(3.227.208.0) 您好!臺灣時間:2021/04/21 01:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王俊泓
研究生(外文):Jyun-Hong Wang
論文名稱:羧基化樹枝狀高分子改質電紡聚偏氟乙烯 纖維膜於油水分離之研究
論文名稱(外文):Surface functionalization of electrospun PVDF membrane with carboxylated hyperbranched polymer for oil/water separation
指導教授:吳昌謀
指導教授(外文):Chang-Mou Wu
口試委員:邱顯堂陳錦江朱維政
口試委員(外文):Hsien-Tang ChiuJieng-Chiang ChenWei-Zheng Chu
口試日期:2019-07-24
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:68
中文關鍵詞:聚偏氟乙烯樹枝狀高分子油水分離表面改質
外文關鍵詞:Polyvinylidene difluorideHyperbranched polymerOil/water separationSurface modification
相關次數:
  • 被引用被引用:0
  • 點閱點閱:50
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年由於工業化而產出大量之含油廢水,環境污染已成為一個重要問題。聚偏氟乙烯(PVDF)為熱門過濾膜之一,因為其具有化學穩定佳,熱穩定性好及機械強度高等特質。然而PVDF本身之疏水特性使其易受高黏度油污染,降低其重複利用性,大幅縮短過濾膜之壽命。
超樹枝狀高分子(Hyperbranched polymer, HBPs)常作為表面改質劑,其水溶性樹枝狀高分子含有大量的親水性官能基團,及其內部空腔能吸附有機汙染物,在油水分離應領域中極具潛力。
本實驗利用自我縮合反應合成末端羧基化樹枝狀高分子,再藉由偶合劑1,1′-Carbonyldiimidazole (CDI)進行表面改質,通過界面反應將高分子接枝於PVDF纖維膜,因為改質後PVDF膜表面含有大量羧酸基團而具有抗污性質,由實驗結果得到接觸角從131.1°降至0°。濾液中的殘油濃度從1500 ppm降至9.31 ppm,分離效率高達99.4%,並且由於膜表面之羧酸基與陽離子有靜電吸引力,使油水分離膜具有吸附陽離子型界面活性劑之優點,對於陽離子型乳化油較非離子型乳化油有更高的分離效率。
Recently, due to a large amount of industrialization and oily wastewater, environmental pollution has become an important issue. Polyvinylidene fluoride (PVDF) is one of the most popular filtration membranes because of its distinct properties including high chemical resistance, good thermal stability, and extraordinary mechanical properties. While these filtration membranes have favorable separation efficiency and easy processing, the intrinsic hydrophobic characteristic of PVDF makes it susceptible to high-viscosity oil pollution, and thus reducing the lifecycles.
However, the hyperbranched polymers (HBPs) are usually used as a surface modification agent. These structures should offer a high density of functional groups at the membrane surface have large potential such as antifouling property in a variety of oil/water separation applications.
In this work, The carboxylated hyperbranched polymer was synthesized by self-condensation. A electrospun PVDF membrane with antifouling ability was fabricated via an interfacial reaction, using carboxylated HBP and 1,1'-Carbonyldiimidazole (CDI) as modification agent and coupling agent, respectively. The grafted PVDF membrane in combination with the intrinsic hydrophilicity of carboxylic acid-rich groups, the resultant membrane possesses superhydrophilicity while water contact angle decrease from 131.1° to 0°. The oil concentration in permeate decrease from 1500 ppm to 9.31 ppm, the separation efficiency up to 99.4% and the membrane has advantage for capturing cationic surfactant due to the electrostatic interaction.
