跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/16 10:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周珉卉
研究生(外文):Min-Hui Chou
論文名稱:靜電紡絲製備聚偏氟乙烯奈米纖維膜於結晶型態、壓電及熱電特性之研究
論文名稱(外文):The study of electrospun PVDF nanofibrous membranes on its polymorphism, piezoelectric and pyroelectric properties
指導教授:吳昌謀
指導教授(外文):Chang-Mou Wu
口試委員:王紀吳志明吳宗明周振嘉郭東昊
口試委員(外文):Chi WangJyh-Ming WuTzong-Ming WuChen-Chia ChouDong-Hau Kuo
口試日期:2019-06-25
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:135
中文關鍵詞:靜電紡絲聚偏氟乙烯壓電性熱電特性能源轉換及儲存
外文關鍵詞:ElectrospinningPolyvinylidene fluoride (PVDF)PiezoelectrictyPyroelelctric propertiesEnergy harvesting
相關次數:
  • 被引用被引用:0
  • 點閱點閱:435
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於電子產品的市場對於可攜帶或可穿戴的電子設備的大量需求,使得越來越多研究投入在開發永續性可撓式的能源採集材料。聚偏氟乙烯(PVDF)是具有良好的壓電和熱電性能的材料,它具備高彈性、良好的生物相容性且能夠簡單地大量製備等優勢,使其近年來受到廣泛研究。
PVDF為一半結晶高分子且具有多種結晶相,其中α相為最穩定之結晶相,但其為非極性之結晶結構,不具有壓電及熱電等能力,而具有極性之β結晶相擁有最大壓電和熱電響應之能力,通常藉由機械拉伸或極化方式來獲得β結晶相,要能獲得高壓電及熱電效能之PVDF材料,β結晶相的控制及生長是一極大的關鍵因素。
因此本論文主要區分為三大部分。在第一部分中,探討了球晶微觀結構與β相結晶行為之間的關係,進而理解PVDF的結晶過程及如何控制。透過比較未處理的PVDF薄膜及經極化後的電紡PVDF奈米纖維膜,可以藉由偏光顯微鏡(POM)觀察在電紡PVDF奈米纖維中,有兩種不同球晶同時存在,而與未處理的PVDF薄膜相比,其僅有單一且大顆的球晶,因此證實大顆的球晶為α結晶相,而相對較小及較深的球晶為β結晶相,其甚至嵌入α相之球晶內部,且發現β結晶相的生長速度較α結晶相慢。同時亦透過SEM及AFM之觀察,發現β結晶相成柱狀的結構。最後通過DSC分析和選擇性熔化方法,證明在171 °C的熔融峰歸因於ES誘導的結晶β相的熔化,而在169 °C的峰歸因於α的熔化,澄清PVDF的晶相鑑定。
理解β相的結晶過程後,對於如何提升壓電能力成為一重要參數。因此在論文之第二部分,成功開發一柔性電紡PVDF奈米纖維膜的新型聲能採集裝置,並探討其晶體結構及添加奈米銀 (AgNP) 對PVDF奈米纖維膜的壓電性能之影響。結果顯示,結合靜電紡絲技術和添加AgNP於PVDF中,能有效誘導β相之形成,進而增加了壓電性。然而,藉由PVDF之壓電分流阻尼效應,能將聲音轉成電能,並消耗低頻的聲音傳播,因此在低頻區所產生的電能皆高於中頻及高頻區域,而有添加AgNP的電功率為7×10-4W,相較於沒有添加的PVDF元件 (5×10-4W),明顯提升了40%。該結果證明PVDF/AgNP具有優異的壓電性能和聲電轉換能力,可有利於運行低功耗的消費電子設備和綠色環境。
而在論文之第三部分,由於太陽能提供了豐富且無處不在的熱能來源,是可再生能源之中的首選,因此將探討PVDF之熱電特性。本章節成功開發一非接觸式光熱轉換制動熱電聚偏氟乙烯之能量擷取器,並藉由添加良好之光熱轉換材料:還原氧化鎢(WO2.72),增強PVDF/WO2.72奈米纖維膜在近紅外線 (NIR) 區域的吸收能力,同時亦結合部分覆蓋的電極來實現更快及更大的溫度波動,進而強化PVDF的熱電特性。而結果顯示,在NIR照射下,含有7 wt%的PVDF/WO2.72熱電複合材料,其溫度在60秒時,能迅速升至107.1 °C,相較於未含WO2.72的PVDF複合材料高出41.5 °C,且7 wt%的PVDF/WO2.72複合材料之最大輸出電壓可達到1.5 V,相較於未添加WO2.72的PVDF,提升了3倍的電壓輸出,最後在多次的測試循環下,亦證實PVDF/WO2.72複合材料具有良好的熱電能輸出穩定性和耐久性。
The β phase of polyvinylidene fluoride (PVDF) is well known for its piezoelectric and pyroelectric properties and interest for applications in energy harvester. How to obtain a high-level polar β phase of PVDF is an important pursuit.
