|
[1] K. Wei, Y. Zhao, J. Liu, S. Liu, Y. Cui, R. Zhu, Y. Yang and Y. Cui, “Pulsed laser deposited SnS-SnSe nanocomposite as a new anode material for lithium ion batteries”, Int. J. Electrochem. Sci., 2017, 12, 7404-7410. [2] D.H. Lee and C.M. Park, “Tin selenides with layered crystal structures for Li ion batteries: Interesting phase change mechanisms and outstanding electrochemical behaviors”, ACS Appl. Mater. Interfaces, 2017, 9, 15439-15448. [3] J. Ning, G. Xiao, T. Jiang, L. Wang, Q. Dai, B. Zou, B. Liu, Y. Wei, G. Chen and G. Zou, “Shape and size controlled synthesis and properties of colloidal IV–VI SnSe nanocrystals”, CrystEngComm, 2011, 13, 4161-4166. [4] Y. Cheng, J. Huang, J. Li, L. Cao, Z. Xu, X. Luo, H. Qi and P. Guo, “SnSe/r-GO composite with enhanced pseudocapacitance as high-performance anode for Li ion batteries”, ACS Sustainable Chem. Eng., 2019, 7, 8637-8646. [5] Z. Zhang, X. Zhao and J. Li, “SnSe/carbon nanocomposite synthesized by high energy ball milling as an anode material for sodium-ion and lithium-ion batteries”, Electrochimica Acta, 2015, 176, 1296-1301. [6] X. Wang, B. Liu, Q. Xiang, Q. Wang, X. Hou, D. Chen and G. Shen, “Spray‐painted binder‐free SnSe electrodes for high‐performance energy‐storage devices”, ChemSusChem, 2014,7, 308-313. [7] K. Chen, X. Wang, G. Wang, B. Wang, X. Liu, J. Bai and H. Wang, “A new generation of high performance anode materials with semiconductor heterojunction structure of SnSe/SnO2@Gr in lithium-ion batteries”, Chemical Engineering Journal, 2018, 347, 552-562. [8] Y. Kim, Y. Kim, Y. Park, Y.N. Jo, Y.J. Kim, N.S. Choi and K.T. Lee, “SnSe alloy as a promising anode material for Na-ion batteries”, Chem. Commun., 2015, 51, 50-53. [9] Y. He, L. Zhang, M. Fan, X. Wang, M.L. Walbridge, Q. Nong, Y. Wu and L. Zhao, “Z-scheme SnO2-x/g-C3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction”, Solar Energy Materials & Solar Cells, 2015, 137, 175-184. [10] H. Liu, J. Lu, Z. Yang, J. Teng, L. Ke, X. Zhang, L. Tong and C.H. Sow, “Ultrahigh photoconductivity of bandgap-graded CdSxSe1−x nanowires probed by terahertz spectroscopy”, Scientific Reports, 2016, 6, 27387. [11] K.I. Ishibashi, A. Fujishima, T. Watanabe and K. Hashimoto, “Quantum yields of active oxidative species formed on TiO2 photocatalyst”, Journal of Photochemistry and Photobiology A: Chemistry, 2000, 134, 139-142. [12] M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O‘Shea, M.H. Entezari, D.D. Dionysiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications”, Applied Catalysis B, 2012, 125, 331-349. [13] Z. Zhang, J. Huang, M. Zhang, Q. Yuan and B. Dong, “Ultrathin hexagonal SnS2 nanosheets coupled with g-C3N4 nanosheets as 2D/2D heterojunction photocatalysts toward high photocatalytic activity”, Applied Catalysis B: Environmental, 2015, 163, 298-305. [14] S.G. Babu, A.S. Vijayan, B. Neppolian and M. Ashokkumar, “SnS2/rGO: An efficient photocatalyst for the complete degradation of organic contaminants”, Materials Focus, 2015, 4, 272-276. [15] Y.C. Zhang, F. Zhang, Z. Yang, H. Xue and D.D. Dionysiou, “Development of a new efficient visible-light-driven photocatalyst from SnS2 and polyvinyl chloride”, Journal of Catalysis, 2016, 344, 692-700. [16] Y.C. Zhang, L. Yao, G. Zhang, D.D. Dionysiou, J. Li and X. Du, “One-step hydrothermal synthesis of high-performance visible-light-driven