|
[1] Moss S. D., McLeod J. E., Powelesland I. G., Galea S. C., A bi-axial magnetoelectric vibration energy harvester, Sensors and Actuators A Physical, 175, 165-168 (2012). [2] Vatansever D., Hadimani R., Shah T., Siores E., An investigation of energy harvesting from renewable sources with PVDF and PZT, Smart Materials and Structures, 20, 1-7 (2011). [3] Gutierrez A., Dopico N. I., Gonzlez C., Zazo S., Jimnez-Leube J., Raos I., Cattle-powered node experience in a heterogeneous network for localization of herds, IEEE Transactions on Industrial Electronics, 60, 3176-3184 (2013). [4] Hong W., Bin X., Xiling L., Jianru H., Shuxia S., Hu L., The piezoelectric and elastic properties of berlinite and the effect of defects on the physical properties, Journal of Crystal Growth, 79, 227-231 (1986). [5] Kurosawa S., Tawara E., Kamo N., Kobatake Y., Oscillating frequency of piezoelectric quartz crystal in solutions, Analytica Chimica Acta, 230, 41-49 (1990). [6] Pinheiro M.V. B., Fantini C., Krambrock K., Persiano A. I. C., Dantas M. S.S., Pimenta M. A., OH/F substitution in topaz studied by Raman spectroscopy, Physical Review B, 65, 104301 (2002). [7] Zhang S., Eitel R. E., Randall C. A., Shrout T. R., Alberta E. F., Manganese-modified BiScO3–PbTiO3 piezoelectric ceramic for high-temperature shear mode sensor, Applied Physics Letters, 86, 262904 (2005). [8] Jung S. B., Kim S. W., Improvement of scanning accuracy of PZT piezoelectric actuators by feed-forward model-reference control, Precision Engineering, 16, 49-55 (1994). [9] Emanetoglu N. W., Gorla C., Liu Y., Liang S., Lu Y., Epitaxial ZnO piezoelectric thin films for saw filters, Materials Science in Semiconductor Processing, 2, 247-252 (1999). [10] Cha S., Kim S. M., Kim H., Ku J., Sohn J. I., Park Y. J., Song B. G., Jung M. H., Lee E. K., Choi B. L., Park J. J., Wang Z. L., Kim J. M., Kim K., Porous PVDF as effective sonic wave driven nanogenerators, Nano Letters, 11, 5142-5147 (2011). [11] Nandi A., Mandelkern L., The influence of chain structure on the equilibrium melting temperature of poly (vinylidene fluoride), Journal of Polymer Science Part B: Polymer Physics, 29, 1287-1297 (1991). [12] Li M., Stingelin N., Michels J. J., Spijkman M. J., Asadi K., Feldman K., Blom P. W. M., de Leeuw D. M., Ferroelectric phase diagram of PVDF:PMMA, Macromolecules, 45, 7477-7485 (2012). [13] He F. A., Lin K., Shi D. L., Wu H. J., Huang H. K., Chen J. J., Chen F., Lam K. H., Preparation of organosilicate/PVDF composites with enhanced piezoelectricity and pyroelectricity by stretching, Composites Science and Technology, 137, 138-147 (2016). [14] Lim J. Y., Kim J., Kim S., Kwak S., Lee Y., Seo Y., Enhancement of β-phase in PVDF by electrospinning, Polymer, 62, 11 (2015). [15] Merlini C., Pegoretti A., Araujo T. M., Ramoa S.D.A.S., Schreiner W.H., Barra G.M. de O., Electrospinning of doped and undoped-polyaniline/poly(vinylidene fluoride) blends, Synthetic Metals, 213, 34-41 (2016). [16] Patra S. N., Lin R. J. T., Bhattacharyya D., Regression analysis of manufacturing electrospun nonwoven nanotextiles, Journal of Materials Science, 45, 3938-3946 (2010). [17] Zhang B., Kang F., Tarascon J. M., Kim J. K., Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage, Progress in Materials Science, 76, 319-380 (2016). [18] Wu C. M., Chou M. H., Zeng W. Y., Piezoelectric response of aligned electrospun polyvinylidene fluoride/carbon nanotube nanofibrous membranes, Nanomaterials, 8, 420 (2018). [19] Wu C. M., Chou M. H., Sound absorption of electrospun polyvinylidene fluoride/graphene membranes, European Polymer Journal, 82, 35-45 (2016). [20] Wu C. M., Chou M. H., Polymorphism, piezoelectricity and sound absorption of electrospun PVDF membranes with and without carbon nanotubes, Composites Science and Technology, 