跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/15 16:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴柏彰
研究生(外文):Bo-Zhang Lai
論文名稱:金屬玻璃鍍層提升鑽石刀片切削性質之研究
論文名稱(外文):Beneficial Effects of Metallic Glass Coating on Cutting Property Improvements of Diamond blades
指導教授:朱瑾朱瑾引用關係
指導教授(外文):Jinn Chu
口試委員:姚柏文鍾俊輝朱閔聖
口試委員(外文):Pak-Man YiuChun-Hui ChungVin-cent Chu
口試日期:2019-07-16
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:141
中文關鍵詞:鑽石刀片晶圓切割金屬玻璃鍍層
外文關鍵詞:chamfering diamond bladedicingthin film metallic glasses (TFMGs)chipping
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在半導體製造業中鑽石刀片已被廣泛使用於晶圓切割,由於矽晶圓與藍寶石基板屬於脆性材料使得在裸晶(die)或晶片(chip)切割分離時難免會產生脆性崩裂,除了材料脆性本質之外,切割時的鑽石刀片狀況也會影響脆性崩裂的產生,如刀片排削能力與耐磨性質,當其排削能力不佳時會造成切道兩側產生崩裂(chipping)大小尺寸與數量的增加,裸晶或晶片會因此受到破損,故需要預留空間來讓chipping產生,但這也犧牲了生產裸晶的數量,產能亦因此而減少;在刀片與工件互相磨耗下,若沒有適當的耐磨性與排削能力會導致刀片的幾何變形過大,進而造成切削的公差超出預期。
本研究利用高功率脈衝磁控濺鍍系統來製備具有金屬玻璃鍍層之鑽石刀片,藉此提升鍍膜附著能力、耐磨耗與硬度,金屬玻璃鍍膜因非晶結構而具備低摩擦係數、平整表面、高強度與韌性之特質,本研究將鍍覆200nm鋯基、鎢基、鋁基金屬玻璃與純鈦鍍層之鑽石刀片進行矽晶圓、藍寶石基板與有圖形之藍寶石基板切割並與未做處理之刀片做比較,以chipping面積分率、崩裂寬度、切口角度與深度作為評估刀片之切削特性、製程品質穩定度和耐磨程度。
在矽晶圓上切削20次的實驗中,相較於未處理之刀片,具鋯基金屬玻璃鍍層之鑽石刀片降低chipping面積分率23%,同時減少在chipping 深度於21μm到超過41μm區間的chipping 數量,切口角度所繪製出的曲線較平穩,由此可知,具鋯基金屬玻璃鍍層之鑽石刀片有極佳的品質穩定度和耐磨性。然而,鎢基、鋁基金屬玻璃與純鈦鍍層並無明顯提升鑽石刀之切削性。在切削藍寶石基板時,鋯基金屬玻璃鍍層之鑽石刀片也降低chipping面積分率達45%;在Chipping 崩裂深度之總數統計,於大部分chipping 深度的區間中鋯基金屬玻璃鍍層之鑽石刀片取得較低的數值。有圖形的藍寶石基板切削也得到與藍寶石基板相似的好結果。整體而言,鋯基金屬玻璃鍍層之鑽石刀片有極佳的切削特性和製程品質穩定度來自於較佳排削能力(疏水性)、低摩擦係數與耐磨之特性。
Diamond blades are widely used in die cutting in the semiconductor manufacturing process. However, it is difficult for silicon and sapphire to be cut into the chip or die without damages or chipping during blade dicing, owing to their brittleness nature. In addition, there are still many factors affecting dicing quality, including the diamond blade quality. Cutting debris removal ability and wear resistance of the blade are often overlooked, which detrimentally result in increases of chipping size. Poor qualities on both sides of the kerfs, in turn, can damage the die or the chip, causing the yield loss. Therefore, more spaces are needed to accommodate chipping when dicing a wafer at the expense of valuable dies.
This work is directed toward to evaluations of thin film metallic glasses (TFMGs) for improving cutting properties of diamond blades. To enhance the adhesion, wear resistance and hardness, the high power impulse magnetron sputtering (HiPIMS) was applied. TFMG was selected because it exhibited a low coefficient of friction, smooth surface, high strength and toughness due to the amorphous nature. In this work, the 200 nm-thick Zr-based, W-based, Al-based TFMGs and Ti coated chamfer diamond blades were prepared to compare with that of the bare blade for silicon, sapphire and patterned sapphire substrate (PSS) dicing. The chipping area fraction, chipping width as well as kerf angle and depth are employed to assess the cutting performance, process variation and wear resistance.