Thus, this thesis is divided into three parts. In the first chapter, in order to identify the β-phases microstructure, we compared the neat PVDF films and electrospun PVDF nanofibrous membranes. The relationship between spherulitic microstructure and crystallization behavior of the β phase was explored for achieving a proper characterization, understanding and control of the crystallization process. Results showed that the smaller and darker spherulites in electrospun PVDF nanofibrous membranes were implied β phase by polarizing optical microscopy (POM), and even entered inside of the α-phase spherulites. The spherulite growth rate of β phase was lower than the α phase. Meanwhile, the microstructure of β spherulites with a rod-like structure was also observed by SEM and AFM analysis. Then through the DSC analysis and the selective melting method, it proved that the higher melting peak was attributed to the ES-induced melting of the crystalline β phase, whereas the lower peak was attributed to the melting of the α phase. The crystal phase identification for PVDF was clarified.
For the second chapter, a novel sound energy acquisition device based on flexible electrospun PVDF nanofibrous membrane was developed. Effects of the addition of silver nanoparticles (AgNPs) and electrospinning process on the crystal structure and piezoelectric properties of PVDF nanofibrous membranes were examined. Results showed that electrospinning and the addition of AgNP effectively induced β phase formation and increased piezoelectricity. Moreover, the use of piezoelectric shunt damping can reduce the sound transmission at low frequencies. Therefore, electric energy generated in low-frequency region is higher than in mid- and high-frequency regions. Meanwhile, the electric power of PVDF/AgNP is 7 × 10–4 W, which represented a significant increase of 40% compared to PVDF without AgNP (5 × 10–4 W) at low frequency. This result demonstrates that PVDF/AgNP presents excellent piezoelectric properties and acoustic–electric conversion characteristics. It can be beneficial in running low-power consumer electronic devices and green environment.
Then, in the third chapter, the pyroelelctric properties of PVDF was investigated, a novel infrared (IR)-driven non-contact pyroelectric generator based on electrospun PVDF nanofibrous membranes is developed for converting photothermal energy into useful electrical energy. Here, we incorporate a photothermal conversion material: reduced tungsten oxide (WO2.72), into PVDF to enhance the heat transfer of PVDF/WO2.72 nanofibrous membranes, which is due to their excellent IR absorbance. Meanwhile, partially covered electrodes are used to achieve faster and larger temperature fluctuations, which further improve pyroelectric energy transformation. Under IR irradiation, the temperature of the PVDF/WO2.72 pyroelectric composites containing 7 wt% WO2.72 rapidly rises to 107.1 °C after 60 s, which is 41.5 °C higher than that of the WO2.72-free PVDF composites. The maximum output voltage of the WO2.72-free PVDF composites is 0.5 V, while that of the 7 wt% PVDF/WO2.72 composites is three times higher, and reaches 1.5 V. Moreover, the 7wt% PVDF/WO2.72 composites also present good pyroelectric energy output stability and durability.
