(18.206.12.76) 您好!臺灣時間:2021/04/23 09:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡亮峰
研究生(外文):Liang-Feng Tsai
論文名稱:Sn-Se材料之光感測、光催化與鋰電池應用暨SnO2/SnS2異質結構奈米片光催化研究
論文名稱(外文):Photodetector, Photocatalyst, Li Ion Battery of Sn-Se Nanomaterials, and Photocatalytic Property of SnO2/SnS2 Heterostructure Nanoflakes
指導教授:王秋燕王秋燕引用關係
指導教授(外文):Chiu-Yen Wang
口試委員:周賢鎧蔡孟霖葉炳宏
口試委員(外文):Shyan-Kay JouMeng-Lin TsaiPing-Hung Yeh
口試日期:2019-07-11
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:178
中文關鍵詞:一維材料光催化光感測鋰電池二維材料
外文關鍵詞:1D materialPhotocatalystPhotodetectorLi-ion battery2D material
相關次數:
  • 被引用被引用:0
  • 點閱點閱:80
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究的半導體奈米材料有三種,分別為SnO2/SnS2異質結構奈米片、SnxSe(1-x)奈米線以及SnSe2/SnSe異質結構奈米片。
第一部份,SnO2/SnS2異質結構奈米片以CVD製程成長並藉由調控冷卻時間來達到控制SnO2與SnS2之間的比例。本實驗總共有四種不同比例的SnO2/SnS2異質結構奈米片被製作出來,分別為純的SnO2、SnS2、SnO2/SnS2 (SnO2偏多)與SnO2/SnS2 (SnS2偏多)。接著將這些奈米片放置於甲基藍溶液中,並在5 W,475 nm LED燈的照射下觀察甲基藍的降解情形。結果顯示只要有SnO2/SnS2異質接面存在都會有效改善降解效果。透過SnO2與SnS2的能帶結構可以得知SnO2/SnS2為一個type II異質接面,能夠有效分離光生電子與電洞以增加載子壽命使催化效果上升。
第二部份,SnxSe(1-x)奈米線,為能夠容易的控制奈米線的組份,使用AAO模板輔助壓力鑄造法來製備並藉由改變前驅物組份來達到控制SnxSe(1-x)奈米線中Sn與Se空缺的含量。一共有8種不同組份的SnxSe(1-x) (x=0.47~0.53)奈米線被合成出來並製作成光感測器。這些不同缺陷濃度的SnSe奈米線被用來製備成光感測器來探測從可見光至紅外光波長的光波。結果顯示出SnxSe(1-x)的光感測性能會隨著x的增加而增加。藉由缺陷的能帶模擬得知,隨著缺陷數量的上升,SnxSe(1-x)的能帶會變小。換句話說,材料的導電率會隨著缺陷濃度的上升而增加,導電率的上升意味著自由電子的增加。也就是說在同樣光強度下,Sn0.53Se0.47的光生載子數量會比純的SnSe還多,使光響應上升。
第三部份,SnSe2/SnSe異質結構奈米片,藉由鉻酸與氫氧化鈉對於SnSe與SnSe2之間的選擇性蝕刻來得到不同組份的SnSe2/SnSe異質結構奈米片。XRD與Raman分析得知,不論是鉻酸或是氫氧化鈉,SnSe2都會優先被蝕刻。將Sn0.39Se0.61(SnSe-SnSe2共晶相)塊材溶於鉻酸中,得到純SnSe奈米片以及SnSe2/SnSe異質結構奈米片,並將奈米片應用於鋰電池。儘管SnSe2的理論電容值比SnSe要低,SnSe2/SnSe異質結構奈米片依舊展現出比SnSe奈米片還要優異的可逆電容。這可以歸因於SnSe2/SnSe異質結構奈米片具有較低的電荷傳輸電阻,其可能是因為SnSe2/SnSe異質接面的電場增加了載子的移動速率。另外,也測試了將不同熱處理後的Sn0.39Se0.61塊材(淬冷、淬冷後退火以及緩慢冷卻三種)浸泡於氫氧化鈉中以得到不同結晶度的SnSe異質結構奈米片。隨後將這三種奈米片作為光催化劑在5 W,475 nm的LED燈下降解甲基藍。由於結晶度高的SnSe奈米片的載子平均自由徑比淬火的要長,預期上退火與緩慢冷卻得SnSe奈米片會有較佳的降解能力。結果顯示淬冷後退火的SnSe奈米片確實具有最佳的降解效果。
In this thesis, three different kinds of materials were being investigated, SnO2/SnS2 heterostructure nanoflakes, SnxSe(1-x) nanowires and SnSe2/SnSe heterostructure nanoflakes.