After 20-cutting across a silicon wafer, the Zr-based coated blades reduce the chipping area fraction by 23%, comparing to the bare blade. Moreover, the amount of chipping at five intervals of 5 µm in the range of 21 µm to over 41 µm for the Zr-based coated blades are the lowest than the others. The smoother gradient of kerfs angle for the Zr-based coated blade was investigated by the meaning of the little process variation and wear resistance. However, W-based, Al-based TFMGs and Ti coated blades indicate no improvements in cutting performance. For sapphire dicing, the Zr-based coated blades show a reduction of 45% in the chipping area fraction for the comparison of bare blades. In the total number of chips width measurement results, the lower values for the Zr-based coated blades in most of chipping width intervals. For the PSS dicing, the results of the chipping area fraction and chipping width measurements were similar to the previous one obtained from sapphire. Overall, the Zr-based coated blades have better cutting performance and little process variation due to the better debris removal ability (hydrophobic property), low coefficient of friction (COF) and high wear resistance.
致謝 I
摘要 II
Abstract III
Contents IV
List of Figures VII
List of Tables XIII
Chapter 1. Introduction 1
1.1 Objectives of Study 2
Chapter 2. Literature review 3
2.1 Diamond blade 3
2.1.1 Classification of diamond blade 3
2.1.2 Chamfering diamond blade 5
2.2 Wafer dicing process 6
2.2.1 Blade dicing 7
2.2.2 Chipping defects 8
2.2.3 Wear wafer dicing 11
2.2.4 Workpiece material: silicon wafer 11
2.2.5 Workpiece material: c-plane sapphire 12
2.2.6 Workpiece material: patterned sapphire substrates 13
2.3 Chipping size and blade wear measurements 14
2.4 Thin film metallic glasses (TFMGs) 18
2.4.1 Unique properties of TFMGs 19
2.4.1.1 Surface roughness 19
2.4.1.2 Coefficient of friction (COF) 20
2.5 High power impulse magnetron sputtering (HiPIMS) 21
Chapter 3. Experimental Procedures 23
3.1 Diamond blade and workpiece preparations 23
3.1.1 Diamond blade preparations 24
3.1.2 Workpiece material: silicon wafer, sapphire, and patterned sapphire substrate (PSS) 25
3.2 Thin film deposition 26
3.3 Material characterizations 30
3.3.1 Crystallographic analysis 30
3.3.2 Microstructure analysis 31
3.4 Dicing 32
3.4.1 Automatic dicing saw system 34
3.5 Chipping measurements 35
3.5.1 Comparisons of chipping area fraction 35
3.5.2 Comparisons of chipping 36
3.5.2.1 Chipping width and number of chips 36
3.5.2.2 Average chipping width 38
3.5.2.3 Comparisons of kerf depth and angle 38
3.5.3 SEM observation and composition analysis 40
Chapter 4. Results and Discussion 41
4.1 Characterizations of TFMG 41
4.1.1 Crystallographic analysis 41
4.1.2 Chemical composition analysis 42
4.1.3 Contact angle test 42
4.2 Microstructure analyses 43
4.2.1 Bare diamond blade 43
4.2.2 Diamond blades with TFMG and Ti coatings 45
4.3 Dicing with chamfering diamond blades 56
4.3.1 Results of dicing on silicon wafer 56
4.3.1.1 Comparisons of chipping area fraction 57
4.3.1.2 Comparisons of chipping width 60
4.3.1.3 Comparisons of kerf depth and angle 64
4.3.1.4 Surface morphology of kerfs 66
4.3.2 Results of dicing on sapphires 68
4.3.2.1 Comparisons of chipping area fraction 68
4.3.2.2 Comparisons of chipping width 71
4.3.2.3 Comparisons of kerf depth and angle 74
4.3.2.5 Surface morphology of kerfs 76
4.3.3 Results of dicing on patterned sapphire substrate (PSS) 78
4.3.3.1 Comparisons of chipping area fraction 78
4.3.3.2 Comparisons of chipping width 81
4.3.3.3 Comparisons of kerf depth and angle 84
4.3.3.4 Surface morphology of kerfs 86
4.4 Discussion 88
4.4.1 Discussion of dicing on silicon wafer 90
4.4.2 Discussions for dicing on sapphire 92
4.4.3 Discussions for dicing on patterned sapphire substrate (PSS) 94
Chapter 5. Conclusions 95
References 96
Chapter 6. Appendix 100
Surface morphologies of the kerfs 100
6.1 Original data 116
6.1.1 Results of dicing on silicon wafer 116
6.1.1.1 Comparisons of chipping area fraction 116
6.1.1.2 Comparisons of chipping width 118
6.1.2 Results of dicing on sapphires 120
6.1.2.1 Comparisons of chipping area fraction 120
6.1.2.2 Comparisons of chipping width 122
6.1.3 Results of dicing on patterned sapphire substrate (PSS) 124
6.1.3.1 Comparisons of chipping area fraction 124
6.1.3.2 Comparisons of chipping width 126
[1] Y. Cai, L. Yang, H. Zhang, Y. Wang, Laser cutting silicon-glass double layer wafer with laser induced thermal-crack propagation, Optics and Lasers in Engineering 82 (2016) 173-185.