中文摘要 I
ABSTRACT III
Table of Contents VI
List of Table XI
List of Figures XII
Chapter 1: Introduction 1
1.1 Background 1
1.2 Literature Review 4
1.2.1 Crystallization structure of PVDF 4
1.2.2 Piezoelectric properties of PVDF 7
1.2.3 Acoustic performance 11
1.2.4 Pyroelectric properties of PVDF 14
1.2.5 Photothermal conversion 17
1.2.6 Photothermal conversion material (Tungsten oxide) 20
1.3 Motivation and Objective 23
1.4 Reference 25
Chapter 2: β Phase Crystallization and Melting Behavior of Polyvinylidene Fluoride 38
2.1 Introduction 38
2.2 Experiment 41
2.2.1 Samples preparation 41
2.2.2 Characterization 42
2.3 Results and discussion 43
2.3.1 Crystallization morphology 43
2.3.2 spherulite growth rate 46
2.3.3 Melting behavior 47
2.4 Summary 49
2.5 Reference 50
Chapter 3: Acoustic–Electric Conversion and Piezoelectric Properties of Electrospun Polyvinylidene Fluoride/Silver Nanofibrous Membranes 55
3.1 Introduction 55
3.2 Experiment 59
3.2.1 Materials 59
3.2.2 Preparing electrospun PVDF/AgNP nanofibrous membranes 60
3.2.3 Characterization 61
3.3 Results and discussion 64
3.3.1 Morphology of electrospun PVDF/AgNP nanofibrous membranes 64
3.3.2 Thermal properties of the electrospun PVDF/AgNP nanofibrous membranes 65
3.3.3 Crystallinity of the electrospun PVDF/AgNP nanofibrous membranes 66
3.3.4 Piezoelectricity of the electrospun PVDF/AgNP nanofibrous membranes 70
3.3.5 Sound-absorption coefficient of the electrospun PVDF/AgNP nanofibrous membranes 71
3.3.6 Acoustic electric conversion abilities of the electrospun PVDF/AgNP nanofibrous membranes 74
3.4 Summary 77
3.5 References 78
Chapter 4: Infrared-driven poly(vinylidene difluoride)/tungsten oxide pyroelectric generator for non-contact energy harvesting 85
4.1 Introduction 85
4.2 Experiment 89
4.2.1 Materials 89
4.2.2 Preparation of electrospun PVDF/WO2.72 nanofibrous membranes 90
4.2.3 Preparation of pyroelectric composites using electrospun PVDF/WO2.72 nanofibrous membranes 92
4.2.4 Characterization 93
4.3 Result and discussion 95
4.3.1 Morphology of electrospun PVDF/WO2.72 nanofibrous membranes 95
4.3.2 Crystallinity of electrospun PVDF/WO2.72 nanofibrous membranes 95
4.3.3 Optical and photothermal conversion abilities of electrospun PVDF/WO2.72 nanofibrous membranes 100
4.3.4 Pyroelectricity of electrospun PVDF/WO2.72 nanofibrous membranes 102
4.4 Summary 107
4.5 References 107
Chapter 5: Conclusion 114
Chapter 6: Further Work 116
[1] Moss S. D., McLeod J. E., Powelesland I. G., Galea S. C., A bi-axial magnetoelectric vibration energy harvester, Sensors and Actuators A Physical, 175, 165-168 (2012).
[2] Vatansever D., Hadimani R., Shah T., Siores E., An investigation of energy harvesting from renewable sources with PVDF and PZT, Smart Materials and Structures, 20, 1-7 (2011).
[3] Gutierrez A., Dopico N. I., Gonzlez C., Zazo S., Jimnez-Leube J., Raos I., Cattle-powered node experience in a heterogeneous network for localization of herds, IEEE Transactions on Industrial Electronics, 60, 3176-3184 (2013).
[4] Hong W., Bin X., Xiling L., Jianru H., Shuxia S., Hu L., The piezoelectric and elastic properties of berlinite and the effect of defects on the physical properties, Journal of Crystal Growth, 79, 227-231 (1986).
[5] Kurosawa S., Tawara E., Kamo N., Kobatake Y., Oscillating frequency of piezoelectric quartz crystal in solutions, Analytica Chimica Acta, 230, 41-49 (1990).
[6] Pinheiro M.V. B., Fantini C., Krambrock K., Persiano A. I. C., Dantas M. S.S., Pimenta M. A., OH/F substitution in topaz studied by Raman spectroscopy, Physical Review B, 65, 104301 (2002).
[7] Zhang S., Eitel R. E., Randall C. A., Shrout T. R., Alberta E. F., Manganese-modified BiScO3–PbTiO3 piezoelectric ceramic for high-temperature shear mode sensor, Applied Physics Letters, 86, 262904 (2005).
