|
[1] Y. Cai, L. Yang, H. Zhang, Y. Wang, Laser cutting silicon-glass double layer wafer with laser induced thermal-crack propagation, Optics and Lasers in Engineering 82 (2016) 173-185. [2] C. Fornaroli, J. Holtkamp, A. Gillner, Dicing of thin Si wafers with a picosecond laser ablation process, Physics Procedia 41 (2013) 603-609. [3] H. Taguchi, S. Miyake, A. Suzuki, S. Kamiyama, Y. Fujiwara, Evaluation of crystallinity of GaN epitaxial layer after wafer dicing, Materials Science in Semiconductor Processing 41 (2016) 89-91. [4] W.-S. Lei, A. Kumar, R. Yalamanchili, Die singulation technologies for advanced packaging: A critical review, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 30(4) (2012) 040801. [5] J.-W. Lin, M.-H. Cheng, Investigation of chipping and wear of silicon wafer dicing, Journal of Manufacturing Processes 16(3) (2014) 373-378. [6] D. Hülsenberg, A. Harnisch, A. Bismarck, Microstructuring of glasses, Springer (2008). [7] J.P. Chu, C.-C. Yu, Y. Tanatsugu, M. Yasuzawa, Y.-L. Shen, Non-stick syringe needles: beneficial effects of thin film metallic glass coating, Scientific Reports 6 (2016) 31847. [8] J.P. Chu, C.-M. Lee, R. Huang, P. Liaw, Zr-based glass-forming film for fatigue-property improvements of 316L stainless steel: Annealing effects, Surface and Coatings Technology 205(16) (2011) 4030-4034. [9] 張家豪, 金屬玻璃鍍層用於提升鎂合金疲勞性質, 降低高速鋼鑽頭鑽孔溫度及降低風阻研究 (2019). [10] P. tools, The connection between the history of wet & dry diamond blades and the increased exposure to silica dust (2017). [11] V. Research, History of the chip equipment, Session 5.3: Dicing (1987). [12] Z. Yuan, K. Cheng, Y. Zhang, J. Hu, P. Zheng, Investigation on the fabrication of dicing blades with different sintering methods for machining hard-brittle material wafers, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 233(7) (2019) 1781-1793. [13] I. LEL Diamond Tools International, Diamond blade guide (2010). [14] B.T.a. Supply, Diamond blade buying guide_diamond concentration (2019). [15] L. Asahi diamond Industrial Co., precision cutting tool (2015). [16] Z. Wang, J. Wang, S. Lee, S. Yao, R. Han, Y.Q. Su, 300-mm low-k wafer dicing saw development, IEEE Transactions on Electronics Packaging Manufacturing 30(4) (2007) 313-319. [17] J. Luo, T. Li, J. Yao, Dicing saw process study on wafer which has thick aluminum pads on the scribe street, 2008 10th Electronics Packaging Technology Conference, IEEE (2008) 1253-1257. [18] DISCO, Dicing - blade dicing (2019). [19] Y. Guo, Y. Zhang, J. Yan, X. Chen, S. Zhang, H. Xie, P. Liu, H. Zhu, J. Wang, J. Li, Sapphire substrate sidewall shaping of deep ultraviolet light-emitting diodes by picosecond laser multiple scribing, Applied Physics Express 10(6) (2017) 062101. [20] G. Levinson, Process optimization of dicing microelectronic substrates, USA, Kulicke & Soffa Indutries Inc (2011). [21] 陶崇榮, 增置自動磨刀系統於晶圓切割製程提升製程能力之研究 (2012). [22] M. Tilli, M. Paulasto-Krockel, T. Motooka, V. Lindroos, Handbook of silicon based MEMS materials and technologies, William Andrew (2015). [23] F. Fukuyo, K. Fukumitsu, N. Uchiyama, The stealth dicing technology and their applications, Processing of 6th Laser Precision Microfabrication (2005). [24] T.A. Mai, Toward debris-free laser micromachining, Industrial Laser Solutions for Manufacturing, 23(1) (2008) 16. [25] E. Ohmura, F. Fukuyo, K. Fukumitsu, H. Morita, Internal modified-layer formation mechanism into silicon with nanosecond laser, Journal of Achievements in Materials and Manufacturing Engineering 17(1-2) (2006) 381-384. [26] M. Kumagai, T. Sakamoto, E. Ohmura, Laser processing of doped silicon wafer by the stealth dicing, 2007 International Symposium on Semiconductor Manufacturing, IEEE (2007) 1-4. [27] W. Kroeninger, Thin die production, Materials for Advanced Packaging, Springer (2009) 219-242. [28] A.D. Technologies., Introduction to dressing (2014). [29] U. Efrat, Optimizing the wafer dicing process, Proceedings of 15th IEEE/CHMT International Electronic Manufacturing Technology Symposium, IEEE (1993) 245-253. [30] M.S. Amri, D. Liew, F. Harun, Chipping free process for combination of narrow saw street (60um) and thick wafer (600um) sawing process, 2010 34th IEEE/CPMT International Electronic Manufacturing Technology Symposium (IEMT), IEEE (2010) 1-5. [31] S. Gao, R. Kang, Z. Dong, B. Zhang, Edge