For the first part, SnO2/SnS2 heterostructure nanoflakes was fabricated with CVD method and the composition can be controlled by adjusting the cooling time during the process. Here, four kinds of nanoflakes were being synthesized, SnO2, SnS2, SnO2/SnS2 (SnO2 rich) and SnO2/SnS2 (SnS2 rich), respectively. Afterwards, these nanoflakes were then used to photodegrade methyl blue solution under 5 W, 475 nm LED light source to probe the influence of SnO2/SnS2 heterojunction to photocatalytic performance. On the basis of the result from UV-Vis spectrometer, the SnO2/SnS2 heterojunction can improve the degraded performance. Base of the band structure of SnO2 and SnS2, the SnO2/SnS2 is a type II heterojunction that will separate electrons and holes to enhance carrier life time and further ameliorate the photodegraded property.
For the second part, SnxSe(1-x) nanowires, in order to control the composition, the AAO template supporting die casting process was being adopted, and the SnxSe(1-x) nanowires with different x were fabricated by directly changing the composition of SnxSe(1-x) bulks. In this report, 8 kinds of SnxSe(1-x) (x=0.47~0.53) nanowires have been synthesized. Those SnxSe(1-x) (x=0.47~0.53) nanowires were used to fabricate the photodetector to detect the light from visible light to infrared light. As result, the photoresponse will rise with the increasing x. To understand the mechanism, the band structure simulation with different concentration of Sn and Se vacancies were being employed and the consequence shown that the band gap will decrease when the defect concentration is ascending. Moreover, under the same defect concentration, the inducing of Se vacancies demonstrate much lower band gap than Sn vacancies. In other words, the free electrons inside SnxSe(1-x) increase as x increase, which mean Sn0.53Se0.47 can generate more electrons and holes than SnSe under the same power density of the irradiation light source and further enhance the photoresponse.
For the third part, SnSe2/SnSe heterostructure nanoflakes were prepared by using H2Cr2O7 or NaOH as an etching solution to etch Sn0.39Se0.61(SnSe-SnSe2 eutectic phase) bulk through selective etching between SnSe and SnSe2. Depend on the XRD and Raman spectrum, the SnSe2 phase is the priority etching phase even for NaOH or H2Cr2O7 solution. Here, the Sn0.39Se0.61 bulk was soaked in H2Cr2O7 solution to obtain SnSe2/SnSe and SnSe nanoflakes, and used in Li-ion battery. Even though the theoretical capacitance of SnSe2 (800 mAh/g) is lower than SnSe (847 mAh/g), SnSe2/SnSe nanoflakes also display the higher reversible capacitance than SnSe nanoflakes. It can be attributed to the build in electric field at SnSe2/SnSe heterojunction that can enhance the carrier mobility to lower charge transfer resistance of SnSe2/SnSe nanoflakes. Besides, we also investigate the influence of heat treatment on precursor Sn0.39Se0.61 bulk (3 types: quench, annealing after quench and slow cooling rate) and the obtained SnSe2/SnSe nanoflakes. These three kinds of SnSe2/SnSe nanoflakes were used as photocatalyst to degrade MB dye under 5 W, 475 nm LED. Since the carrier live time of the SnSe nanoflakes with high crystallinity is longer than the quenching sample, the annealing and slow cooling SnSe nanoflakes is expected to have better degradation ability, and the results show that the SnSe nanoflake that annealed after quenching really have the best degradation effect.
摘要 III
Abstract V
致謝 VIII
List of Abbreviations and Acronyms 1
List of Figures and Tables 2
Chapter 1. Introduction 10
1.1 Nanomaterials 10
1.2 The Structure of SnS2 11
1.2.1 Characteristics of SnS2 Nanoflake 13
1.3 The Structure and Characteristics of SnSe 14
1.4 The Structure and Applications of SnSe2 16
1.5 Flow Chart of Research 18
1.6 Overview of Nanowires Photodetector 22
1.7 Introduction of Photocatalyst 23
1.8 Li-Ion Battery Review 24
Chapter 2. Experimental Section 25
2.1 Manufacture of SnxSe(1-x) Nanowires 25
2.1.1 Preparation of SnxSe(1-x) Bulks 25