[8] Jung S. B., Kim S. W., Improvement of scanning accuracy of PZT piezoelectric actuators by feed-forward model-reference control, Precision Engineering, 16, 49-55 (1994).
[9] Emanetoglu N. W., Gorla C., Liu Y., Liang S., Lu Y., Epitaxial ZnO piezoelectric thin films for saw filters, Materials Science in Semiconductor Processing, 2, 247-252 (1999).
[10] Cha S., Kim S. M., Kim H., Ku J., Sohn J. I., Park Y. J., Song B. G., Jung M. H., Lee E. K., Choi B. L., Park J. J., Wang Z. L., Kim J. M., Kim K., Porous PVDF as effective sonic wave driven nanogenerators, Nano Letters, 11, 5142-5147 (2011).
[11] Nandi A., Mandelkern L., The influence of chain structure on the equilibrium melting temperature of poly (vinylidene fluoride), Journal of Polymer Science Part B: Polymer Physics, 29, 1287-1297 (1991).
[12] Li M., Stingelin N., Michels J. J., Spijkman M. J., Asadi K., Feldman K., Blom P. W. M., de Leeuw D. M., Ferroelectric phase diagram of PVDF:PMMA, Macromolecules, 45, 7477-7485 (2012).
[13] He F. A., Lin K., Shi D. L., Wu H. J., Huang H. K., Chen J. J., Chen F., Lam K. H., Preparation of organosilicate/PVDF composites with enhanced piezoelectricity and pyroelectricity by stretching, Composites Science and Technology, 137, 138-147 (2016).
[14] Lim J. Y., Kim J., Kim S., Kwak S., Lee Y., Seo Y., Enhancement of β-phase in PVDF by electrospinning, Polymer, 62, 11 (2015).
[15] Merlini C., Pegoretti A., Araujo T. M., Ramoa S.D.A.S., Schreiner W.H., Barra G.M. de O., Electrospinning of doped and undoped-polyaniline/poly(vinylidene fluoride) blends, Synthetic Metals, 213, 34-41 (2016).
[16] Patra S. N., Lin R. J. T., Bhattacharyya D., Regression analysis of manufacturing electrospun nonwoven nanotextiles, Journal of Materials Science, 45, 3938-3946 (2010).
[17] Zhang B., Kang F., Tarascon J. M., Kim J. K., Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage, Progress in Materials Science, 76, 319-380 (2016).
[18] Wu C. M., Chou M. H., Zeng W. Y., Piezoelectric response of aligned electrospun polyvinylidene fluoride/carbon nanotube nanofibrous membranes, Nanomaterials, 8, 420 (2018).
[19] Wu C. M., Chou M. H., Sound absorption of electrospun polyvinylidene fluoride/graphene membranes, European Polymer Journal, 82, 35-45 (2016).
[20] Wu C. M., Chou M. H., Polymorphism, piezoelectricity and sound absorption of electrospun PVDF membranes with and without carbon nanotubes, Composites Science and Technology, 12, 127-133 (2016).
[21] Neppalli R., Wanjale S., Birajdar M., Causin V., The effect of clay and of electrospinning on the polymorphism, structure and morphology of poly(vinylidene fluoride), European Polymer Journal, 49, 90-99 (2013).
[22] Wang J. C., Chen P., Chen L., Wang K., Deng H., Chen F., Zhang Q., Fu Q., Preparation and properties of poly(vinylidene fluoride) nanocomposites blended with graphene oxide coated silica hybrids, Express Polymer Letters, 6, 299-307 (2012).
[23] Merlini C., Pegoretti A., Araujo T. M., Ramoa S. D. A. S., Schreiner W. H., Barra G. M. de O., Electrospinning of doped and undoped-polyaniline/poly(vinylidene fluoride) blends, Synthetic Metals, 213, 34-41 (2016).
[24] Zeng Z., Liu M., Xu H., Liao Y., Duan F., Zhou L. M., Jin H., Zhang Z., Su Z., Ultra-Broadband frequency responsive sensor based on lightweight and flexible carbon nanostructured polymeric nanocomposites, Carbon, 121, 490-501 (2017).