chipping of silicon wafers in diamond grinding, International Journal of Machine Tools and Manufacture 64 (2013) 31-37. [32] H.N. Li, T.B. Yu, L. Da Zhu, W.S. Wang, Analytical modeling of grinding-induced subsurface damage in monocrystalline silicon, Materials & Design 130 (2017) 250-262. [33] S. Luo, Z. Wang, Studies of chipping mechanisms for dicing silicon wafers, The International Journal of Advanced Manufacturing Technology 35(11-12) (2008) 1206-1218. [34] Z. Yao, W. Gu, K.J.J.o.M.P.T. Li, Relationship between surface roughness and subsurface crack depth during grinding of optical glass BK7, 212(4) (2012) 969-976. [35] I. Weisshaus, D. Shi, U. Efrat, Wafer dicing, Advanced Packaging 9 (2000) 60-63. [36] U. Efrat, I. Weisshaus, Dicing yield—Using blade torque to monitor chipping, SEMICON Singapore Test, Assembly and Packaging (TAP) Technical Program, Singapore (1999) 4-6. [37] J. Jiang, C. Song, Z. Zhang, Dicing technology in super-thin wafer for IC, 5th International Conference onElectronic Packaging Technology Proceedings, ICEPT2003., IEEE (2003) 130-132. [38] H.H. Jiun, I. Ahmad, A. Jalar, G. Omar, Effect of laminated wafer toward dicing process and alternative double pass sawing method to reduce chipping, IEEE transactions on electronics packaging manufacturing 29(1) (2006) 17-24. [39] H. Li, T.M. Shaw, X.-H. Liu, G. Bonilla, Delayed mechanical failure of the under-bump interconnects by bump shearing, Journal of Applied Physics 111(8) (2012) 083503. [40] D.H. Eppes, Crack resistant scribe line monitor structure and method for making the same, Google Patents (2006). [41] W.F. Landers, T.M. Shaw, D. Llera-Hurlburt, S.W. Crowder, V.J. McGahay, S.G. Malhotra, C.R. Davis, R.D. Goldblatt, B.H. Engel, Multi-functional structure for enhanced chip manufacturibility and reliability for low k dielectrics semiconductors and a crackstop integrity screen and monitor, Google Patents (2006). [42] J.A. Fitzsimmons, M.W. Lane, V.J. McGahay, T.M. Shaw, A.K. Stamper, Crackstop with release layer for crack control in semiconductors, Google Patents (2006). [43] T.H. Daubenspeck, J.P. Gambino, T.L. McDevitt, A.K. Stamper, Electrical detection of dicing damage, Google Patents (2004). [44] K.A. de las Alas, C. Ison, J.O. Rivera, R. dela Cruz, R. Aguares, D. Vyas, T. Nguyen, M. Bailon-Somintac, Temperature and humidity stress failure on copper pillar (CuP) flip chip package device, 2017 IEEE 24th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), IEEE (2017) 1-4. [45] H.H. Gatzen, C. Morsbach, G.M. Jones, Investigations Regarding the Operating Range of Ultrathin Grinding Wheels on AlTiC, Initiatives of Precision Engineering at the Beginning of a Millennium, Springer (2002) 431-435. [46] T.-J. Su, Y.-F. Chen, J.-C. Cheng, C.-L. Chiu, Optimizing the dicing saw parameters of 60 μm wafer dicing street, Microsystem Technologies 24(10) (2018) 3965-3971. [47] M. Carrilero, M. Marcos, On the machinability of aluminium and aluminium alloys, Journal of the Mechanical Behavior of Materials 7(3) (1996) 179-194. [48] J. Gu, G. Barber, S. Tung, R.-J. Gu, Tool life and wear mechanism of uncoated and coated milling inserts, Wear 225 (1999) 273-284. [49] L. Yang, Prediction of steady-state wear coefficients in adhesive wear, Tribology transactions 47(3) (2004) 335-340. [50] L. Yang, A test methodology for the determination of wear coefficient, Wear 259(7-12) (2005) 1453-1461. [51] B. Lawn, Fracture of brittle solids, Cambridge solid state science series, Continuum 39(41) (1993) 44. [52] J.E. Ayers, T. Kujofsa, P. Rago, J. Raphael, Heteroepitaxy of semiconductors: theory, growth, and characterization, CRC press (2016). [53] K. Matsumaru, A. Takata, K. Ishizaki, Advanced thin dicing blade for sapphire substrate, Science and Technology of Advanced Materials 6(2) (2005) 120-122. [54] M. Wood, How do LEDs work? Patterned sapphire substrates. [55] C.-C. Kao, Y.-K. Su, C.-L. Lin, J.-J. Chen, The aspect ratio effects on the performances of GaN-based light-emitting diodes with nanopatterned sapphire substrates, Applied Physics Letters 97(2) (2010) 023111. [56] S. Zhou, B. Cao, S. Liu, H. Ding, Improved light extraction efficiency of GaN-based LEDs with patterned sapphire substrate and patterned ITO, Optics & Laser Technology 44(7) (2012) 2302-2305. [57] J. Sun, F. Qin, P. Chen, T. An, Z. Wang, Edge chipping of silicon wafers in rotating grinding, 2016 17th International Conference on Electronic Packaging Technology (ICEPT), IEEE (2016) 1099-1103. [58] J.P. Chu, J. Jang, J. Huang, H. Chou, Y. Yang, J. Ye, Y.