2.1.2 Fabrication of SnxSe(1-x) Nanowires 25
2.1.3 AAO Template Removing Process 28
2.1.4 SnxSe(1-x) Nanowires Photodetector Fabrication 28
2.1.5 SnxSe(1-x) Nanowires Photodetector Measurement 28
2.2 Production of SnSe2/SnSe Heterostructure Naoflakes 29
2.2.1 Sn0.39Se0.61 Bulks Preparation 29
2.2.2 H2Cr2O7 Solution Etching Sn0.39Se0.61 Nanoflakes 30
2.2.3 Fabrication of Li-Ion Battery with Sn0.39Se0.61 Nanoflakes 31
2.2.4 NaOH Solution Etching SnSe Nanoflakes 31
2.2.5 NaOH Solution Etching In6Se7/SnSe Heterostructure Nanoflakes 32
2.2.6 Measurement of SnSe Nanoflakes Photocatalytic Property 32
2.3 Synthesis of SnO2/SnS2 Nanoflakes 33
2.3.1 Measurement of Photocatalytic Property 36
Chapter 3. Results and Discussions 37
3.1 The Investigation of SnxSe(1-x) Nanowires (x=0.47~0.53) and Application in Photodetector 37
3.1.1 Motivation of SnxSe(1-x) Nanowires Photodetector 37
3.1.2 Characterization of SnxSe(1-x) Nanowires 38
3.1.3 Photosensing Property of SnxSe(1-x) Nanowires 49
3.1.4 Band Structure Simulation of SnxSe(1-x) Nanowires 70
3.2 The Investigation of SnSe and SnSe2/SnSe Nanoflakes 75
3.2.1 Motivation of SnSe2/SnSe Heterostructure Nanoflakes Li-Ion Battery and SnSe Nanoflakes Photocatalyst 75
3.2.2 Characterization of H2Cr2O7 Etched SnSe2/SnSe Nanoflakes 78
3.2.3 The Li Ions Storage Property of H2Cr2O7 Etched SnSe and SnSe2/SnSe Nanoflakes 90
3.2.4 Characterization of NaOH Etched SnSe Nanoflakes 102
3.2.5 The Photocatalytic Property of SnSe Nanoflakes with Distinct Heating Treatment. 114
3.3 The Application of SnO2/SnS2 Heterostructure Nanoflakes on Photocatalyst 121
3.3.1 Motivation of SnO2/SnS2 Heterostructure Nanoflakes Photocatalyst 121
3.3.2 Relationship Between Cooling Time and Obtained SnO2/SnS2 Heterostructure Nanoflakes 123
3.3.3 Characterization of SnO2/SnS2 Nanoflakes 126
3.3.4 The Photodegraded Efficiency of SnO2/SnS2 Heterostructure Nanoflakes 133
Chapter 4. Summary and Conclusions 142
4.1 The Influence of Intrinsic Defects on SnxSe(1-x) Nanowires Photodetector 142
4.2 The Research of SnSe, SnSe2/SnSe Nanoflakes and Its Application 143
4.3 The Investigation of SnO2/SnS2 Heterostructure Nanoflakes on Photocatalyst 144
Chapter 5. Future Works 145
5.1 The Future Works of SnxSe(1-x) Nanowires Photodetector 145
5.2 The Future Works of SnSe Nanoflakes 145
References 146
Appendix 160
[1] K. Wei, Y. Zhao, J. Liu, S. Liu, Y. Cui, R. Zhu, Y. Yang and Y. Cui, “Pulsed laser deposited SnS-SnSe nanocomposite as a new anode material for lithium ion batteries”, Int. J. Electrochem. Sci., 2017, 12, 7404-7410.
[2] D.H. Lee and C.M. Park, “Tin selenides with layered crystal structures for Li ion batteries: Interesting phase change mechanisms and outstanding electrochemical behaviors”, ACS Appl. Mater. Interfaces, 2017, 9, 15439-15448.
[3] J. Ning, G. Xiao, T. Jiang, L. Wang, Q. Dai, B. Zou, B. Liu, Y. Wei, G. Chen and G. Zou, “Shape and size controlled synthesis and properties of colloidal IV–VI SnSe nanocrystals”, CrystEngComm, 2011, 13, 4161-4166.
[4] Y. Cheng, J. Huang, J. Li, L. Cao, Z. Xu, X. Luo, H. Qi and P. Guo, “SnSe/r-GO composite with enhanced pseudocapacitance as high-performance anode for Li ion batteries”, ACS Sustainable Chem. Eng., 2019, 7, 8637-8646.
[5] Z. Zhang, X. Zhao and J. Li, “SnSe/carbon nanocomposite synthesized by high energy ball milling as an anode material for sodium-ion and lithium-ion batteries”, Electrochimica Acta, 2015, 176, 1296-1301.
[6] X. Wang, B. Liu, Q. Xiang, Q. Wang, X. Hou, D. Chen and G. Shen, “Spray‐painted binder‐free SnSe electrodes for high‐performance energy‐storage devices”, ChemSusChem, 2014,7, 308-313.
[7] K. Chen, X. Wang, G. Wang, B. Wang, X. Liu, J. Bai and H. Wang, “A new generation of high performance anode materials with semiconductor heterojunction structure of SnSe/SnO2@Gr in lithium-ion batteries”, Chemical Engineering Journal, 2018, 347, 552-562.
[8] Y. Kim, Y. Kim, Y. Park, Y.N. Jo, Y.J. Kim, N.S. Choi and K.T. Lee, “SnSe alloy as a promising anode material for Na-ion batteries”, Chem. Commun., 2015, 51, 50-53.