目錄
摘要 I
Abstract II
圖目錄 VII
表目錄 IX
第一章 前言 1
1.1引言 1
第二章 文獻回顧與基礎理論 6
2.1靜電紡絲技術 6
2.2靜電紡絲原理 9
2.3樹枝狀高分子 11
2.4超樹枝狀高分子 14
2.5樹枝狀高分子應用 16
2.6接觸角與潤濕性 17
2.7油水分離文獻探討 20
2.8研究動機與目的 22
第三章 實驗 23
3.1藥品 23
3.2實驗流程 25
3.3實驗步驟 26
3.3.1 PVDF靜電紡絲纖維膜製備 26
3.3.1.1 PVDF靜電紡絲溶液配置 26
3.3.1.2 PVDF靜電紡絲程序 26
3.3.2 AB2單體合成 27
3.3.2.1 N-Boc-APDEA之合成 28
3.3.2.2 N-Boc-AB2 之合成 29
3.3.2.3 AB2單體之合成 30
3.3.3 AB2樹枝狀高分子之合成 31
3.3.3.1 AB2樹枝狀高分子之合成 31
3.3.3.2 AB2樹枝狀高分子分子量之鑑定 32
3.3.4 PVDF靜電紡絲纖維膜表面改質 33
3.3.4.1 PVDF-OH靜電紡絲纖維膜製備 33
3.3.4.2 PVDF-COOH靜電紡絲纖維膜製備 34
3.3.5油水分離實驗 34
3.4實驗設備與分析儀器 35
3.4.1實驗設備 35
3.4.2分析儀器 35
第四章 結果與討論 37
4.1 AB2單體之1H NMR鑑定與分析 37
4.1.1 N-Boc-APDEA之1H NMR之鑑定與分析 37
4.1.2 N-Boc-APDEA之1H NMR之鑑定與分析 38
4.1.3 AB2單體之1H NMR之鑑定與分析 38
4.2 AB2超樹枝狀高分子分子量鑑定 40
4.3 PVDF纖維膜表面改質後官能基之鑑定 41
4.4纖維膜表面型態分析 43
4.5接觸角分析 44
4.6油水分離效益分析 45
第五章 結論 49
第六章 未來規劃 50
第七章 參考文獻 53
1. Otitoju, T. A.; Ahmad, A. L.; Ooi, B. S., Polyvinylidene fluoride (PVDF) membrane for oil rejection from oily wastewater: A performance review. Journal of Water Process Engineering 2016, 14, 41-59.
2. Gupta, R. K.; Dunderdale, G. J.; England, M. W.; Hozumi, A., Oil/water separation techniques: a review of recent progresses and future directions. Journal of Materials Chemistry A 2017, 5 (31), 16025-16058.
3. Liao, Y.; Loh, C.-H.; Tian, M.; Wang, R.; Fane, A. G., Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications. Progress in Polymer Science 2018, 77, 69-94.
4. Li, J.-J.; Zhou, Y.-N.; Luo, Z.-H., Polymeric materials with switchable superwettability for controllable oil/water separation: A comprehensive review. Progress in Polymer Science 2018, 87, 1-33.
5. Sun, L. L.; Li, B.; Zhang, Z. G.; Zhong, W. H., Achieving very high fraction of β-crystal PVDF and PVDF/CNF composites and their effect on AC conductivity and microstructure through a stretching process. European Polymer Journal 2010, 46 (11), 2112-2119.
6. Tang, C.-W.; Li, B.; Sun, L.; Lively, B.; Zhong, W.-H., The effects of nanofillers, stretching and recrystallization on microstructure, phase transformation and dielectric properties in PVDF nanocomposites. European Polymer Journal 2012, 48 (6), 1062-1072.
7. Wang, Z.; Sun, L.; Wang, Q.; Li, B.; Wang, S., A novel approach to fabricate interconnected sponge-like and highly permeable polyvinylidene fluoride hollow fiber membranes for direct contact membrane distillation. European Polymer Journal 2014, 60, 262-272.
8. Anton, F., Process and apparatus for preparing artificial threads. Google Patents: 1934.
9. Disintegration of water drops in an electric field. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 1964, 280 (1382), 383-397.
10. Buchko, C. J.; Chen, L. C.; Shen, Y.; Martin, D. C., Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer 1999, 40 (26), 7397-7407.
11. Koski, A.; Yim, K.; Shivkumar, S., Effect of molecular weight on fibrous PVA produced by electrospinning. Materials Letters 2004, 58 (3-4), 493-497.