[25] Ouyang Z. W., Chen E. C., Wu T. M., Enhanced piezoelectric and mechanical properties of electroactive polyvinylidene fluoride/iron oxide composites, Materials Chemistry and Physics, 149-150, 172-178 (2015).
[26] Gregorio, JR. R., Cestari M., Effected of Crystallization Temperature on the Crystalline Phase Content and Morphology of Poly(vinylidene Fluoride), Journal of Polymer Science: Part B: Polymer Physics, 32,859-870 (1994).
[27] Jain A., Kumar S. J., Mahapatra D. R., Kumar H. H., Detailed studies on the formation of piezoelectric β-phase of PVDF at different hot-stretching conditions, Proceeding of SPIE, 7647, 76472C (2010).
[28] He L., Sun J., Wang X., Yao L., Li J., Song R., Hao Y., He Y., Huang W., Enhancement of β -crystalline phase of poly(vinylidene fluoride) in the presence of hyperbranched copolymer wrapped multiwalled carbon nanotubes, Journal of Colloid and Interface Science, 363, 122-128 (2011).
[29] R Gregorio Jr., Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions, Journal of applied polymer science, 100, 3272-3279 (2006).
[30] Jain A., Kumar S. J., Mahapatra D. R., Rathod V. T., Development of P(VDF-TRFE) films and its quasi-static and dynamic strain response, International Journal of Engineering Research & Technology, 2, 2598-2605 (2013).
[31] Chen J., Lu H. Y., Yang J. H., Wang Y., Zheng X. T., Zhang C. L., Yuan G. P., Effect of organoclay on morphology and electrical conductivity of PC/PVDF/CNT blend composites, Composites Science and Technology, 94, 30-38 (2014).
[32] Na H., Zhao Y., Zhao C., Zhao C., Yuan X., Effect of hot‐press on electrospun poly(vinylidene fluoride) membranes, Polymer Engineering and Science, 48, 934-940 (2008).
[33] Mandal D., Henkel K., Schmeiber D., The electroactive β-phase formation in Poly(vinylidene fluoride) by gold nanoparticles doping, Materials Letters, 73, 123-125 (2012).
[34] Huang W., Li Z., Tian P., Chen X., Lu J., Zhou Z., Huang R., Liu T., Zhang C., Wang X., Agglomerated carbon nanotube-induced growth of piezoelectric 3D nanoarchitectures assembled from hollow 1D nanowires of poly (vinylidene fluoride) at high pressure, Composites Science and Technology, 90, 110-116 (2014).
[35] Huang X., Jiang P., Kim C., Liu F., Yin Y., Influence of aspect ratio of carbon nanotubes on crystalline phases and dielectric properties of poly(vinylidene fluoride), European Polymer Journal, 45, 377-386 (2009).
[36] Liu J., Lu X., Wu C., Effect of preparation methods on crystallization behavior and tensile strength of Poly(vinylidene fluoride) membranes, Membranes, 3, 389-405 (2013).
[37] Huang Z. J., Jiang J., Xue G., Zhou D. S., β-Phase crystallization of poly(vinylidene fluoride) in poly(vinylidene fluoride)/poly(ethyl methacrylate) blends, Chinese Journal of Polymer Science, 37, 94-100 (2019).
[38] Sajkiewicz P., Wasiak A., Goclowski Z., Phase transitions during stretching of poly(vinylidene fluoride), European Polymer Journal, 35, 423-429 (1991).
[39] Moharjir B. E., Heymans N., Changes in structural and mechanical behaviour of PVDF with processing and thermomechanical treatments. 1. Change in structure, Polymer, 42, 5661-5667 (2001).
[40] Sencadas V., Gregorio Jr R., Lanceros-M ́endez S., α to β Phase transformation and microestructural changes of PVDF films induced by uniaxial stretch, Journal of Macromolecular Science, Part B, 48, 514-525 (2009).
[41] Doshi J., Reneker D. H., Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 35, 151-160 (1995).
[42] Zhao Z. Z., Li J. Q., Yuan X. Y., Li X., Zhang Y. Y., Sheng J., Preparation and properties of electrospun poly(vinylidene fluoride) membranes. Journal of Applied Polymer Science, 97, 466-474 (2005).