[9] Y. He, L. Zhang, M. Fan, X. Wang, M.L. Walbridge, Q. Nong, Y. Wu and L. Zhao, “Z-scheme SnO2-x/g-C3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction”, Solar Energy Materials & Solar Cells, 2015, 137, 175-184.
[10] H. Liu, J. Lu, Z. Yang, J. Teng, L. Ke, X. Zhang, L. Tong and C.H. Sow, “Ultrahigh photoconductivity of bandgap-graded CdSxSe1−x nanowires probed by terahertz spectroscopy”, Scientific Reports, 2016, 6, 27387.
[11] K.I. Ishibashi, A. Fujishima, T. Watanabe and K. Hashimoto, “Quantum yields of active oxidative species formed on TiO2 photocatalyst”, Journal of Photochemistry and Photobiology A: Chemistry, 2000, 134, 139-142.
[12] M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O‘Shea, M.H. Entezari, D.D. Dionysiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications”, Applied Catalysis B, 2012, 125, 331-349.
[13] Z. Zhang, J. Huang, M. Zhang, Q. Yuan and B. Dong, “Ultrathin hexagonal SnS2 nanosheets coupled with g-C3N4 nanosheets as 2D/2D heterojunction photocatalysts toward high photocatalytic activity”, Applied Catalysis B: Environmental, 2015, 163, 298-305.
[14] S.G. Babu, A.S. Vijayan, B. Neppolian and M. Ashokkumar, “SnS2/rGO: An efficient photocatalyst for the complete degradation of organic contaminants”, Materials Focus, 2015, 4, 272-276.
[15] Y.C. Zhang, F. Zhang, Z. Yang, H. Xue and D.D. Dionysiou, “Development of a new efficient visible-light-driven photocatalyst from SnS2 and polyvinyl chloride”, Journal of Catalysis, 2016, 344, 692-700.
[16] Y.C. Zhang, L. Yao, G. Zhang, D.D. Dionysiou, J. Li and X. Du, “One-step hydrothermal synthesis of high-performance visible-light-driven SnS2/SnO2 nanoheterojunction photocatalyst for the reduction of aqueous Cr(VI)”, Applied Catalysis B: Environmental, 2014, 144, 730-738.
[17] Y.J. Yuan, D.Q. Chen, X.F. Shi, J.R. Tu, B. Hu, N.X. Yang, Z.T. Yu and Z.G. Zou, “Facile fabrication of “green” SnS2 quantum dots/reduced graphene oxide composites with enhanced photocatalytic performance”, Chemical Engineering Journal, 2017, 313, 1438-1446.
[18] Y. Lei, S. Song, W. Fan, Y. Xing and H. Zhang, “Facile synthesis and assemblies of flowerlike SnS2 and In3+-doped SnS2: hierarchical structures and their enhanced photocatalytic property”, J. Phys. Chem. C, 2009, 113, 1280-1285.
[19] Y.C. Zhang, Z.N. Du, K.W. Li, M. Zhang and D.D. Dionysiou, “High-performance visible-light-driven SnS2/SnO2 nanocomposite photocatalyst prepared via in situ hydrothermal oxidation of SnS2 nanoparticles”, ACS Appl. Mater. Interfaces, 2011, 3, 1528-1537.
[20] X. Zhou, T. Zhou, J. Hu and J. Li, “Controlled strategy to synthesize SnO2 decorated SnS2 nanosheets with enhanced visible light photocatalytic activity”, CrystEngComm, 2012, 14, 5627-5633.
[21] L. Li, P.A. Salvador and G.S. Rohrer, “Photocatalysts with internal electric fields”, Nanoscale, 2014, 6, 24-42.
[22] W.J. Baumgardner, J.J. Choi, Y.F. Lim and T. Hanrath, “SnSe nanocrystals: synthesis, structure, optical properties, and surface chemistry”, J. Am. Chem. Soc., 2010, 132, 9519-9521.
[23] D. Zheng, H. Fang, M. Long, F. Wu, P. Wang, F. Gong, X. Wu, J.C. Ho, L. Liao and W. Hu, “High-performance near-infrared photodetectors based on p Type SnX (X = S, Se) nanowires grown via chemical vapor deposition”, ACS Nano, 2018, 12, 7239-7245.
[24] L. Li, Z. Chen, Y. Hu, X. Wang, T. Zhang, W. Chen and Q. Wang, “Single-layer single-crystalline SnSe nanosheets”, J. Am. Chem. Soc., 2013, 135, 1213-1216.
[25] S. Zhao, H. Wang, Y. Zhou, L. Liao, Y. Jiang, X. Yang, G. Chen, M. Lin, Y. Wang, H. Peng and Z. Liu, “Controlled synthesis of single-crystal SnSe nanoplates”, Nano Research, 2015, 8, 288-295.