-C. Wang, J. Lee, F. Liu, P. Liaw, Thin film metallic glasses: Unique properties and potential applications, Thin Solid Films 520(16) (2012) 5097-5122. [59] C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Mechanical behavior of amorphous alloys, Acta Materialia 55(12) (2007) 4067-4109. [60] Y. Liu, T. Fujita, A. Hirata, S. Li, H. Liu, W. Zhang, A. Inoue, M. Chen, Deposition of multicomponent metallic glass films by single-target magnetron sputtering, Intermetallics 21(1) (2012) 105-114. [61] S.T. Kassa, C.-C. Hu, Y.-C. Liao, J.-K. Chen, J.P. Chu, Thin film metallic glass as an effective coating for enhancing oil/water separation of electrospun polyacrylonitrile membrane, Surface and Coatings Technology 368 (2019) 33-41. [62] C.-H. Chang, C.-L. Li, C.-C. Yu, Y.-L. Chen, S. Chyntara, J.P. Chu, M.-J. Chen, S.-H. Chang, Beneficial effects of thin film metallic glass coating in reducing adhesion of platelet and cancer cells: Clinical testing, Surface and Coatings Technology 344 (2018) 312-321. [63] C.-L. Li, J.P. Chu, J.-W. Lee, Measuring notch toughness of thin film metallic glasses using focused ion beam-based microcantilever method: Comparison with Ti and TiN crystalline films, Materials Science and Engineering: A 698 (2017) 104-109. [64] C. Chang, C. Lee, J. Chu, P. Liaw, S. Jang, Fatigue property improvements of ZK60 magnesium alloy: Effects of thin film metallic glass, Thin Solid Films 616 (2016) 431-436. [65] C. Chang, C. Wang, J. Hsu, J. Huang, Al-Ni-Y-X (X= Cu, Ta, Zr) metallic glass composite thin films for broad-band uniform reflectivity, Thin Solid Films 571 (2014) 194-197. [66] C. Chang, C. Yang, K.-K. Wang, J.-K. Liu, J. Hsu, J. Huang, On the reflectivity and antibacterial/antifungal responses of Al-Ni-Y optical thin film metallic glass composites, Surface and Coatings Technology 327 (2017) 75-82. [67] J.P. Chu, T.-Y. Liu, C.-L. Li, C.-H. Wang, J.S. Jang, M.-J. Chen, S.-H. Chang, W.-C. Huang, Fabrication and characterizations of thin film metallic glasses: Antibacterial property and durability study for medical application, Thin Solid Films 561 (2014) 102-107. [68] J.P. Chu, N. Bönninghoff, C.-C. Yu, Y.-K. Liu, G.-H. Chiang, Coating needles with metallic glass to overcome fracture toughness and trauma: Analysis on porcine tissue and polyurethane rubber, Thin Solid Films (2019). [69] M. Hughes, What is HIPIMS? High Power Impulse Magnetron Sputtering (2016). [70] P.J. Kelly, R.D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum 56(3) (2000) 159-172. [71] M. Hughes, What Is Sputtering? Magnetron Sputtering? (2014). [72] J. Keraudy, R.P.B. Viloan, M.A. Raadu, N. Brenning, D. Lundin, U. Helmersson, Bipolar HiPIMS for tailoring ion energies in thin film deposition, Surface and Coatings Technology 359 (2019) 433-437. [73] B. Wu, I. Haehnlein, I. Shchelkanov, J. McLain, D. Patel, J. Uhlig, B. Jurczyk, Y. Leng, D.N. Ruzic, Cu films prepared by bipolar pulsed high power impulse magnetron sputtering, Vacuum 150 (2018) 216-221. [74] N. Britun, M. Michiels, T. Godfroid, R. Snyders, Ion density evolution in a high-power sputtering discharge with bipolar pulsing, Applied Physics Letters 112(23) (2018) 234103. [75] M. Samuelsson, Fundamental aspects of HiPIMS under industrial conditions, Linköping University Electronic Press (2012). [76] K.L. Mittal, Adhesion measurement of films and coatings, VSP1995. [77] Wikipedia, Gradient. [78] A.W. Schmitt, Load wing attachment for bulldozer blade, Google Patents (1962). [79] Q. Zhu, J.-F. Shao, A refined micromechanical damage–friction model with strength prediction for rock-like materials under compression, International Journal of Solids and Structures 60 (2015) 75-83. [80] D. Marshall, A.G. Evans, B. Khuri Yakub, J. Tien, G. Kino, The nature of machining damage in brittle materials, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 385(1789) (1983) 461-475. [81] G.L. Mains Jr, Method for material removal, Google Patents (1997). [82] L. Precision Sapphire Technologies, About sapphire (2019). [83] L. Sikora, Properties of silicon and silicon wafers.
|