[2] C. Fornaroli, J. Holtkamp, A. Gillner, Dicing of thin Si wafers with a picosecond laser ablation process, Physics Procedia 41 (2013) 603-609.
[3] H. Taguchi, S. Miyake, A. Suzuki, S. Kamiyama, Y. Fujiwara, Evaluation of crystallinity of GaN epitaxial layer after wafer dicing, Materials Science in Semiconductor Processing 41 (2016) 89-91.
[4] W.-S. Lei, A. Kumar, R. Yalamanchili, Die singulation technologies for advanced packaging: A critical review, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 30(4) (2012) 040801.
[5] J.-W. Lin, M.-H. Cheng, Investigation of chipping and wear of silicon wafer dicing, Journal of Manufacturing Processes 16(3) (2014) 373-378.
[6] D. Hülsenberg, A. Harnisch, A. Bismarck, Microstructuring of glasses, Springer (2008).
[7] J.P. Chu, C.-C. Yu, Y. Tanatsugu, M. Yasuzawa, Y.-L. Shen, Non-stick syringe needles: beneficial effects of thin film metallic glass coating, Scientific Reports 6 (2016) 31847.
[8] J.P. Chu, C.-M. Lee, R. Huang, P. Liaw, Zr-based glass-forming film for fatigue-property improvements of 316L stainless steel: Annealing effects, Surface and Coatings Technology 205(16) (2011) 4030-4034.
[9] 張家豪, 金屬玻璃鍍層用於提升鎂合金疲勞性質, 降低高速鋼鑽頭鑽孔溫度及降低風阻研究 (2019).
[10] P. tools, The connection between the history of wet & dry diamond blades and the increased exposure to silica dust (2017).
[11] V. Research, History of the chip equipment, Session 5.3: Dicing (1987).
[12] Z. Yuan, K. Cheng, Y. Zhang, J. Hu, P. Zheng, Investigation on the fabrication of dicing blades with different sintering methods for machining hard-brittle material wafers, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 233(7) (2019) 1781-1793.
[13] I. LEL Diamond Tools International, Diamond blade guide (2010).
[14] B.T.a. Supply, Diamond blade buying guide_diamond concentration (2019).
[15] L. Asahi diamond Industrial Co., precision cutting tool (2015).
[16] Z. Wang, J. Wang, S. Lee, S. Yao, R. Han, Y.Q. Su, 300-mm low-k wafer dicing saw development, IEEE Transactions on Electronics Packaging Manufacturing 30(4) (2007) 313-319.
[17] J. Luo, T. Li, J. Yao, Dicing saw process study on wafer which has thick aluminum pads on the scribe street, 2008 10th Electronics Packaging Technology Conference, IEEE (2008) 1253-1257.
[18] DISCO, Dicing - blade dicing (2019).
[19] Y. Guo, Y. Zhang, J. Yan, X. Chen, S. Zhang, H. Xie, P. Liu, H. Zhu, J. Wang, J. Li, Sapphire substrate sidewall shaping of deep ultraviolet light-emitting diodes by picosecond laser multiple scribing, Applied Physics Express 10(6) (2017) 062101.
[20] G. Levinson, Process optimization of dicing microelectronic substrates, USA, Kulicke & Soffa Indutries Inc (2011).
[21] 陶崇榮, 增置自動磨刀系統於晶圓切割製程提升製程能力之研究 (2012).
[22] M. Tilli, M. Paulasto-Krockel, T. Motooka, V. Lindroos, Handbook of silicon based MEMS materials and technologies, William Andrew (2015).
[23] F. Fukuyo, K. Fukumitsu, N. Uchiyama, The stealth dicing technology and their applications, Processing of 6th Laser Precision Microfabrication (2005).
[24] T.A. Mai, Toward debris-free laser micromachining, Industrial Laser Solutions for Manufacturing, 23(1) (2008) 16.
[25] E. Ohmura, F. Fukuyo, K. Fukumitsu, H. Morita, Internal modified-layer formation mechanism into silicon with nanosecond laser, Journal of Achievements in Materials and Manufacturing Engineering 17(1-2) (2006) 381-384.
[26] M. Kumagai, T. Sakamoto, E. Ohmura, Laser processing of doped silicon wafer by the stealth dicing, 2007 International Symposium on Semiconductor Manufacturing, IEEE (2007) 1-4.
[27] W. Kroeninger, Thin die production, Materials for Advanced Packaging, Springer (2009) 219-242.