SnS2/SnO2 nanoheterojunction photocatalyst for the reduction of aqueous Cr(VI)”, Applied Catalysis B: Environmental, 2014, 144, 730-738. [17] Y.J. Yuan, D.Q. Chen, X.F. Shi, J.R. Tu, B. Hu, N.X. Yang, Z.T. Yu and Z.G. Zou, “Facile fabrication of “green” SnS2 quantum dots/reduced graphene oxide composites with enhanced photocatalytic performance”, Chemical Engineering Journal, 2017, 313, 1438-1446. [18] Y. Lei, S. Song, W. Fan, Y. Xing and H. Zhang, “Facile synthesis and assemblies of flowerlike SnS2 and In3+-doped SnS2: hierarchical structures and their enhanced photocatalytic property”, J. Phys. Chem. C, 2009, 113, 1280-1285. [19] Y.C. Zhang, Z.N. Du, K.W. Li, M. Zhang and D.D. Dionysiou, “High-performance visible-light-driven SnS2/SnO2 nanocomposite photocatalyst prepared via in situ hydrothermal oxidation of SnS2 nanoparticles”, ACS Appl. Mater. Interfaces, 2011, 3, 1528-1537. [20] X. Zhou, T. Zhou, J. Hu and J. Li, “Controlled strategy to synthesize SnO2 decorated SnS2 nanosheets with enhanced visible light photocatalytic activity”, CrystEngComm, 2012, 14, 5627-5633. [21] L. Li, P.A. Salvador and G.S. Rohrer, “Photocatalysts with internal electric fields”, Nanoscale, 2014, 6, 24-42. [22] W.J. Baumgardner, J.J. Choi, Y.F. Lim and T. Hanrath, “SnSe nanocrystals: synthesis, structure, optical properties, and surface chemistry”, J. Am. Chem. Soc., 2010, 132, 9519-9521. [23] D. Zheng, H. Fang, M. Long, F. Wu, P. Wang, F. Gong, X. Wu, J.C. Ho, L. Liao and W. Hu, “High-performance near-infrared photodetectors based on p Type SnX (X = S, Se) nanowires grown via chemical vapor deposition”, ACS Nano, 2018, 12, 7239-7245. [24] L. Li, Z. Chen, Y. Hu, X. Wang, T. Zhang, W. Chen and Q. Wang, “Single-layer single-crystalline SnSe nanosheets”, J. Am. Chem. Soc., 2013, 135, 1213-1216. [25] S. Zhao, H. Wang, Y. Zhou, L. Liao, Y. Jiang, X. Yang, G. Chen, M. Lin, Y. Wang, H. Peng and Z. Liu, “Controlled synthesis of single-crystal SnSe nanoplates”, Nano Research, 2015, 8, 288-295. [26] J. Yao, Z. Zheng, and G. Yang, “All-layered 2D optoelectronics: a high-performance UV–Vis–NIR broadband SnSe photodetector with Bi2Te3 topological insulator electrodes”, Adv. Funct. Mater., 2017, 27, 1701823. [27] J. Cao, Z. Wang, X. Zhan, Q. Wang, M. Safdar, Y. Wang and J. He, “Vertical SnSe nanorod arrays: from controlled synthesis and growth mechanism to thermistor and photoresistor”, Nanotechnology, 2014, 25, 105705. [28] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2”, Nature Nanotechnology, 2013, 8, 497-501. [29] H. Tan, Y. Fan, Y. Zhou, Q. Chen, W. Xu and J.H. Warner, “Ultrathin 2D photodetectors utilizing chemical vapor deposition grown WS2 with graphene electrodes”, ACS Nano, 2016, 10, 7866-7873. [30] X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin, H. Li, Y. Bando, D. Golberg and T. Zhai, “Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors” Advanced Materials, 2015, 27, 8035-8041. [31] P.A. Hu, Z. Wen, L. Wang, P. Tan and K. Xiao, “Synthesis of few-layer GaSe nanosheets for high performance photodetectors”, ACS Nano, 2012, 6, 5988-5994. [32] S.R. Tamalampudi, Y.Y. Lu, R.K. U., R. Sankar, C.D. Liao, K.M. B., C.H. Cheng, F.C. Chou and Y.T. Chen, “High performance and bendable few-layered InSe photodetectors with broad spectral response”, Nano Lett., 2014, 14, 