|
1. M. Fleischmann, P. J. Hendra and A. J. McQuillan, Raman Spectra of Pyridine Adsorbed At a Silver Electrode. Chem. Phys. Lett, 1974. 26, 163-166. 2. R. S. Wagner and W. C. Ellis, Vapor‐liquid‐solid Mechanism of Single Crystal Growth. Appl. Phys. Lett., 1964. 4, 89-90. 3. E. Masarovičová and K. Kráľová, Metal Nanoparticles and Plants / Nanocząstki Metaliczne I Rośliny. Ecol. Eng., 2013. 20, 9-22. 4. N. Weihai, K. Xiaoshan, Y. Zhi and W. Jianfang, Tailoring Longitudinal Surface Plasmon Wavelengths, Scattering and Absorption Cross Sections of Gold Nanorods. ACS Nano, 2008. 2, 677-686. 5. M. K. Abdul, W. El-Said, T. H. Kim and J. W. Choi, Cell Adhesion, Spreading, and Proliferation on Surface Functionalized with RGD Nanopillar Arrays. Biomaterials, 2012. 33, 731-739. 6. Z. Q. Tian, B. Ren and D. Y. Wu, Surface-enhanced Raman Scattering: From Noble to Transition Metals and from Rough Surfaces to Ordered Nanostructures. J. Phys. Chem. B, 2002. 106, 9463-9483. 7. C. Fuller, At What Scales Does Complexity Thrive, and Why. Medium, 2017. 8. S. E. Lohse and C.J. Murphy, The Quest for Shape Control: A History of Gold Nanorod Synthesis. Chem. Mater., 2013. 25, 1250-1261. 9. K. M. Mayer and J.H. Hafner, Localized Surface Plasmon Resonance Sensors. Chem. Rev., 2011. 111, 3828-3857. 10. F. K. Alsammarraie and M. Lin, Using Standing Gold Nanorod Arrays as Surface-enhanced Raman Spectroscopy (SERS) Substrates for Detection of Carbaryl Residues in Fruit Juice and Milk. J. Agr. Food Chem., 2017. 65, 666-674. 11. R. M. Pallares, X. Su, S. H. Limb and T. K. T. Nguyễn, Fine-tuning of Gold Nanorod Dimensions and Plasmonic Properties Using the Hofmeister Effects. J. Mater. Chem. C., 2016. 4, 53-61. 12. J. Cao, T. Sun and K. T. V. Grattan, Gold Nanorod-based Localized Surface Plasmon Resonance Biosensors: A Review. Sens. Actuators. B Chem., 2014. 195, 332-351. 13. Yu, S. S. Chang, C. L. Lee and C. R. Chris Wang, Gold Nanorods: Electrochemical Synthesis and Optical Properties. J. Phys. Chem. B, 1997. 101, 6661-6664. 14. F. Kim, J. H. Song and P. Yang, Photochemical Synthesis of Gold Nanorods. J. Am. Chem. Soc., 2002. 124, 14316-14317. 15. C. J. Brumlik and C. R. Martin, Template Synthesis of Metal Microtubules. J. Am. Chem. Soc., 1991. 113, 3174-3175. 16. H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang and Y. L. Wang, Highly Raman-enhancing Substrates Based on Silver Nanoparticle Arrays with Tunable Sub-10nm Gaps. Adv. Mater., 2006. 18, 491-495. 17. N. R. Jana, L. Gearheart and C. J. Murphy, Seed‐Mediated Growth Approach for Shape‐controlled Synthesis of Spheroidal and Rod‐like Gold Nanoparticles Using a Surfactant Template. Adv. Mater., 2001. 13, 1389-1393. 18. B. Nikoobakht and M. A. El-Sayed, Preparation and Growth Mechanism of Gold Nanorods (NRs) using Seed-Mediated Growth Method. Chem. Mater., 2003. 15, 1957-1962. 19. H. Chen, L. Shao, Q. Lia and J. Wang, Gold Nanorods and Their Plasmonic Properties. Chem. Soc. Rev., 2013. 42, 2679-2724. 