12, 127-133 (2016). [21] Neppalli R., Wanjale S., Birajdar M., Causin V., The effect of clay and of electrospinning on the polymorphism, structure and morphology of poly(vinylidene fluoride), European Polymer Journal, 49, 90-99 (2013). [22] Wang J. C., Chen P., Chen L., Wang K., Deng H., Chen F., Zhang Q., Fu Q., Preparation and properties of poly(vinylidene fluoride) nanocomposites blended with graphene oxide coated silica hybrids, Express Polymer Letters, 6, 299-307 (2012). [23] Merlini C., Pegoretti A., Araujo T. M., Ramoa S. D. A. S., Schreiner W. H., Barra G. M. de O., Electrospinning of doped and undoped-polyaniline/poly(vinylidene fluoride) blends, Synthetic Metals, 213, 34-41 (2016). [24] Zeng Z., Liu M., Xu H., Liao Y., Duan F., Zhou L. M., Jin H., Zhang Z., Su Z., Ultra-Broadband frequency responsive sensor based on lightweight and flexible carbon nanostructured polymeric nanocomposites, Carbon, 121, 490-501 (2017). [25] Ouyang Z. W., Chen E. C., Wu T. M., Enhanced piezoelectric and mechanical properties of electroactive polyvinylidene fluoride/iron oxide composites, Materials Chemistry and Physics, 149-150, 172-178 (2015). [26] Gregorio, JR. R., Cestari M., Effected of Crystallization Temperature on the Crystalline Phase Content and Morphology of Poly(vinylidene Fluoride), Journal of Polymer Science: Part B: Polymer Physics, 32,859-870 (1994). [27] Jain A., Kumar S. J., Mahapatra D. R., Kumar H. H., Detailed studies on the formation of piezoelectric β-phase of PVDF at different hot-stretching conditions, Proceeding of SPIE, 7647, 76472C (2010). [28] He L., Sun J., Wang X., Yao L., Li J., Song R., Hao Y., He Y., Huang W., Enhancement of β -crystalline phase of poly(vinylidene fluoride) in the presence of hyperbranched copolymer wrapped multiwalled carbon nanotubes, Journal of Colloid and Interface Science, 363, 122-128 (2011). [29] R Gregorio Jr., Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions, Journal of applied polymer science, 100, 3272-3279 (2006). [30] Jain A., Kumar S. J., Mahapatra D. R., Rathod V. T., Development of P(VDF-TRFE) films and its quasi-static and dynamic strain response, International Journal of Engineering Research & Technology, 2, 2598-2605 (2013). [31] Chen J., Lu H. Y., Yang J. H., Wang Y., Zheng X. T., Zhang C. L., Yuan G. P., Effect of organoclay on morphology and electrical conductivity of PC/PVDF/CNT blend composites, Composites Science and Technology, 94, 30-38 (2014). [32] Na H., Zhao Y., Zhao C., Zhao C., Yuan X., Effect of hot‐press on electrospun poly(vinylidene fluoride) membranes, Polymer Engineering and Science, 48, 934-940 (2008). [33] Mandal D., Henkel K., Schmeiber D., The electroactive β-phase formation in Poly(vinylidene fluoride) by gold nanoparticles doping, Materials Letters, 73, 123-125 (2012). [34] Huang W., Li Z., Tian P., Chen X., Lu J., Zhou Z., Huang R., Liu T., Zhang C., Wang X., Agglomerated carbon nanotube-induced growth of piezoelectric 3D nanoarchitectures assembled from hollow 1D nanowires of poly (vinylidene fluoride) at high pressure, Composites Science and Technology, 90, 110-116 (2014). [35] Huang X., Jiang P., Kim C., Liu F., Yin Y., Influence of aspect ratio of carbon nanotubes on crystalline phases and dielectric properties of poly(vinylidene fluoride), European Polymer Journal, 45, 377-386 (2009). [36] Liu J., Lu X., Wu C., Effect of preparation methods on crystallization behavior and tensile strength of Poly(vinylidene fluoride) membranes, Membranes, 3, 389-405 (2013). [37] Huang Z. J., Jiang J., Xue G., Zhou D. S., β-Phase crystallization of poly(vinylidene fluoride) in poly(vinylidene fluoride)/poly(ethyl methacrylate) blends, Chinese Journal of Polymer Science, 37, 94-100 (2019). [38] Sajkiewicz P., Wasiak A., Goclowski Z., Phase transitions during stretching of poly(vinylidene fluoride), European Polymer Journal, 35, 423-429 (1991). [39] Moharjir B. E., Heymans N., Changes in structural and mechanical behaviour of PVDF with processing and thermomechanical treatments. 