2800-2806. [33] S. Zhao, H. Wang, Y. Zhou, L. Liao, Y. Jiang, X. Yang, G. Chen, M. Lin, Y. Wang, H. Peng and Z. Liu, “Controlled synthesis of single-crystal SnSe nanoplates”, Nano Research, 2015, 8, 288-295. [34] T. Pei, L. Bao, G. Wang, R. Ma, H. Yang, J. Li, C. Gu, S. Pantelides, S. Du, and H.J. Gao, “Few-layer SnSe2 transistors with high on/off ratios”, Applied Physics Letters, 2016, 108, 053506. [35] Q.L. Feng, Y. Zhu, J.H. Hong, M. Zhang, W.J. Duan, N.N. Mao, J. Wu, H. Xu, F.L. Dong, F. Lin, C.H. Jin, C.M. Wang, J. Zhang and L.M. Xie, “Growth of large-area 2D MoS2(1-x)Se2x semiconductor alloys”, Adv. Mater, 2014, 26, 2648-2653. [36] K.F. Mak, C. Lee, J. Hone, J. Shan and T.F. Heinz, “Atomically thin MoS2: A new direct-gap semiconductor”, PRL, 2010, 105, 136805. [37] Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, X. Song, H.Y. Hwang, Y. Cui and Z. Liu, “Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary”, ACS Nano, 2013, 7, 8963-8971. [38] X. Yuan, L. Tang, S. Liu, P. Wang, Z. Chen, C. Zhang, Y. Liu, W. Wang, Y. Zou, C. Liu, N. Guo, J. Zou, P. Zhou, W. Hu and F. Xiu, “Arrayed Van der waals vertical heterostructures based on 2D GaSe grown by molecular beam epitaxy”, Nano Lett, 2015, 15, 3571-3577. [39] S. Sucharitakul, N.J. Goble, U.R. Kumar, R. Sankar, Z.A. Bogorad, F.C. Chou, Y.T. Chen and X.P.A. Gao, “Intrinsic electron mobility exceeding 103 cm2/Vs in multilayer InSe FETs”, Nano Letters, 2015, 15, 3815-3819. [40] L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid and M.G. Kanatzidis, “Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals”, Nature, 2014, 508, 373-377. [41] F. Zhang, C. Xia, J.J Zhu, B. Ahmed, H.F. Liang, D.B. Velusamy, U. Schwingenschlögl and H.N. Alshareef, “SnSe2 2D anodes for advanced sodium ion batteries”, Adv. Energy Mater, 2016, 6, 1601188. [42] K. Liu, H. Liu, J. Wang and L. Feng, “Synthesis and characterization of SnSe2 hexagonal nanoflakes”, Materials Letters, 2009, 63, 512-514. [43] P. Yu, X. Yu, W. Lu, D. Wu, H. Lin, L. Sun, K. Du, F. Liu, W. Fu, Q. Zeng, Z. Shen, C. Jin, Q.J. Wang and Z. Liu, “Fast photoresponse from 1T tin diselenide atomic layers”, Advanced Functional Materials, 2015, 26, 137-145. [44] D.W. Ma and C. Cheng, “Synthesis of SnSe2 nanorods and nanoplates by an organic solution-phase route”, Journal of Nanoscience and Nanotechnology, 2013, 13, 4433-4436. [45] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos and A.A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene”, Nature, 2005, 438, 197-200. [46] L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen and Y. Zhang, “Black phosphorus field-effect transistors”, Nature Nanotechnology, 2014, 9, 372-377. [47] S. Lebègue, T. Björkman, M. Klintenberg, R.M. Nieminen and O. Eriksson, “Two-dimensional materials from data filtering and Ab initio calculations”, Phys. Rev. X, 2013, 3, 031002. [48] A. Kuc, “Low-dimensional transition-metal dichalcogenides”, Chem. Modell., 2014, 11, 1-29. [49] L.A. Burton, T.J. Whittles, D. Hesp, W.M. Linhart, J.M. Skelton, B. Hou, R.F. Webster, G. O'Dowd, C. Reece, D. Cherns, D.J. Fermin, T.D. Veal, V.R. Dhanak and A. Walsh, “Electronic and optical properties of single crystal SnS2: an earth-abundant disulfide photocatalyst”, J. Mater. Chem. A, 2016, 4, 1312-1318. [50] L. Sun, W. Zhou, Y. Liu, Y. Lu, Y. Liang and P. Wu, “A first-principles study on the origin of magnetism