[26] J. Yao, Z. Zheng, and G. Yang, “All-layered 2D optoelectronics: a high-performance UV–Vis–NIR broadband SnSe photodetector with Bi2Te3 topological insulator electrodes”, Adv. Funct. Mater., 2017, 27, 1701823.
[27] J. Cao, Z. Wang, X. Zhan, Q. Wang, M. Safdar, Y. Wang and J. He, “Vertical SnSe nanorod arrays: from controlled synthesis and growth mechanism to thermistor and photoresistor”, Nanotechnology, 2014, 25, 105705.
[28] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2”, Nature Nanotechnology, 2013, 8, 497-501.
[29] H. Tan, Y. Fan, Y. Zhou, Q. Chen, W. Xu and J.H. Warner, “Ultrathin 2D photodetectors utilizing chemical vapor deposition grown WS2 with graphene electrodes”, ACS Nano, 2016, 10, 7866-7873.
[30] X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin, H. Li, Y. Bando, D. Golberg and T. Zhai, “Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors” Advanced Materials, 2015, 27, 8035-8041.
[31] P.A. Hu, Z. Wen, L. Wang, P. Tan and K. Xiao, “Synthesis of few-layer GaSe nanosheets for high performance photodetectors”, ACS Nano, 2012, 6, 5988-5994.
[32] S.R. Tamalampudi, Y.Y. Lu, R.K. U., R. Sankar, C.D. Liao, K.M. B., C.H. Cheng, F.C. Chou and Y.T. Chen, “High performance and bendable few-layered InSe photodetectors with broad spectral response”, Nano Lett., 2014, 14, 2800-2806.
[33] S. Zhao, H. Wang, Y. Zhou, L. Liao, Y. Jiang, X. Yang, G. Chen, M. Lin, Y. Wang, H. Peng and Z. Liu, “Controlled synthesis of single-crystal SnSe nanoplates”, Nano Research, 2015, 8, 288-295.
[34] T. Pei, L. Bao, G. Wang, R. Ma, H. Yang, J. Li, C. Gu, S. Pantelides, S. Du, and H.J. Gao, “Few-layer SnSe2 transistors with high on/off ratios”, Applied Physics Letters, 2016, 108, 053506.
[35] Q.L. Feng, Y. Zhu, J.H. Hong, M. Zhang, W.J. Duan, N.N. Mao, J. Wu, H. Xu, F.L. Dong, F. Lin, C.H. Jin, C.M. Wang, J. Zhang and L.M. Xie, “Growth of large-area 2D MoS2(1-x)Se2x semiconductor alloys”, Adv. Mater, 2014, 26, 2648-2653.
[36] K.F. Mak, C. Lee, J. Hone, J. Shan and T.F. Heinz, “Atomically thin MoS2: A new direct-gap semiconductor”, PRL, 2010, 105, 136805.
[37] Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, X. Song, H.Y. Hwang, Y. Cui and Z. Liu, “Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary”, ACS Nano, 2013, 7, 8963-8971.
[38] X. Yuan, L. Tang, S. Liu, P. Wang, Z. Chen, C. Zhang, Y. Liu, W. Wang, Y. Zou, C. Liu, N. Guo, J. Zou, P. Zhou, W. Hu and F. Xiu, “Arrayed Van der waals vertical heterostructures based on 2D GaSe grown by molecular beam epitaxy”, Nano Lett, 2015, 15, 3571-3577.
[39] S. Sucharitakul, N.J. Goble, U.R. Kumar, R. Sankar, Z.A. Bogorad, F.C. Chou, Y.T. Chen and X.P.A. Gao, “Intrinsic electron mobility exceeding 103 cm2/Vs in multilayer InSe FETs”, Nano Letters, 2015, 15, 3815-3819.
[40] L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid and M.G. Kanatzidis, “Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals”, Nature, 2014, 508, 373-377.
[41] F. Zhang, C. Xia, J.J Zhu, B. Ahmed, H.F. Liang, D.B. Velusamy, U. Schwingenschlögl and H.N. Alshareef, “SnSe2 2D anodes for advanced sodium ion batteries”, Adv. Energy Mater, 2016, 6, 1601188.
[42] K. Liu, H. Liu, J. Wang and L. Feng, “Synthesis and characterization of SnSe2 hexagonal nanoflakes”, Materials Letters, 2009, 63, 512-514.
[43] P. Yu, X. Yu, W. Lu, D. Wu, H. Lin, L. Sun, K. Du, F. Liu, W. Fu, Q. Zeng, Z. Shen, C. Jin, Q.J. Wang and Z. Liu, “Fast photoresponse from 1T tin diselenide atomic layers”, Advanced Functional Materials, 2015, 26, 137-145.