1. Change in structure, Polymer, 42, 5661-5667 (2001). [40] Sencadas V., Gregorio Jr R., Lanceros-M ́endez S., α to β Phase transformation and microestructural changes of PVDF films induced by uniaxial stretch, Journal of Macromolecular Science, Part B, 48, 514-525 (2009). [41] Doshi J., Reneker D. H., Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 35, 151-160 (1995). [42] Zhao Z. Z., Li J. Q., Yuan X. Y., Li X., Zhang Y. Y., Sheng J., Preparation and properties of electrospun poly(vinylidene fluoride) membranes. Journal of Applied Polymer Science, 97, 466-474 (2005). [43] Ahn Y., Lim J. Y., Hong S. M., Lee J., Ha J., Choi H. J., Seo Y., Enhanced piezoelectric properties of electrospun poly(vinylidene fluoride)/multiwalled carbon nanotube composites due to high β-phase formation in poly(vinylidene fluoride), Physical Chemistry C, 117, 11791-11799 (2013). [44] El Achaby M., Arrakhiz F. Z., Vaudreuil S., Essassi E. M., Qaiss A., Piezoelectric β-polymorph formation and properties enhancement in graphene oxide–PVDF nanocomposite films, Applied Surface Science, 258, 7668-7677 (2012). [45] Kim J., Loh K. J., Lynch J. P., Piezoelectric polymeric thin films tuned by carbon nanotube fillers, Proceedings of SPIE–15th Annual International Symposium on Smart Structures and Materials, 6932, 693232 (2008). [46] Hu L. B., Kim H. S., Lee J. Y., Peumans P., Cui Y.: Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes. ACS Nano, 4, 2955-2963 (2010). [47] Li B., Xu C., Zheng J., Xu C.: Sensitivity of Pressure Sensors Enhanced by Doping Silver Nanowires. Sensors, 14, 9889-9899 (2014). [48] Issa A. A, Al-Maadeed M. A., Luyt S. A., Ponnamma D., Hassan M. K., Physico-Mechanical, Dielectric, and Piezoelectric Properties of PVDF Electrospun Mats Containing Silver Nanoparticles, Journal of Carbon Research, 3, 30 (2017). [49] Wu L., Huang G., Hu N., Fu S., Qiu J., Wang Z., Ying J., Chen Z., Lia W., Tanga S., Improvement of the piezoelectric properties of PVDF-HFP using AgNWs, RSC Advances, 4, 35896 (2014). [50] Shi N., Duan J., Su J., Huang F., Xue W., Zheng C. M., Qian Y., Chen S., Xie L., Huang W. L., Crystal polymorphism and enhanced dielectric performance of composite nanofibers of poly(vinylidene fluoride) with silver nanoparticles, Journal of Applied Polymer Science, 128, 1004-1010 (2013). [51] Ahn Y., Lim J. Y., Hong S. M., Lee J., Ha J., Choi H. J., Seo Y., Enhanced piezoelectric properties of electrospun poly(vinylidene fluoride)/multiwalled carbon nanotube composites due to high β-phase formation in poly(vinylidene fluoride), Physical Chemistry C, 117, 11791-11799 (2013). [52] El Achaby M., Arrakhiz F. Z., Vaudreuil S., Essassi E. M., Qaiss A., Piezoelectric β-polymorph formation and properties enhancement in graphene oxide–PVDF nanocomposite films, Applied Surface Science, 258, 7668-7677 (2012). [53] Kalinova K., A sound absorptive element comprising an acoustic resonance nanofibrous membrane, Recent Patents on Nanotechnology, 9, 61-69 (2015). [54] Abhishe K., Alain B., Active sound control with smart forms using piezoelectric sensor actuator, Journal of Intelligent Material Systems and Structures, 22, 1771-1787 (2011). [55] Rahimabady M., Statharas E. C., Yao K., Mirshekarloo M. S., Chen S., Francis E. H. T., Hybrid local piezoelectric and conductive functions for high performance airborne sound absorption, Applied Physics Letters, 111, 241601 (2017). [56] Hori M., Aoki T., Ohira Y., Yano S., New type of mechanical damping composites composed of piezoelectric ceramics, carbon black and epoxy resin, Composites Part A: Applied Science and Manufacturing, 32, 287-290 (2001). [57] We J. H., Kim S. J., Kim G. S., Cho B. J., Improvement of thermoelectric properties of screen-printed Bi2Te3 thick film by optimization of the annealing process, Journal of Alloys and Compounds, 552, 107-110 (2013). [58] Baxendale M., Lim K. G., Amaratunga G. L., Thermoelectric power of aligned and randomly oriented carbon nanotubes, Physical Review B, 61, 12705-12708 (2000). [59] Batra A. K., Aggarwal M. D., Edwards M. E., Bhalla A. S., Present status of polymer: ceramic composites for pyroelectric infrared detectors, Ferroelectrics, 366, 84-121 (2008). [60] Batra A. K., Bandyopadhyay A., Chilvery A. K., Thomas M., Modeling and simulation for PVDF-based pyroelectric energy harvester, Energy Science and Technology, 5, 1-7 (2013). [61] Wang X. Q., Tan C. F., Chan K. H., Lu X., Zhu L., Kim S. W., Ho G. W., In-built thermo-mechanical cooperative feedback mechanism for self-propelled multimodal locomotion and electricity generation, Nature Communications, 9, 3438 (2018). [62] Zhao J., Qiu G., Zhang H., A Micro Pyroelectric Generator Based on PVDF, Journal of Zhengzhou University (Engineering Science), 6, 34-37 (2016). [63] Deng L. Y., Zhao Y., Zhao L., He X. L., Li J. P., Journal of Advanced Materials, 43, 2012. [64] Lee J. H., Lee K. Y., Gupta M. K., Kim T. Y., Lee D. Y., Oh J., Ryu C., Yoo W. J., Kang C. Y., Yoon S. J., Yoo J. B., Kim S. W., Highly stretchable piezoelectric-pyroelectric hybrid nanogenerator, Advanced Materials, 26, 765-769 (2014). [65] Yang Y., Jung J. H., Yun B. K., Zhang F., Pradel K. C., Guo W. X., Harvesting heat energy from hot/cold water with a pyroelectric generator, Advanced Materials, 24, 5357-5362 (2012). [66] Tien N. T., Seol Y. G., Dao L. H. A., Noh H. Y., Lee N. E., Utilizing highly crystalline pyroelectric material as functional gate dielectric in organic thin‐film transistors, Advanced Materials, 21, 910-915 (2009). [67] Zhang H., Xie Y., Li X., Huang Z., Zhang S., Su Y., Wu B., He L., Yang W., Lin Y., Flexible pyroelectric generators for scavenging ambient thermal energy and as self-powered thermosensors, Energy, 101, 202-210 (2016). [68] Cheng L., Yang K., Chen Q., Liu Z., Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer, ACS Nano, 6, 5605-5613 (2012). [69] Yang K., Xu H., Cheng L., Sun C., Wang J., Liu Z., Correction: in vitro and in vivo near‐infrared photothermal therapy of cancer using polypyrrole organic nanoparticles, Advanced Materials, 24, 5586-5592 (2012). [70] Lu X., Zhang W., Wang C., Wen T. C., Wei Y., One-dimensional conducting polymer nanocomposites: Synthesis, properties and applications, Progress in Polymer Science, 36, 671-712 (2011). [71] Huang X., El-Sayed I. H., Qian W., El-Sayed M. A., Cancer cell imaging and photothermal therapy in the near-Infrared region by using gold nanorods, Journal of the American Chemical Society, 128, 2115-2120 (2006). [72] Yang K., Xu H., Cheng L., Sun C., Wang J., Liu Z., Correction: in vitro and in vivo near‐infrared photothermal therapy of cancer using polypyrrole organic nanoparticles, Advanced Materials, 24, 5586-5592 (2012). [73] Weissleder R., A clearer vision for in vivo imaging, Nature Biotechnology, 19, 316-317 (2011). [74] Zhao T., Jiang W., Liu H., Niu D., Li X., Liu W., Li X., Chen B., Shi Y., Yin L., Lu B., An infrared-driven flexible pyroelectric generator for non-contact energy harvester, Nanoscale, 8, 8111-8117 (2016). [75] Zabek D., Seunarine K., Spacie C., Bowen C., Graphene ink laminate structures on poly(vinylidene difluoride) (PVDF) for pyroelectric thermal energy harvesting and waste heat recovery, ACS Applied Materials & Interfaces, 9, 9161-9167 (2017). [76] Whatmore R. W., Pyroelectric devices and materials, Reports on Progress in Physics, 49, 1335 (1986). [77] Wu