[43] Ahn Y., Lim J. Y., Hong S. M., Lee J., Ha J., Choi H. J., Seo Y., Enhanced piezoelectric properties of electrospun poly(vinylidene fluoride)/multiwalled carbon nanotube composites due to high β-phase formation in poly(vinylidene fluoride), Physical Chemistry C, 117, 11791-11799 (2013).
[44] El Achaby M., Arrakhiz F. Z., Vaudreuil S., Essassi E. M., Qaiss A., Piezoelectric β-polymorph formation and properties enhancement in graphene oxide–PVDF nanocomposite films, Applied Surface Science, 258, 7668-7677 (2012).
[45] Kim J., Loh K. J., Lynch J. P., Piezoelectric polymeric thin films tuned by carbon nanotube fillers, Proceedings of SPIE–15th Annual International Symposium on Smart Structures and Materials, 6932, 693232 (2008).
[46] Hu L. B., Kim H. S., Lee J. Y., Peumans P., Cui Y.: Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes. ACS Nano, 4, 2955-2963 (2010).
[47] Li B., Xu C., Zheng J., Xu C.: Sensitivity of Pressure Sensors Enhanced by Doping Silver Nanowires. Sensors, 14, 9889-9899 (2014).
[48] Issa A. A, Al-Maadeed M. A., Luyt S. A., Ponnamma D., Hassan M. K., Physico-Mechanical, Dielectric, and Piezoelectric Properties of PVDF Electrospun Mats Containing Silver Nanoparticles, Journal of Carbon Research, 3, 30 (2017).
[49] Wu L., Huang G., Hu N., Fu S., Qiu J., Wang Z., Ying J., Chen Z., Lia W., Tanga S., Improvement of the piezoelectric properties of PVDF-HFP using AgNWs, RSC Advances, 4, 35896 (2014).
[50] Shi N., Duan J., Su J., Huang F., Xue W., Zheng C. M., Qian Y., Chen S., Xie L., Huang W. L., Crystal polymorphism and enhanced dielectric performance of composite nanofibers of poly(vinylidene fluoride) with silver nanoparticles, Journal of Applied Polymer Science, 128, 1004-1010 (2013).
[51] Ahn Y., Lim J. Y., Hong S. M., Lee J., Ha J., Choi H. J., Seo Y., Enhanced piezoelectric properties of electrospun poly(vinylidene fluoride)/multiwalled carbon nanotube composites due to high β-phase formation in poly(vinylidene fluoride), Physical Chemistry C, 117, 11791-11799 (2013).
[52] El Achaby M., Arrakhiz F. Z., Vaudreuil S., Essassi E. M., Qaiss A., Piezoelectric β-polymorph formation and properties enhancement in graphene oxide–PVDF nanocomposite films, Applied Surface Science, 258, 7668-7677 (2012).
[53] Kalinova K., A sound absorptive element comprising an acoustic resonance nanofibrous membrane, Recent Patents on Nanotechnology, 9, 61-69 (2015).
[54] Abhishe K., Alain B., Active sound control with smart forms using piezoelectric sensor actuator, Journal of Intelligent Material Systems and Structures, 22, 1771-1787 (2011).
[55] Rahimabady M., Statharas E. C., Yao K., Mirshekarloo M. S., Chen S., Francis E. H. T., Hybrid local piezoelectric and conductive functions for high performance airborne sound absorption, Applied Physics Letters, 111, 241601 (2017).
[56] Hori M., Aoki T., Ohira Y., Yano S., New type of mechanical damping composites composed of piezoelectric ceramics, carbon black and epoxy resin, Composites Part A: Applied Science and Manufacturing, 32, 287-290 (2001).
[57] We J. H., Kim S. J., Kim G. S., Cho B. J., Improvement of thermoelectric properties of screen-printed Bi2Te3 thick film by optimization of the annealing process, Journal of Alloys and Compounds, 552, 107-110 (2013).
[58] Baxendale M., Lim K. G., Amaratunga G. L., Thermoelectric power of aligned and randomly oriented carbon nanotubes, Physical Review B, 61, 12705-12708 (2000).
[59] Batra A. K., Aggarwal M. D., Edwards M. E., Bhalla A. S., Present status of polymer: ceramic composites for pyroelectric infrared detectors, Ferroelectrics, 366, 84-121 (2008).