20. P. J. Jorge, P. S. Isabel, L. M. Luis M. and P. Mulvaney, Gold Nanorods: Synthesis, Characterization and Applications. Coord. Chem. Rev., 2005. 249, 1870-1901. 21. D. P. O'Neal, L. R. Hirsch, N. J. Halas, J. D. Payne and J. L. West, Photo-thermal Tumor Ablation in Mice Using Near Infrared-absorbing Nanoparticles. Cancer Lett., 2004. 209, 171-176. 22. X. Huang, I. H. El-Sayed, Wei Qian and M. A. El-Sayed, Cancer Cell Imaging and Photothermal Therapy in the Near-infrared Region by Using Gold Nanorods. J. Am. Chem. Soc., 2006. 128, 2115-2120. 23. Y. Wang, K. Lee and J. Irudayaraj, SERS Aptasensor from Nanorod-nanoparticle Junction for Protein Detection. Chem. Commun., 2010. 46, 613-615. 24. R. Talbott, The Science of Forever: Nanofilm Lens Cleaning Solutions. Nanofilm, 2015. 25. R. Becker, B. Liedberg and P. O. Kall, CTAB Promoted Synthesis of Au Nanorods--Temperature Effects and Stability Considerations. J. Colloid Interface Sci., 2010. 343, 25-30. 26. Z. Khan, T. Singh, J. I. Hussain and A. A. Hashmi, Au(III)-CTAB Reduction by Ascorbic Acid: Preparation and Characterization of Gold Nanoparticles. Colloid Surf. B-Biointerfaces, 2013. 104, 11-17. 27. J. B. Donnet, W. D. Wang and A. Vidal, Observation of Plasma-treated Carbon Black Surfaces by Scanning Tunnelling Microscopy. Carbon, 1994. 32, 199-206. 28. J. B. Donnet, Fifty Years of Research and Progress on Carbon Black. Carbon, 1994. 32, 1305-1310. 29. H. P. Boehm, Some Aspects of the Surface Chemistry of Carbon Blacks and Other Carbons. Carbon, 1994. 32, 759-769. 30. M. W. I. Schmidt and A. G. Noack, Black Carbon in Soils and Sediments: Analysis, Distribution, Implications, and Current Challenges. Glob. Biogeochem. Cycles., 2000. 14, 777-793. 31. S. lijima, Helical Microtubules of Graphitic Carbon. Nature Mater., 1991. 354, 56-58. 32. R. H. Baughman, A. A. Zakhidov and W. A. de Heer, Carbon Nanotubes-the Route Toward Applications. Science, 2002. 297, 787-792. 33. S. lljima and T. lchihashi, Single-shell Carbon Nanotubes of 1-nm Diameter. Nature Mater., 1993. 363, 603-605. 34. K. Sarangdevot and B. S. Sonigara, The Wondrous World of Carbon Nanotubes. JCHPS, 2015. 7, 916-933. 35. E. T. Thostenson, Z. Ren and T. W. Chou, Advances in the Science and Technology of Carbon Nanotubes and Their Composites a Review. Compos. Sci. Technol., 2001. 61, 1899-1912. 36. T. W. Ebbesen and P. M. Ajayan, Large-scale Synthesis of Carbon Nanotubes. Nature, 1992. 358, 200-222. 37. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal and P. N. Provencio, Synthesis of Large Arrays of Well-aligned Carbon Nanotubes on Glass. Science, 1998. 282, 1105-1107. 38. H. W. Zhu, C. L. Xu, D. H. Wu, B. Q. Wei, R. Vajtai and P. M. Ajayan, Direct Synthesis of Long Single-walled Carbon Nanotube Strands. Science, 2002. 296, 884-886. 39. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov and A. K. Geim, Two-dimensional Atomic Crystals. PNAS, 2005. 102, 10451-10453. 40. T. H. Nguyen, Z. Zhang, A. Mustapha, H. Li and M. Lin, Use of Graphene and Gold Nanorods as Substrates for the Detection of Pesticides by Surface Enhanced Raman Spectroscopy. J. Agr. Food Chem., 2014. 