schmidt and A. G. Noack, Black Carbon in Soils and Sediments: Analysis, Distribution, Implications, and Current Challenges. Glob. Biogeochem. Cycles., 2000. 14, 777-793.
31. S. lijima, Helical Microtubules of Graphitic Carbon. Nature Mater., 1991. 354, 56-58.
32. R. H. Baughman, A. A. Zakhidov and W. A. de Heer, Carbon Nanotubes-the Route Toward Applications. Science, 2002. 297, 787-792.
33. S. lljima and T. lchihashi, Single-shell Carbon Nanotubes of 1-nm Diameter. Nature Mater., 1993. 363, 603-605.
34. K. Sarangdevot and B. S. Sonigara, The Wondrous World of Carbon Nanotubes. JCHPS, 2015. 7, 916-933.
35. E. T. Thostenson, Z. Ren and T. W. Chou, Advances in the Science and Technology of Carbon Nanotubes and Their Composites a Review. Compos. Sci. Technol., 2001. 61, 1899-1912.
36. T. W. Ebbesen and P. M. Ajayan, Large-scale Synthesis of Carbon Nanotubes. Nature, 1992. 358, 200-222.
37. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal and P. N. Provencio, Synthesis of Large Arrays of Well-aligned Carbon Nanotubes on Glass. Science, 1998. 282, 1105-1107.
38. H. W. Zhu, C. L. Xu, D. H. Wu, B. Q. Wei, R. Vajtai and P. M. Ajayan, Direct Synthesis of Long Single-walled Carbon Nanotube Strands. Science, 2002. 296, 884-886.
39. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov and A. K. Geim, Two-dimensional Atomic Crystals. PNAS, 2005. 102, 10451-10453.
40. T. H. Nguyen, Z. Zhang, A. Mustapha, H. Li and M. Lin, Use of Graphene and Gold Nanorods as Substrates for the Detection of Pesticides by Surface Enhanced Raman Spectroscopy. J. Agr. Food Chem., 2014. 62, 10445-10451.
41. H. Yingbo, L. Guowei, S. Hongming, Y. Cheng and Q. Gong, Strongly Enhanced Raman Scattering of Graphene by a Single Gold Nanorod. Appl. Phys. Lett., 2015. 107, 053104.
42. A. K. Geim and K. S. Novoselov, The Rise of Graphene. Nature Mater., 2007. 6, 183-191.
43. S. Chen, B. Cheng and C. Ding, Synthesis and Characterization of Poly(vinyl pyrrolidone)/Reduced Graphene Oxide Nanocomposite. J. Macromol. Sci. B, 2015. 54, 481-491.
44. X. Liu, L. Cao, W. Song, K. Ai and L. Lu, Functionalizing Metal Nanostructured Film with Graphene Oxide for Ultrasensitive Detection of Aromatic Molecules by Surface-enhanced Raman Spectroscopy. ACS Appl. Mater. Interfaces, 2011. 3, 2944-2952.
45. R. D. Daniel, P. Sungjin, W. B. Christopher and S. R. Rodney, The Chemistry of Graphene Oxide. Chem. Soc. Rev., 2010. 39, 228-240.
46. H. Yu, B. Zhang, C. Bulin, R. Li and R. Xing, High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method. Sci. Rep., 2016. 6, 36143.
47. L. J. Cote, J. Kim, V. C. Tung, J. Luo, F. Kim and J. Huang, Graphene Oxide as Surfactant Sheets. Appl. Chem., 2011. 83, 95-110.
48. C. V. Raman and K.S. Krishnan, A New Type of Secondary Radiation. Nature, 1928. 121, 501-502.
49. R. Singh, C. V. Raman and the Discovery of the Raman Effect. PIP., 2002. 4, 399-420.
50. H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, M. J. Walsh, M. R. McAinsh, N. Stone and F. L. Martin, Using Raman Spectroscopy to Characterize Biological Materials. Nat. Protoc., 2016. 11, 664-687.
51. M. Tanaka and R. J. Young, Review Polarised Raman Spectroscopy for the Study of Molecular Orientation Distributions in Polymers. J. Mater. Sci., 2006. 41, 963-991.
52. S. Nie and S. R. Emory, Probing Single Molecules and Single Nanoparticles by Surface-enhanced Raman Scattering. Science, 1997. 275, 1102-1106.
53. L. Guerrini and D. Graham, Molecularly-mediated Assemblies of Plasmonic Nanoparticles for Surface-Enhanced Raman Spectroscopy Applications. Chem. Soc. Rev., 2012. 41, 7085-7107.
54. A. Campion and P. Kambhampati, Surface-enhanced Raman Scattering. Chem. Soc. Rev., 1998. 27, 241-250.
55. D. L. Jeanmaire and R. P. V. Duyne, Surface Raman Spectroelectrochemistry Part I. Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode. J. Electroanal. Chem., 1977. 84, 1-20.