induced by intrinsic defects in monolayer SnS2”, Computational Materials Science, 2017, 126, 52-58. [51] C. Julien, M. Eddrief, I. Samaras and M. Balkanski, “Optical and electrical characterizations of SnSe, SnS2 and SnSe2 single crystals”, Mater. Sci. Eng. B, 1992, 15, 70-72. [52] O. Madelung, “Semiconductors: Data Handbook”, 3rd ed., Springer, New York, 2004. [53] A. Voznyi, V. Kosyak, A. Opanasyuk, N. Tirkusova, L. Grase, A. Medvids and G. Mezinskis, “Structural and Electrical Properties of SnS2 thin Films”, 2016, 173, 52-61. [54] J. Xia, D. Zhu, L. Wang, B. Huang, X. Huang and X.M. Meng, “Large‐scale growth of two‐dimensional SnS2 crystals driven by screw dislocations and application to photodetectors”, Advanced Functional Materials, 2015, 25, 4255-4261. [55] G. Su, V.G. Hadjiev, P.E. Loya, J. Zhang, S. Lei, S. Maharjan, P. Dong, P.M. Ajayan, J. Lou and H. Peng, “Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application”, Nano Lett., 2015, 15, 506-513. [56] I. Lefebvre, M.A. Szymanski, J. Olivier-Fourcade and J.C. Jumas, “Electronic structure of tin monochalcogenides from SnO to SnTe”, Phys. Rev. B, 1998, 58, 1896-1906. [57] S.I. Kim, S. Hwang, S.Y. Kim, W.J. Lee, D.W. Jung, K.S. Moon, H.J. Park, Y.J. Cho, Y.H. Cho, J.H. Kim, D.J. Yun, K.H. Lee, I.t. Han, K. Lee and Y. Sohn, “Metallic conduction induced by direct anion site doping in layered SnSe2”, Scientific Reports, 2016, 6, 19733. [58] D.I. Bletskan, K.E. Glukhov and V.V. Frolova “Electronic structure of 2H-SnSe2: ab initio modeling and comparison with experiment”, Quantum Electronics & Optoelectronics, 2016, 19, 98-108. [59] W. Fu, J. Wang, S. Zhou, R. Li and T. Peng, “Controllable fabrication of regular hexagon-shaped SnS2 nanoplates and their enhanced visible-light-driven H2 production activity”, ACS Appl. Nano Mater., 2018, 1, 2923-2933. [60] D. Wei, L. Yao, S. Yang, J. Hu, M. Cao and C. Hu, “Facile fabrication of InSe nanosheets: towards efficient visible-light-driven H2 production by coupling with P25”, Inorg. Chem. Front., 2015, 2, 657-661. [61] B.H. Wu, W.T. Liu, T.Y. Chen, T.P. Perng, J.H. Huang, L.J. Chen, “Plasmon-enhanced photocatalytic hydrogen production on Au/TiO2 hybrid nanocrystal arrays”, Nano Energy, 2016, 27, 412-419. [62] W.J. Albery and P.N. Bartlett, “The transport and kinetics of photogenerated carriers in colloidal semiconductor electrode particles” Journal of the Electrochemical Society, 1984, 131, 315-325. [63] Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu and Q.J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector”, Nature Communications, 2013, 4, 1811. [64] Z. Zhang, J. Yang, F. Mei and G. Shen, “Longitudinal twinning α-In2Se3 nanowires for UV-visible-NIR photodetectors with high sensitivity”, Front. Optoelectron. 2018, 11, 245-255. [65] R. Jia, D. Zhao, N. Gao and D. Liu, “Polarization enhanced charge transfer: dual-band GaN-based plasmonic photodetector”, Scientific Reports, 2017, 7, 40483. [66] Y. Liu, Z. Gao, Y. Tan and F. Chen, “Enhancement of out-of-plane charge transport in a vertically stacked two-dimensional heterostructure using point defects”, ACS Nano, 2018, 12, 10529-10536. [67] S. Liu, X. Guo, M. Li, W.H. Zhang, X. Liu and C. Li, “Solution‐phase synthesis and characterization of single‐crystalline SnSe nanowires”, Angew. Chem. Int. Ed., 2011, 50, 