C. G., Li P., Cai G. Q., Luo W. B., Sun X. Y., Peng Q. X., Zhang W. L., Quick response PZT/P(VDF-TrFE) composite film pyroelectric infrared sensor with patterned polyimide thermal isolation layer, Infrared Physics & Technology, 66, 34-38 (2014). [78] Zabek D., Seunarine K., Spacie C., Bowen C., Graphene ink laminate structures on poly(vinylidene difluoride) (PVDF) for pyroelectric thermal energy harvesting and waste heat recovery, ACS Applied Materials & Interfaces, 9, 9161-9167 (2017). [79] Bartl J., Baranek M., Emissivity of aluminium and its importance for radiometric measurement, Measurement Science and Technology, 4, 31-36 (2004). [80] Wei C. S., Lin Y. Y., Hu Y. C., Wu C. W., Shih C. K., Huang C. T., Chang S. H., Partial-electroded ZnO pyroelectric sensors for responsivity improvement, Sensors and Actuators A: Physical, 128, 18-24 (2006). [81] Norkus V., Schulze A., Querner Y., Gerlach G. Protein Engineering. 2010; 5: 944. [82] Zabek D., Taylor J., Le Boulbar E., Bowen C. R., Micropatterning of flexible and free standing polyvinylidene difluoride (PVDF) films for enhanced pyroelectric energy eransformation, Advanced Energy Materials, 5, 1401891 (2015). [83] Deb S. K., Opportunities and challenges in science and technology of WO3 for electrochromic and related applications, Solar Energy Materials and Solar Cells, 92, 245-258 (2008). [84] Zheng H., Ou J. Z., Strano M. S., Kaner R. B., Mitchell A., Kalantar‐zadeh K., Nanostructured tungsten oxide-properties, synthesis, and applications, Advanced Functional Materials, 21, 2175-2196 (2011). [85] Zhang W., Lin C., Cong S., Hou J., Liu B., Geng F., Jin J., Wu M., Zhao Z., W18O49 nanowire composites as novel barrier layers for Li–S batteries based on high loading of commercial micro-sized sulfur, RSC Advances, 6, 15234-15239 (2016). [86] Azens A., Vaivars G., Veszelei M., Kullman L., Granqvist C., Electrochromic devices embodying W oxide/Ni oxide tandem films, Journal of Applied Physics, 89, 7885-7887 (2001). [87] Lee S. H., Cheong H. M., Tracy C. E., Mascarenhas A., Pitts J. R., Jorgensen G., Deb S. K., Alternating current impedance and Raman spectroscopic study on electrochromic a-WO3 films, Applied Physics Letters, 76, 3908-3910 (2000). [88] Granqvist C., Electrochromic oxides: a bandstructure approach, Solar Energy Materials and Solar Cells, 32, 369-382 (1994). [89] Granqvist C. G., Electrochromic tungsten oxide films: review of progress 1993-1998, Solar Energy Materials and Solar Cells, 60, 201-262 (2000). [90] Shim H. S., Kim J. W., Sung Y. E., Kim W. B., Electrochromic properties of tungsten oxide nanowires fabricated by electrospinning method, Solar Energy Materials and Solar Cells, 93, 2062-2068 (2009). [91] Liu B. J. W., Zheng J., Wang J. L., Xu J., Li H. H., Yu S. H., Ultrathin W18O49 nanowire assemblies for electrochromic devices, Nano letters, 13, 3589-3593 (2013). [92] Lee K., Seo W. S., Park J. T., Synthesis and optical properties of colloidal tungsten oxide nanorods, Journal of the American Chemical Society, 125, 3408-3409 (2003). [93] Remškar M., Kovac J., Viršek M., Mrak M., Jesih A., Seabaugh A., W5O14 Nanowires, Advanced Functional Materials, 17, 1974-1978 (2007). [94] Guo C., Yin S., Dong Q., Sato T., The near infrared absorption properties of W18O49, RSC Advances, 2, 5041-5043 (2012). [95] Chen Z., Wang Q., Wang H., Zhang L., Song G., Song L., Hu J., Wang H., Liu J., Zhu M., Ultrathin PEGylated W18O49 nanowires as a new 980 nm‐laser‐driven photothermal agent for efficient ablation of cancer cells in vivo, Advanced materials, 25, 2095-2100 (2013). [96] Chala T. F., Wu C. M., Chou M. H., Gebeyehu M. B., Cheng K. B., Highly efficient near infrared photothermal conversion properties of reduced tungsten oxide/polyurethane nanocomposites, Nanomaterials, 7, 191 (2017).
|