[44] D.W. Ma and C. Cheng, “Synthesis of SnSe2 nanorods and nanoplates by an organic solution-phase route”, Journal of Nanoscience and Nanotechnology, 2013, 13, 4433-4436.
[45] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos and A.A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene”, Nature, 2005, 438, 197-200.
[46] L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen and Y. Zhang, “Black phosphorus field-effect transistors”, Nature Nanotechnology, 2014, 9, 372-377.
[47] S. Lebègue, T. Björkman, M. Klintenberg, R.M. Nieminen and O. Eriksson, “Two-dimensional materials from data filtering and Ab initio calculations”, Phys. Rev. X, 2013, 3, 031002.
[48] A. Kuc, “Low-dimensional transition-metal dichalcogenides”, Chem. Modell., 2014, 11, 1-29.
[49] L.A. Burton, T.J. Whittles, D. Hesp, W.M. Linhart, J.M. Skelton, B. Hou, R.F. Webster, G. O'Dowd, C. Reece, D. Cherns, D.J. Fermin, T.D. Veal, V.R. Dhanak and A. Walsh, “Electronic and optical properties of single crystal SnS2: an earth-abundant disulfide photocatalyst”, J. Mater. Chem. A, 2016, 4, 1312-1318.
[50] L. Sun, W. Zhou, Y. Liu, Y. Lu, Y. Liang and P. Wu, “A first-principles study on the origin of magnetism induced by intrinsic defects in monolayer SnS2”, Computational Materials Science, 2017, 126, 52-58.
[51] C. Julien, M. Eddrief, I. Samaras and M. Balkanski, “Optical and electrical characterizations of SnSe, SnS2 and SnSe2 single crystals”, Mater. Sci. Eng. B, 1992, 15, 70-72.
[52] O. Madelung, “Semiconductors: Data Handbook”, 3rd ed., Springer, New York, 2004.
[53] A. Voznyi, V. Kosyak, A. Opanasyuk, N. Tirkusova, L. Grase, A. Medvids and G. Mezinskis, “Structural and Electrical Properties of SnS2 thin Films”, 2016, 173, 52-61.
[54] J. Xia, D. Zhu, L. Wang, B. Huang, X. Huang and X.M. Meng, “Large‐scale growth of two‐dimensional SnS2 crystals driven by screw dislocations and application to photodetectors”, Advanced Functional Materials, 2015, 25, 4255-4261.
[55] G. Su, V.G. Hadjiev, P.E. Loya, J. Zhang, S. Lei, S. Maharjan, P. Dong, P.M. Ajayan, J. Lou and H. Peng, “Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application”, Nano Lett., 2015, 15, 506-513.
[56] I. Lefebvre, M.A. Szymanski, J. Olivier-Fourcade and J.C. Jumas, “Electronic structure of tin monochalcogenides from SnO to SnTe”, Phys. Rev. B, 1998, 58, 1896-1906.
[57] S.I. Kim, S. Hwang, S.Y. Kim, W.J. Lee, D.W. Jung, K.S. Moon, H.J. Park, Y.J. Cho, Y.H. Cho, J.H. Kim, D.J. Yun, K.H. Lee, I.t. Han, K. Lee and Y. Sohn, “Metallic conduction induced by direct anion site doping in layered SnSe2”, Scientific Reports, 2016, 6, 19733.
[58] D.I. Bletskan, K.E. Glukhov and V.V. Frolova “Electronic structure of 2H-SnSe2: ab initio modeling and comparison with experiment”, Quantum Electronics & Optoelectronics, 2016, 19, 98-108.
[59] W. Fu, J. Wang, S. Zhou, R. Li and T. Peng, “Controllable fabrication of regular hexagon-shaped SnS2 nanoplates and their enhanced visible-light-driven H2 production activity”, ACS Appl. Nano Mater., 2018, 1, 2923-2933.
[60] D. Wei, L. Yao, S. Yang, J. Hu, M. Cao and C. Hu, “Facile fabrication of InSe nanosheets: towards efficient visible-light-driven H2 production by coupling with P25”, Inorg. Chem. Front., 2015, 2, 657-661.
[61] B.H. Wu, W.T. Liu, T.Y. Chen, T.P. Perng, J.H. Huang, L.J. Chen, “Plasmon-enhanced photocatalytic hydrogen production on Au/TiO2 hybrid nanocrystal arrays”, Nano Energy, 2016, 27, 412-419.
[62] W.J. Albery and P.N. Bartlett, “The transport and kinetics of photogenerated carriers in colloidal semiconductor electrode particles” Journal of the Electrochemical Society, 1984, 131, 315-325.
[63] Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu and Q.J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector”, Nature Communications, 2013, 4, 1811.