[60] Batra A. K., Bandyopadhyay A., Chilvery A. K., Thomas M., Modeling and simulation for PVDF-based pyroelectric energy harvester, Energy Science and Technology, 5, 1-7 (2013).
[61] Wang X. Q., Tan C. F., Chan K. H., Lu X., Zhu L., Kim S. W., Ho G. W., In-built thermo-mechanical cooperative feedback mechanism for self-propelled multimodal locomotion and electricity generation, Nature Communications, 9, 3438 (2018).
[62] Zhao J., Qiu G., Zhang H., A Micro Pyroelectric Generator Based on PVDF, Journal of Zhengzhou University (Engineering Science), 6, 34-37 (2016).
[63] Deng L. Y., Zhao Y., Zhao L., He X. L., Li J. P., Journal of Advanced Materials, 43, 2012.
[64] Lee J. H., Lee K. Y., Gupta M. K., Kim T. Y., Lee D. Y., Oh J., Ryu C., Yoo W. J., Kang C. Y., Yoon S. J., Yoo J. B., Kim S. W., Highly stretchable piezoelectric-pyroelectric hybrid nanogenerator, Advanced Materials, 26, 765-769 (2014).
[65] Yang Y., Jung J. H., Yun B. K., Zhang F., Pradel K. C., Guo W. X., Harvesting heat energy from hot/cold water with a pyroelectric generator, Advanced Materials, 24, 5357-5362 (2012).
[66] Tien N. T., Seol Y. G., Dao L. H. A., Noh H. Y., Lee N. E., Utilizing highly crystalline pyroelectric material as functional gate dielectric in organic thin‐film transistors, Advanced Materials, 21, 910-915 (2009).
[67] Zhang H., Xie Y., Li X., Huang Z., Zhang S., Su Y., Wu B., He L., Yang W., Lin Y., Flexible pyroelectric generators for scavenging ambient thermal energy and as self-powered thermosensors, Energy, 101, 202-210 (2016).
[68] Cheng L., Yang K., Chen Q., Liu Z., Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer, ACS Nano, 6, 5605-5613 (2012).
[69] Yang K., Xu H., Cheng L., Sun C., Wang J., Liu Z., Correction: in vitro and in vivo near‐infrared photothermal therapy of cancer using polypyrrole organic nanoparticles, Advanced Materials, 24, 5586-5592 (2012).
[70] Lu X., Zhang W., Wang C., Wen T. C., Wei Y., One-dimensional conducting polymer nanocomposites: Synthesis, properties and applications, Progress in Polymer Science, 36, 671-712 (2011).
[71] Huang X., El-Sayed I. H., Qian W., El-Sayed M. A., Cancer cell imaging and photothermal therapy in the near-Infrared region by using gold nanorods, Journal of the American Chemical Society, 128, 2115-2120 (2006).
[72] Yang K., Xu H., Cheng L., Sun C., Wang J., Liu Z., Correction: in vitro and in vivo near‐infrared photothermal therapy of cancer using polypyrrole organic nanoparticles, Advanced Materials, 24, 5586-5592 (2012).
[73] Weissleder R., A clearer vision for in vivo imaging, Nature Biotechnology, 19, 316-317 (2011).
[74] Zhao T., Jiang W., Liu H., Niu D., Li X., Liu W., Li X., Chen B., Shi Y., Yin L., Lu B., An infrared-driven flexible pyroelectric generator for non-contact energy harvester, Nanoscale, 8, 8111-8117 (2016).
[75] Zabek D., Seunarine K., Spacie C., Bowen C., Graphene ink laminate structures on poly(vinylidene difluoride) (PVDF) for pyroelectric thermal energy harvesting and waste heat recovery, ACS Applied Materials & Interfaces, 9, 9161-9167 (2017).
[76] Whatmore R. W., Pyroelectric devices and materials, Reports on Progress in Physics, 49, 1335 (1986).
[77] Wu C. G., Li P., Cai G. Q., Luo W. B., Sun X. Y., Peng Q. X., Zhang W. L., Quick response PZT/P(VDF-TrFE) composite film pyroelectric infrared sensor with patterned polyimide thermal isolation layer, Infrared Physics & Technology, 66, 34-38 (2014).