56. M. G. Albrecht and J. A. Creighton, Anomalously Intense Raman Spectra of Pyridine at a Silver Electrode. J. Am. Chem. Soc., 1977. 99, 5215-5217.
57. W. A. El-Said, H. Y. Cho and J. W. Choi, SERS Application for Analysis of Live Single Cell. 2017.
58. K. A. Willets and R. P. V. Duyne, Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem., 2007. 58, 267-297.
59. E. L. Ru, P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy. Elsevier Science. 2008.
60. E. Hao and G. C. Schatz, Electromagnetic Fields around Silver Nanoparticles and Dimers. J. Chem. Phys., 2004. 120, 357-366.
61. P. G. Etchegoin and E. C. Le Ru, A Perspective on Single Molecule SERS: Current Status and Future Challenges. ‎Phys. Chem. Chem. Phys., 2008. 10, 6079-6089.
62. K. L. Norrod, L. M. Sudnik, D. Rousell and K. L. Rowlen, Quantitative Comparison of Five SERS Substrates: Sensitivity and Limit of Detection. J. Opt. Soc., 1997. 51, 994-1001.
63. A. Ruperez and J. J. Laserna, Surface-enhanced Raman Spectrometry of Triamterene on a Silver Substrate Prepared by the Nitric Acid Etching Method. Anal. Chim. Acta., 1997. 44, 213-220.
64. M. Kahl, E. Voges, S. Kostrewa, C. Viets and W. Hill, Periodically Structured Metallic Substrates for SERS. Sens. Actuators. B Chem., 1998. 51, 285-291.
65. J. R. Anema, J. F. Li, Z. L. Yang, B. Ren and Z. Q. Tian, Shell-isolated Nanoparticle-enhanced Raman Spectroscopy: Expanding the Versatility of Surface-enhanced Raman Scattering. Annu. Rev. Anal. Chem., 2011. 4, 129-150.
66. E. Koglin and S. Jean-Marie, Surface Enhanced Raman Scattering of Biomolecules. Top. Curr. Chem., 1986. 134, 1-57.
67. J. Li, L. Chen, T. Lou and Y. Wang, Highly Sensitive SERS Detection of As3+ Ions in Aqueous Media Using Glutathione Functionalized Silver Nanoparticles. ACS Appl. Mater. Inter., 2011. 3, 3936-3941.
68. P. Hildebrandt and M. Stockburger, Surface-enhanced Resonance Raman Spectroscopy of Rhodamine 6G Adsorbed on Colloidal Silver. J. Chem. Phys., 1984. 88, 5935-5944.
69. X. Li, M. Cao, H. Zhang, L. Zhou, S. Cheng, J. L. Yao and L. J. Fan, Surface-enhanced Raman Scattering-active Substrates of Electrospun Polyvinyl Alcohol/Gold-silver Nanofibers. ‎J. Colloid Interface Sci., 2012. 382, 28-35.
70. Y. Zhu, M. Li, D. Yu and L. Yang, A Novel Paper Rag as 'D-SERS' Substrate for Detection of Pesticide Residues at Various Peels. Talanta, 2014. 128, 117-124.
71. R. Dong, S. Weng, L. Yang and J. Liu, Detection and Direct Readout of Drugs in Human Urine Using Dynamic Surface-enhanced Raman Spectroscopy and Support Vector Machines. Anal. Chem., 2015. 87, 2937-2944.
72. H. Liu, Z. Yang, L. Meng, Y. Sun, J. Wang, L. Yang, J. Liu and Z. Tian, Three-dimensional and Time-ordered Surface-enhanced Raman Scattering Hotspot Matrix. J. Am. Chem. Soc., 2014. 136, 5332-5341.
73. H. Guo, F. Ruan, L. Lu, J. Hu, J. Pan, Z. Yang and B. Ren, Correlating the Shape, Surface Plasmon Resonance, and Surface-Enhanced Raman Scattering of Gold Nanorods. J. Phys. Chem. C, 2009. 113, 10459-10464.
74. M. Li, S. K. Cushing, J. Zhang, J. Lankford, Z. P. Aguilar, D. Ma and N. Wu, Shape-dependent Surface-enhanced Raman Scattering in Gold-Raman Probe-silica Sandwiched Nanoparticles for Biocompatible Applications. Nanotechnology, 2012. 23, 115501.
75. M. Shaban and A. R. Galaly, Highly Sensitive and Selective In-Situ SERS Detection of Pb(2+), Hg(2+), and Cd(2+) Using Nanoporous Membrane Functionalized with CNTs. Sci. Rep., 2016. 6, 25307.
76. X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang and Z. Liu, Can Graphene be Used as a Substrate for Raman Enhancement? Nano Lett., 2010. 10, 553-561.
77. X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang and J. G. Hou, Tuning Chemical Enhancement of SERS by Controlling the Chemical Reduction of Graphene Oxide Nanosheets. ACS Nano, 2011. 5, 952-958.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