[64] Z. Zhang, J. Yang, F. Mei and G. Shen, “Longitudinal twinning α-In2Se3 nanowires for UV-visible-NIR photodetectors with high sensitivity”, Front. Optoelectron. 2018, 11, 245-255.
[65] R. Jia, D. Zhao, N. Gao and D. Liu, “Polarization enhanced charge transfer: dual-band GaN-based plasmonic photodetector”, Scientific Reports, 2017, 7, 40483.
[66] Y. Liu, Z. Gao, Y. Tan and F. Chen, “Enhancement of out-of-plane charge transport in a vertically stacked two-dimensional heterostructure using point defects”, ACS Nano, 2018, 12, 10529-10536.
[67] S. Liu, X. Guo, M. Li, W.H. Zhang, X. Liu and C. Li, “Solution‐phase synthesis and characterization of single‐crystalline SnSe nanowires”, Angew. Chem. Int. Ed., 2011, 50, 12050-12053.
[68] L. Zhao, M. Yosef, M. Steinhart, P. Goring, H. Hofmeister, U. Gosele, and S. Schlecht, “Porous silicon and alumina as chemically reactive templates for the synthesis of tubes and wires of SnSe, Sn, and SnO2”, Angew. Chem. Int. Ed., 2006, 45, 311-315.
[69] P. Tan, X. Chen, L. Wu, Y.Y. Shang, W. Liu, J. Pan and X. Xiong, “Hierarchical flower-like SnSe2 supported Ag3PO4 nanoparticles: Towards visible light driven photocatalyst with enhanced performance”, Applied Catalysis B: Environmental, 2017, 202, 326-334.
[70] C.F. Fu, R. Zhang, Q. Luo, X. Li and J. Yang, “Construction of direct Z-scheme photocatalysts for overall water splitting using two-dimensional van der Waals heterojunctions of metal dichalcogenides”, J. Comput. Chem., 2019, 40, 980-987.
[71] E. Pomerantseva and Y. Gogotsi, “Two-dimensional heterostructures for energy storage”, Nature Energy, 2017, 2, 17089.
[72] Y. Zheng, T. Zhou, C. Zhang, J. Mao, H. Liu and Z. Guo, “Boosted charge transfer in SnS/SnO2 heterostructures: toward high rate capability for sodium‐ion batteries”, Angew. Chem. Int. Ed., 2016, 55, 3408-3413.
[73] Y.K Wu, “Microstructure analysis and device characterization of oriented attachment-assisted growth SnS2 nanoflakes via chemical vapor deposition method” National Taiwan University of Science and Technology, Taipei, 2017.
[74] M. Zhang, J.X. Wu, Y.M. Zhu, D.O. Dumcenco, J.H. Hong, N.N. Mao, S.B. Deng, Y.F. Chen, Y.L. Yang, C.H. Jin, S.H. Chaki, Y.S. Huang, J. Zhang and L.M. Xie, “Two-dimensional molybdenum tungsten diselenide alloys: Photoluminescence, Raman scattering, and electrical transport”, ACS Nano, 2014, 8, 7130-7137.
[75] X. Jia, Z. Lin, T. Zhang, B. Puthen-Veettil, T. Yang, K. Nomoto, J. Ding, G. Conibeer and I. Perez-Wurfl, “Accurate analysis of the size distribution and crystallinity of boron doped Si nanocrystals via Raman and PL spectra”, RSC Adv., 2017, 7, 34244-34250.
[76] K.G. Godinho, A. Walsh and G.W. Watson, “Energetic and electronic structure analysis of intrinsic defects in SnO2”, J. Phys. Chem. C, 2009, 113, 439-448.
[77] E.A. de Morais, L.V.A. Scalvi, A.A. Cavalheiro, A. Tabata and J.B.B. Oliveira, “Rare earth centers properties and electron trapping in SnO2 thin films produced by sol-gel route”, Journal of Non-Crystalline Solids, 2008, 354, 4840-4845.
[78] C.S. Turchi and D.F. Ollis, “Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack”, Journal of catalysis, 1990, 122, 178-192.
[79] A.G. Shiravizadeh, R. Yousefi, S.M. Elahi and S.A. Sebt, “Effects of annealing atmosphere and rGO concentration on the optical properties and enhanced photocatalytic performance of SnSe/rGO nanocomposites”, Phys. Chem. Chem. Phys., 2017, 19, 18089-18098.
[80] M. Gharsallah, F. Serrano-Sánchez, N.M. Nemes, F.J. Mompeán, J.L. Martínez, M.T. Fernández-Díaz, F. Elhalouani and J. A. Alonso, “Giant Seebeck effect in Ge-doped SnSe”, Scientific Reports, 2016, 6, 26774.