12050-12053. [68] L. Zhao, M. Yosef, M. Steinhart, P. Goring, H. Hofmeister, U. Gosele, and S. Schlecht, “Porous silicon and alumina as chemically reactive templates for the synthesis of tubes and wires of SnSe, Sn, and SnO2”, Angew. Chem. Int. Ed., 2006, 45, 311-315. [69] P. Tan, X. Chen, L. Wu, Y.Y. Shang, W. Liu, J. Pan and X. Xiong, “Hierarchical flower-like SnSe2 supported Ag3PO4 nanoparticles: Towards visible light driven photocatalyst with enhanced performance”, Applied Catalysis B: Environmental, 2017, 202, 326-334. [70] C.F. Fu, R. Zhang, Q. Luo, X. Li and J. Yang, “Construction of direct Z-scheme photocatalysts for overall water splitting using two-dimensional van der Waals heterojunctions of metal dichalcogenides”, J. Comput. Chem., 2019, 40, 980-987. [71] E. Pomerantseva and Y. Gogotsi, “Two-dimensional heterostructures for energy storage”, Nature Energy, 2017, 2, 17089. [72] Y. Zheng, T. Zhou, C. Zhang, J. Mao, H. Liu and Z. Guo, “Boosted charge transfer in SnS/SnO2 heterostructures: toward high rate capability for sodium‐ion batteries”, Angew. Chem. Int. Ed., 2016, 55, 3408-3413. [73] Y.K Wu, “Microstructure analysis and device characterization of oriented attachment-assisted growth SnS2 nanoflakes via chemical vapor deposition method” National Taiwan University of Science and Technology, Taipei, 2017. [74] M. Zhang, J.X. Wu, Y.M. Zhu, D.O. Dumcenco, J.H. Hong, N.N. Mao, S.B. Deng, Y.F. Chen, Y.L. Yang, C.H. Jin, S.H. Chaki, Y.S. Huang, J. Zhang and L.M. Xie, “Two-dimensional molybdenum tungsten diselenide alloys: Photoluminescence, Raman scattering, and electrical transport”, ACS Nano, 2014, 8, 7130-7137. [75] X. Jia, Z. Lin, T. Zhang, B. Puthen-Veettil, T. Yang, K. Nomoto, J. Ding, G. Conibeer and I. Perez-Wurfl, “Accurate analysis of the size distribution and crystallinity of boron doped Si nanocrystals via Raman and PL spectra”, RSC Adv., 2017, 7, 34244-34250. [76] K.G. Godinho, A. Walsh and G.W. Watson, “Energetic and electronic structure analysis of intrinsic defects in SnO2”, J. Phys. Chem. C, 2009, 113, 439-448. [77] E.A. de Morais, L.V.A. Scalvi, A.A. Cavalheiro, A. Tabata and J.B.B. Oliveira, “Rare earth centers properties and electron trapping in SnO2 thin films produced by sol-gel route”, Journal of Non-Crystalline Solids, 2008, 354, 4840-4845. [78] C.S. Turchi and D.F. Ollis, “Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack”, Journal of catalysis, 1990, 122, 178-192. [79] A.G. Shiravizadeh, R. Yousefi, S.M. Elahi and S.A. Sebt, “Effects of annealing atmosphere and rGO concentration on the optical properties and enhanced photocatalytic performance of SnSe/rGO nanocomposites”, Phys. Chem. Chem. Phys., 2017, 19, 18089-18098. [80] M. Gharsallah, F. Serrano-Sánchez, N.M. Nemes, F.J. Mompeán, J.L. Martínez, M.T. Fernández-Díaz, F. Elhalouani and J. A. Alonso, “Giant Seebeck effect in Ge-doped SnSe”, Scientific Reports, 2016, 6, 26774. [81] P.A. Fernandes, M.G. Sousa, P.M. P. Salome, J.P. Leitao and A.F. da Cunha, “Thermodynamic pathway for the formation of SnSe and SnSe2 polycrystalline thin films by selenization of metal precursors”, CrystEngComm, 2013, 15, 10278-10286. [82] S.N. Yannopoulos and K.S. Andrikopoulos, “Raman scattering study on structural and dynamical features of noncrystalline selenium”, J. Chem. Phys., 2004, 121, 4747-4758. [83] Y. Huang, C. Wang, X. Chen, D. Zhou, J. Du, S. Wang