62, 10445-10451. 41. H. Yingbo, L. Guowei, S. Hongming, Y. Cheng and Q. Gong, Strongly Enhanced Raman Scattering of Graphene by a Single Gold Nanorod. Appl. Phys. Lett., 2015. 107, 053104. 42. A. K. Geim and K. S. Novoselov, The Rise of Graphene. Nature Mater., 2007. 6, 183-191. 43. S. Chen, B. Cheng and C. Ding, Synthesis and Characterization of Poly(vinyl pyrrolidone)/Reduced Graphene Oxide Nanocomposite. J. Macromol. Sci. B, 2015. 54, 481-491. 44. X. Liu, L. Cao, W. Song, K. Ai and L. Lu, Functionalizing Metal Nanostructured Film with Graphene Oxide for Ultrasensitive Detection of Aromatic Molecules by Surface-enhanced Raman Spectroscopy. ACS Appl. Mater. Interfaces, 2011. 3, 2944-2952. 45. R. D. Daniel, P. Sungjin, W. B. Christopher and S. R. Rodney, The Chemistry of Graphene Oxide. Chem. Soc. Rev., 2010. 39, 228-240. 46. H. Yu, B. Zhang, C. Bulin, R. Li and R. Xing, High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method. Sci. Rep., 2016. 6, 36143. 47. L. J. Cote, J. Kim, V. C. Tung, J. Luo, F. Kim and J. Huang, Graphene Oxide as Surfactant Sheets. Appl. Chem., 2011. 83, 95-110. 48. C. V. Raman and K.S. Krishnan, A New Type of Secondary Radiation. Nature, 1928. 121, 501-502. 49. R. Singh, C. V. Raman and the Discovery of the Raman Effect. PIP., 2002. 4, 399-420. 50. H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, M. J. Walsh, M. R. McAinsh, N. Stone and F. L. Martin, Using Raman Spectroscopy to Characterize Biological Materials. Nat. Protoc., 2016. 11, 664-687. 51. M. Tanaka and R. J. Young, Review Polarised Raman Spectroscopy for the Study of Molecular Orientation Distributions in Polymers. J. Mater. Sci., 2006. 41, 963-991. 52. S. Nie and S. R. Emory, Probing Single Molecules and Single Nanoparticles by Surface-enhanced Raman Scattering. Science, 1997. 275, 1102-1106. 53. L. Guerrini and D. Graham, Molecularly-mediated Assemblies of Plasmonic Nanoparticles for Surface-Enhanced Raman Spectroscopy Applications. Chem. Soc. Rev., 2012. 41, 7085-7107. 54. A. Campion and P. Kambhampati, Surface-enhanced Raman Scattering. Chem. Soc. Rev., 1998. 27, 241-250. 55. D. L. Jeanmaire and R. P. V. Duyne, Surface Raman Spectroelectrochemistry Part I. Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode. J. Electroanal. Chem., 1977. 84, 1-20. 56. M. G. Albrecht and J. A. Creighton, Anomalously Intense Raman Spectra of Pyridine at a Silver Electrode. J. Am. Chem. Soc., 1977. 99, 5215-5217. 57. W. A. El-Said, H. Y. Cho and J. W. Choi, SERS Application for Analysis of Live Single Cell. 2017. 58. K. A. Willets and R. P. V. Duyne, Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem., 2007. 58, 267-297. 59. E. L. Ru, P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy. Elsevier Science. 2008. 60. E. Hao and G. C. Schatz, Electromagnetic Fields around Silver Nanoparticles and Dimers. J. Chem. Phys., 2004. 120, 357-366. 61. P. G. Etchegoin and E. C. Le Ru, A Perspective on Single Molecule SERS: Current Status and Future Challenges. Phys. Chem. Chem. Phys., 2008. 10, 6079-6089. 