[81] P.A. Fernandes, M.G. Sousa, P.M. P. Salome, J.P. Leitao and A.F. da Cunha, “Thermodynamic pathway for the formation of SnSe and SnSe2 polycrystalline thin films by selenization of metal precursors”, CrystEngComm, 2013, 15, 10278-10286.
[82] S.N. Yannopoulos and K.S. Andrikopoulos, “Raman scattering study on structural and dynamical features of noncrystalline selenium”, J. Chem. Phys., 2004, 121, 4747-4758.
[83] Y. Huang, C. Wang, X. Chen, D. Zhou, J. Du, S. Wang and L. Ning, “First-principles study on intrinsic defects of SnSe”, RSC Adv., 2017, 7, 27612-27618.
[84] D.H. Lee and C.M. Park, “Tin selenides with layered crystal structures for Li-ion batteries: Interesting phase change mechanisms and outstanding electrochemical behaviors”, ACS Appl. Mater. Interfaces, 2017, 9, 15439-15448.
[85] K. Wei, Y. Zhao, J. Liu, S. Liu, Y. Cui, R. Zhu, Y. Yang and Y. Cui, “Pulsed laser deposited SnS-SnSe nanocomposite as a new anode material for lithium ion batteries”, Int. J. Electrochem. Sci., 2017, 12, 7404-7410.
[86] D.H. Lee and C.M. Park, “Tin selenides with layered crystal structures for Li-ion batteries: Interesting phase change mechanisms and outstanding electrochemical behaviors”, ACS Appl. Mater. Interfaces, 2017, 9, 15439-15448.
[87] J. Ning, G. Xiao, T. Jiang, L. Wang, Q. Dai, B. Zou, B. Liu, Y. Wei, G. Chen and G. Zou, “Shape and size controlled synthesis and properties of colloidal IV–VI SnSe nanocrystals”, CrystEngComm, 2011, 13, 4161-4166.
[88] Z. Zhang, X. Zhao and J. Li, “SnSe/carbon nanocomposite synthesized by high energy ball milling as an anode material for sodium-ion and lithium-ion batteries”, Electrochimica Acta, 2015, 176, 1296-1301.
[89] X. Wang, B. Liu, Q. Xiang, Q. Wang, X. Hou, D. Chen and G. Shen, “Spray‐painted binder‐free SnSe electrodes for high‐performance energy‐storage devices”, ChemSusChem, 2014,7, 308-313.
[90] Y. Cheng, J. Huang, J. Li, L. Cao, Z. Xu, X. Luo, H. Qi and P. Guo, “SnSe/r-GO composite with enhanced pseudocapacitance as high-performance anode for Li ion batteries”, ACS Sustainable Chem. Eng., 2019, 7, 8637-8646.
[91] K. Chen, X. Wang, G. Wang, B. Wang, X. Liu, J. Bai and H. Wang, “A new generation of high performance anode materials with semiconductor heterojunction structure of SnSe/SnO2@Gr in lithium-ion batteries”, Chemical Engineering Journal, 2018, 347, 552-562.
[92] C. Luo, Y. Xu, Y. Zhu, Y. Liu, S. Zheng, Y. Liu, A. Langrock and C. Wang, “Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity”, ACS Nano, 2013, 7, 8003-8010.
[93] T. Tharsika, A.S.M.A. Haseeb, S.A. Akbar, M.F.M. Sabri and W.Y. Hoong, “Enhanced ethanol gas sensing properties of SnO2-Core/ZnO-shell nanostructures”, Sensors, 2014, 14, 14586-14600.
[94] A. Adán-Más and D. Wei, “Photoelectrochemical properties of graphene and its derivatives”, Nanomaterials, 2013, 3, 325-356.
[95] R. Summitt, “Infrared absorption in single-crystal stannic oxide: optical lattice-vibration modes”, Journal of Applied Physics, 1968, 39, 3762-3767.
[96] C. Soci, A. Zhang, X.Y. Bao, H. Kim, Y. Lo and D. Wang, “Nanowire photodetectors”, J. Nanosci. Nanotechnol., 2010, 10, 1430-1449.
[97] N. Ding, J. Xu, Y. Yao, G. Wegner, I. Lieberwirth and C. Chen, “Improvement of cyclability of Si as anode for Li-ion batteries”, Journal of Power Sources, 2009, 192, 644-652.
[98] C. Hou, Q. Zhang, Y. Li and H. Wang, “P25-graphene hydrogels: Room-temperature synthesis and application for removal of methylene blue from aqueous solution”, Journal of Hazardous Materials, 2012, 205-206, 229-235.
[99] W. Yao, B. Zhang, C. Huang, C. Ma, X. Song and Q. Xu, “Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions”, J. Mater. Chem., 2012, 22, 4050-4055.
[100] Y. Zhang and C. Pan, “TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light”, Journal of Materials Science, 2011, 46, 2622-2626.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