and L. Ning, “First-principles study on intrinsic defects of SnSe”, RSC Adv., 2017, 7, 27612-27618. [84] D.H. Lee and C.M. Park, “Tin selenides with layered crystal structures for Li-ion batteries: Interesting phase change mechanisms and outstanding electrochemical behaviors”, ACS Appl. Mater. Interfaces, 2017, 9, 15439-15448. [85] K. Wei, Y. Zhao, J. Liu, S. Liu, Y. Cui, R. Zhu, Y. Yang and Y. Cui, “Pulsed laser deposited SnS-SnSe nanocomposite as a new anode material for lithium ion batteries”, Int. J. Electrochem. Sci., 2017, 12, 7404-7410. [86] D.H. Lee and C.M. Park, “Tin selenides with layered crystal structures for Li-ion batteries: Interesting phase change mechanisms and outstanding electrochemical behaviors”, ACS Appl. Mater. Interfaces, 2017, 9, 15439-15448. [87] J. Ning, G. Xiao, T. Jiang, L. Wang, Q. Dai, B. Zou, B. Liu, Y. Wei, G. Chen and G. Zou, “Shape and size controlled synthesis and properties of colloidal IV–VI SnSe nanocrystals”, CrystEngComm, 2011, 13, 4161-4166. [88] Z. Zhang, X. Zhao and J. Li, “SnSe/carbon nanocomposite synthesized by high energy ball milling as an anode material for sodium-ion and lithium-ion batteries”, Electrochimica Acta, 2015, 176, 1296-1301. [89] X. Wang, B. Liu, Q. Xiang, Q. Wang, X. Hou, D. Chen and G. Shen, “Spray‐painted binder‐free SnSe electrodes for high‐performance energy‐storage devices”, ChemSusChem, 2014,7, 308-313. [90] Y. Cheng, J. Huang, J. Li, L. Cao, Z. Xu, X. Luo, H. Qi and P. Guo, “SnSe/r-GO composite with enhanced pseudocapacitance as high-performance anode for Li ion batteries”, ACS Sustainable Chem. Eng., 2019, 7, 8637-8646. [91] K. Chen, X. Wang, G. Wang, B. Wang, X. Liu, J. Bai and H. Wang, “A new generation of high performance anode materials with semiconductor heterojunction structure of SnSe/SnO2@Gr in lithium-ion batteries”, Chemical Engineering Journal, 2018, 347, 552-562. [92] C. Luo, Y. Xu, Y. Zhu, Y. Liu, S. Zheng, Y. Liu, A. Langrock and C. Wang, “Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity”, ACS Nano, 2013, 7, 8003-8010. [93] T. Tharsika, A.S.M.A. Haseeb, S.A. Akbar, M.F.M. Sabri and W.Y. Hoong, “Enhanced ethanol gas sensing properties of SnO2-Core/ZnO-shell nanostructures”, Sensors, 2014, 14, 14586-14600. [94] A. Adán-Más and D. Wei, “Photoelectrochemical properties of graphene and its derivatives”, Nanomaterials, 2013, 3, 325-356. [95] R. Summitt, “Infrared absorption in single-crystal stannic oxide: optical lattice-vibration modes”, Journal of Applied Physics, 1968, 39, 3762-3767. [96] C. Soci, A. Zhang, X.Y. Bao, H. Kim, Y. Lo and D. Wang, “Nanowire photodetectors”, J. Nanosci. Nanotechnol., 2010, 10, 1430-1449. [97] N. Ding, J. Xu, Y. Yao, G. Wegner, I. Lieberwirth and C. Chen, “Improvement of cyclability of Si as anode for Li-ion batteries”, Journal of Power Sources, 2009, 192, 644-652. [98] C. Hou, Q. Zhang, Y. Li and H. Wang, “P25-graphene hydrogels: Room-temperature synthesis and application for removal of methylene blue from aqueous solution”, Journal of Hazardous Materials, 2012, 205-206, 229-235. [99] W. Yao, B. Zhang, C. Huang, C. Ma, X. Song and Q. Xu, “Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions”, J. Mater. Chem., 2012, 22, 4050-4055. [100] Y. Zhang and C. Pan, “TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light”, Journal of Materials Science, 2011, 46, 2622-2626.
|