12. Demir, M. M.; Yilgor, I.; Yilgor, E.; Erman, B., Electrospinning of polyurethane fibers. Polymer 2002, 43 (11), 3303-3309.
13. Megelski, S.; Stephens, J. S.; Chase, D. B.; Rabolt, J. F., Micro-and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 2002, 35 (22), 8456-8466.
14. Wang, C.; Chien, H.-S.; Hsu, C.-H.; Wang, Y.-C.; Wang, C.-T.; Lu, H.-A., Electrospinning of polyacrylonitrile solutions at elevated temperatures. Macromolecules 2007, 40 (22), 7973-7983.
15. Reneker, D. H.; Chun, I., Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 1996, 7 (3), 216.
16. Tomalia, D. A., Dendritic effects: dependency of dendritic nano-periodic property patterns on critical nanoscale design parameters (CNDPs). New J. Chem. 2012, 36 (2), 264-281.
17. Ma, Y.; Mou, Q.; Wang, D.; Zhu, X.; Yan, D., Dendritic Polymers for Theranostics. Theranostics 2016, 6 (7), 930-47.
18. Nanjwade, B. K.; Bechra, H. M.; Derkar, G. K.; Manvi, F.; Nanjwade, V. K., Dendrimers: emerging polymers for drug-delivery systems. European Journal of Pharmaceutical Sciences 2009, 38 (3), 185-196.
19. Bosman, d. A.; Janssen, H.; Meijer, E., About dendrimers: structure, physical properties, and applications. Chemical reviews 1999, 99 (7), 1665-1688.
20. Flory, P. J., Molecular size distribution in three dimensional polymers. I. Gelation1. Journal of the American Chemical Society 1941, 63 (11), 3083-3090.
21. Fréchet, J. M. J.; Hawker, C. J.; Gitsov, I.; Leon, J. W., Dendrimers and Hyperbranched Polymers: Two Families of Three-Dimensional Macromolecules with Similar but Clearly Distinct Properties. Journal of Macromolecular Science, Part A 2006, 33 (10), 1399-1425.
22. Zheng, Y.; Li, S.; Weng, Z.; Gao, C., Hyperbranched polymers: advances from synthesis to applications. Chem Soc Rev 2015, 44 (12), 4091-130.
23. Chen, H.; Kong, J., Hyperbranched polymers from A2 + B3 strategy: recent advances in description and control of fine topology. Polymer Chemistry 2016, 7 (22), 3643-3663.
24. Liu, N.; Vignolle, J.; Vincent, J.-M.; Robert, F.; Landais, Y.; Cramail, H.; Taton, D., One-Pot Synthesis and PEGylation of Hyperbranched Polyacetals with a Degree of Branching of 100%. Macromolecules 2014, 47 (5), 1532-1542.
25. Xiang, F.; Stuart, M.; Vorenkamp, J.; Roest, S.; Timmer-Bosscha, H.; Stuart, M. C.; Fokkink, R.; Loontjens, T., One-Pot Synthesis for Biocompatible Amphiphilic Hyperbranched Polyurea Micelles. Macromolecules 2013, 46 (11), 4418-4425.
26. Zhu, X.; Jaumann, M.; Peter, K.; Möller, M.; Melian, C.; Adams-Buda, A.; Demco, D. E.; Blümich, B., One-pot synthesis of hyperbranched polyethoxysiloxanes. Macromolecules 2006, 39 (5), 1701-1708.
27. Seiler, M., Hyperbranched polymers: Phase behavior and new applications in the field of chemical engineering. Fluid Phase Equilibria 2006, 241 (1-2), 155-174.
28. Hajji, C.; Haag, R., Hyperbranched polymers as platforms for catalysts. In Dendrimer Catalysis, Springer: 2006; pp 149-176.
29. Calderón, M.; Quadir, M. A.; Sharma, S. K.; Haag, R., Dendritic polyglycerols for biomedical applications. Advanced materials 2010, 22 (2), 190-218.