[78] Zabek D., Seunarine K., Spacie C., Bowen C., Graphene ink laminate structures on poly(vinylidene difluoride) (PVDF) for pyroelectric thermal energy harvesting and waste heat recovery, ACS Applied Materials & Interfaces, 9, 9161-9167 (2017).
[79] Bartl J., Baranek M., Emissivity of aluminium and its importance for radiometric measurement, Measurement Science and Technology, 4, 31-36 (2004).
[80] Wei C. S., Lin Y. Y., Hu Y. C., Wu C. W., Shih C. K., Huang C. T., Chang S. H., Partial-electroded ZnO pyroelectric sensors for responsivity improvement, Sensors and Actuators A: Physical, 128, 18-24 (2006).
[81] Norkus V., Schulze A., Querner Y., Gerlach G. Protein Engineering. 2010; 5: 944.
[82] Zabek D., Taylor J., Le Boulbar E., Bowen C. R., Micropatterning of flexible and free standing polyvinylidene difluoride (PVDF) films for enhanced pyroelectric energy eransformation, Advanced Energy Materials, 5, 1401891 (2015).
[83] Deb S. K., Opportunities and challenges in science and technology of WO3 for electrochromic and related applications, Solar Energy Materials and Solar Cells, 92, 245-258 (2008).
[84] Zheng H., Ou J. Z., Strano M. S., Kaner R. B., Mitchell A., Kalantar‐zadeh K., Nanostructured tungsten oxide-properties, synthesis, and applications, Advanced Functional Materials, 21, 2175-2196 (2011).
[85] Zhang W., Lin C., Cong S., Hou J., Liu B., Geng F., Jin J., Wu M., Zhao Z., W18O49 nanowire composites as novel barrier layers for Li–S batteries based on high loading of commercial micro-sized sulfur, RSC Advances, 6, 15234-15239 (2016).
[86] Azens A., Vaivars G., Veszelei M., Kullman L., Granqvist C., Electrochromic devices embodying W oxide/Ni oxide tandem films, Journal of Applied Physics, 89, 7885-7887 (2001).
[87] Lee S. H., Cheong H. M., Tracy C. E., Mascarenhas A., Pitts J. R., Jorgensen G., Deb S. K., Alternating current impedance and Raman spectroscopic study on electrochromic a-WO3 films, Applied Physics Letters, 76, 3908-3910 (2000).
[88] Granqvist C., Electrochromic oxides: a bandstructure approach, Solar Energy Materials and Solar Cells, 32, 369-382 (1994).
[89] Granqvist C. G., Electrochromic tungsten oxide films: review of progress 1993-1998, Solar Energy Materials and Solar Cells, 60, 201-262 (2000).
[90] Shim H. S., Kim J. W., Sung Y. E., Kim W. B., Electrochromic properties of tungsten oxide nanowires fabricated by electrospinning method, Solar Energy Materials and Solar Cells, 93, 2062-2068 (2009).
[91] Liu B. J. W., Zheng J., Wang J. L., Xu J., Li H. H., Yu S. H., Ultrathin W18O49 nanowire assemblies for electrochromic devices, Nano letters, 13, 3589-3593 (2013).
[92] Lee K., Seo W. S., Park J. T., Synthesis and optical properties of colloidal tungsten oxide nanorods, Journal of the American Chemical Society, 125, 3408-3409 (2003).
[93] Remškar M., Kovac J., Viršek M., Mrak M., Jesih A., Seabaugh A., W5O14 Nanowires, Advanced Functional Materials, 17, 1974-1978 (2007).
[94] Guo C., Yin S., Dong Q., Sato T., The near infrared absorption properties of W18O49, RSC Advances, 2, 5041-5043 (2012).
[95] Chen Z., Wang Q., Wang H., Zhang L., Song G., Song L., Hu J., Wang H., Liu J., Zhu M., Ultrathin PEGylated W18O49 nanowires as a new 980 nm‐laser‐driven photothermal agent for efficient ablation of cancer cells in vivo, Advanced materials, 25, 2095-2100 (2013).
[96] Chala T. F., Wu C. M., Chou M. H., Gebeyehu M. B., Cheng K. B., Highly efficient near infrared photothermal conversion properties of reduced tungsten oxide/polyurethane nanocomposites, Nanomaterials, 7, 191 (2017).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