62. K. L. Norrod, L. M. Sudnik, D. Rousell and K. L. Rowlen, Quantitative Comparison of Five SERS Substrates: Sensitivity and Limit of Detection. J. Opt. Soc., 1997. 51, 994-1001. 63. A. Ruperez and J. J. Laserna, Surface-enhanced Raman Spectrometry of Triamterene on a Silver Substrate Prepared by the Nitric Acid Etching Method. Anal. Chim. Acta., 1997. 44, 213-220. 64. M. Kahl, E. Voges, S. Kostrewa, C. Viets and W. Hill, Periodically Structured Metallic Substrates for SERS. Sens. Actuators. B Chem., 1998. 51, 285-291. 65. J. R. Anema, J. F. Li, Z. L. Yang, B. Ren and Z. Q. Tian, Shell-isolated Nanoparticle-enhanced Raman Spectroscopy: Expanding the Versatility of Surface-enhanced Raman Scattering. Annu. Rev. Anal. Chem., 2011. 4, 129-150. 66. E. Koglin and S. Jean-Marie, Surface Enhanced Raman Scattering of Biomolecules. Top. Curr. Chem., 1986. 134, 1-57. 67. J. Li, L. Chen, T. Lou and Y. Wang, Highly Sensitive SERS Detection of As3+ Ions in Aqueous Media Using Glutathione Functionalized Silver Nanoparticles. ACS Appl. Mater. Inter., 2011. 3, 3936-3941. 68. P. Hildebrandt and M. Stockburger, Surface-enhanced Resonance Raman Spectroscopy of Rhodamine 6G Adsorbed on Colloidal Silver. J. Chem. Phys., 1984. 88, 5935-5944. 69. X. Li, M. Cao, H. Zhang, L. Zhou, S. Cheng, J. L. Yao and L. J. Fan, Surface-enhanced Raman Scattering-active Substrates of Electrospun Polyvinyl Alcohol/Gold-silver Nanofibers. J. Colloid Interface Sci., 2012. 382, 28-35. 70. Y. Zhu, M. Li, D. Yu and L. Yang, A Novel Paper Rag as 'D-SERS' Substrate for Detection of Pesticide Residues at Various Peels. Talanta, 2014. 128, 117-124. 71. R. Dong, S. Weng, L. Yang and J. Liu, Detection and Direct Readout of Drugs in Human Urine Using Dynamic Surface-enhanced Raman Spectroscopy and Support Vector Machines. Anal. Chem., 2015. 87, 2937-2944. 72. H. Liu, Z. Yang, L. Meng, Y. Sun, J. Wang, L. Yang, J. Liu and Z. Tian, Three-dimensional and Time-ordered Surface-enhanced Raman Scattering Hotspot Matrix. J. Am. Chem. Soc., 2014. 136, 5332-5341. 73. H. Guo, F. Ruan, L. Lu, J. Hu, J. Pan, Z. Yang and B. Ren, Correlating the Shape, Surface Plasmon Resonance, and Surface-Enhanced Raman Scattering of Gold Nanorods. J. Phys. Chem. C, 2009. 113, 10459-10464. 74. M. Li, S. K. Cushing, J. Zhang, J. Lankford, Z. P. Aguilar, D. Ma and N. Wu, Shape-dependent Surface-enhanced Raman Scattering in Gold-Raman Probe-silica Sandwiched Nanoparticles for Biocompatible Applications. Nanotechnology, 2012. 23, 115501. 75. M. Shaban and A. R. Galaly, Highly Sensitive and Selective In-Situ SERS Detection of Pb(2+), Hg(2+), and Cd(2+) Using Nanoporous Membrane Functionalized with CNTs. Sci. Rep., 2016. 6, 25307. 76. X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang and Z. Liu, Can Graphene be Used as a Substrate for Raman Enhancement? Nano Lett., 2010. 10, 553-561. 77. X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang and J. G. Hou, Tuning Chemical Enhancement of SERS by Controlling the Chemical Reduction of Graphene Oxide Nanosheets. ACS Nano, 2011. 5, 952-958.
|