30. Wei, Y.; Li, X.; Xu, Z.; Sun, H.; Zheng, Y.; Peng, L.; Liu, Z.; Gao, C.; Gao, M., Solution processible hyperbranched inverse-vulcanized polymers as new cathode materials in Li–S batteries. Polymer Chemistry 2015, 6 (6), 973-982.
31. Sajid, M.; Nazal, M. K.; Ihsanullah; Baig, N.; Osman, A. M., Removal of heavy metals and organic pollutants from water using dendritic polymers based adsorbents: A critical review. Separation and Purification Technology 2018, 191, 400-423.
32. Young, T., III. An essay on the cohesion of fluids. Philosophical transactions of the royal society of London 1805, (95), 65-87.
33. Wenzel, R. N., Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry 1936, 28 (8), 988-994.
34. Yuan, T.; Meng, J.; Hao, T.; Wang, Z.; Zhang, Y., A scalable method toward superhydrophilic and underwater superoleophobic PVDF membranes for effective oil/water emulsion separation. ACS applied materials & interfaces 2015, 7 (27), 14896-14904.
35. Shi, H.; He, Y.; Pan, Y.; Di, H.; Zeng, G.; Zhang, L.; Zhang, C., A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation. Journal of membrane science 2016, 506, 60-70.
36. Kong, J.; Li, K., Oil removal from oil-in-water emulsions using PVDF membranes. Separation and purification technology 1999, 16 (1), 83-93.
37. Susan, L. Y.; Ismail, S.; Ooi, B. S.; Mustapa, H., Surface morphology of pvdf membrane and its fouling phenomenon by crude oil emulsion. Journal of Water Process Engineering 2017, 15, 55-61.
38. Razzaghi, M. H.; Safekordi, A.; Tavakolmoghadam, M.; Rekabdar, F.; Hemmati, M., Morphological and separation performance study of PVDF/CA blend membranes. Journal of membrane science 2014, 470, 547-557.
39. Zhu, Y.; Zhang, F.; Wang, D.; Pei, X. F.; Zhang, W.; Jin, J., A novel zwitterionic polyelectrolyte grafted PVDF membrane for thoroughly separating oil from water with ultrahigh efficiency. Journal of Materials Chemistry A 2013, 1 (18), 5758-5765.
40. Mirtalebi, E.; Shirazi, M. M. A.; Kargari, A.; Tabatabaei, M.; Ramakrishna, S., Assessment of atomic force and scanning electron microscopes for characterization of commercial and electrospun nylon membranes for coke removal from wastewater. Desalination and Water Treatment 2014, 52 (34-36), 6611-6619.
41. Wu, C. M.; Chou, M. H., Sound absorption of electrospun polyvinylidene fluoride/graphene membranes. European Polymer Journal 2016, 82, 35-45.
42. Choi, S. W.; Kim, J. R.; Ahn, Y. R.; Jo, S. M.; Cairns, E. J., Characterization of electrospun PVDF fiber-based polymer electrolytes. Chemistry of materials 2007, 19 (1), 104-115.
43. Zhu, Y.; Wang, D.; Jiang, L.; Jin, J., Recent progress in developing advanced membranes for emulsified oil/water separation. NPG Asia Materials 2014, 6 (5), e101.
44. Gao, S. J.; Shi, Z.; Zhang, W. B.; Zhang, F.; Jin, J., Photoinduced superwetting single-walled carbon nanotube/TiO2 ultrathin network films for ultrafast separation of oil-in-water emulsions. ACS nano 2014, 8 (6), 6344-6352.
45. Nguyen, H. Q.; Deng, B., Electrospinning and in situ nitrogen doping of TiO2/PAN nanofibers with photocatalytic activation in visible lights. Materials Letters 2012, 82, 102-104.
46. Mansourpanah, Y.; Momeni Habili, E., Investigation and characterization of TiO2-TFC nanocomposite membranes; membrane preparation and UV studies. Journal of Membrane Science and Research 2015, 1 (1), 26-33.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