[28] A.D. Technologies., Introduction to dressing (2014).
[29] U. Efrat, Optimizing the wafer dicing process, Proceedings of 15th IEEE/CHMT International Electronic Manufacturing Technology Symposium, IEEE (1993) 245-253.
[30] M.S. Amri, D. Liew, F. Harun, Chipping free process for combination of narrow saw street (60um) and thick wafer (600um) sawing process, 2010 34th IEEE/CPMT International Electronic Manufacturing Technology Symposium (IEMT), IEEE (2010) 1-5.
[31] S. Gao, R. Kang, Z. Dong, B. Zhang, Edge chipping of silicon wafers in diamond grinding, International Journal of Machine Tools and Manufacture 64 (2013) 31-37.
[32] H.N. Li, T.B. Yu, L. Da Zhu, W.S. Wang, Analytical modeling of grinding-induced subsurface damage in monocrystalline silicon, Materials & Design 130 (2017) 250-262.
[33] S. Luo, Z. Wang, Studies of chipping mechanisms for dicing silicon wafers, The International Journal of Advanced Manufacturing Technology 35(11-12) (2008) 1206-1218.
[34] Z. Yao, W. Gu, K.J.J.o.M.P.T. Li, Relationship between surface roughness and subsurface crack depth during grinding of optical glass BK7, 212(4) (2012) 969-976.
[35] I. Weisshaus, D. Shi, U. Efrat, Wafer dicing, Advanced Packaging 9 (2000) 60-63.
[36] U. Efrat, I. Weisshaus, Dicing yield—Using blade torque to monitor chipping, SEMICON Singapore Test, Assembly and Packaging (TAP) Technical Program, Singapore (1999) 4-6.
[37] J. Jiang, C. Song, Z. Zhang, Dicing technology in super-thin wafer for IC, 5th International Conference onElectronic Packaging Technology Proceedings, ICEPT2003., IEEE (2003) 130-132.
[38] H.H. Jiun, I. Ahmad, A. Jalar, G. Omar, Effect of laminated wafer toward dicing process and alternative double pass sawing method to reduce chipping, IEEE transactions on electronics packaging manufacturing 29(1) (2006) 17-24.
[39] H. Li, T.M. Shaw, X.-H. Liu, G. Bonilla, Delayed mechanical failure of the under-bump interconnects by bump shearing, Journal of Applied Physics 111(8) (2012) 083503.
[40] D.H. Eppes, Crack resistant scribe line monitor structure and method for making the same, Google Patents (2006).
[41] W.F. Landers, T.M. Shaw, D. Llera-Hurlburt, S.W. Crowder, V.J. McGahay, S.G. Malhotra, C.R. Davis, R.D. Goldblatt, B.H. Engel, Multi-functional structure for enhanced chip manufacturibility and reliability for low k dielectrics semiconductors and a crackstop integrity screen and monitor, Google Patents (2006).
[42] J.A. Fitzsimmons, M.W. Lane, V.J. McGahay, T.M. Shaw, A.K. Stamper, Crackstop with release layer for crack control in semiconductors, Google Patents (2006).
[43] T.H. Daubenspeck, J.P. Gambino, T.L. McDevitt, A.K. Stamper, Electrical detection of dicing damage, Google Patents (2004).
[44] K.A. de las Alas, C. Ison, J.O. Rivera, R. dela Cruz, R. Aguares, D. Vyas, T. Nguyen, M. Bailon-Somintac, Temperature and humidity stress failure on copper pillar (CuP) flip chip package device, 2017 IEEE 24th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), IEEE (2017) 1-4.
[45] H.H. Gatzen, C. Morsbach, G.M. Jones, Investigations Regarding the Operating Range of Ultrathin Grinding Wheels on AlTiC, Initiatives of Precision Engineering at the Beginning of a Millennium, Springer (2002) 431-435.
[46] T.-J. Su, Y.-F. Chen, J.-C. Cheng, C.-L. Chiu, Optimizing the dicing saw parameters of 60 μm wafer dicing street, Microsystem Technologies 24(10) (2018) 3965-3971.
[47] M. Carrilero, M. Marcos, On the machinability of aluminium and aluminium alloys, Journal of the Mechanical Behavior of Materials 7(3) (1996) 179-194.
[48] J. Gu, G. Barber, S. Tung, R.-J. Gu, Tool life and wear mechanism of uncoated and coated milling inserts, Wear 225 (1999) 273-284.
[49] L. Yang, Prediction of steady-state wear coefficients in adhesive wear, Tribology transactions 47(3) (2004) 335-340.
[50] L. Yang, A test methodology for the determination of wear coefficient, Wear 259(7-12) (2005) 1453-1461.
[51] B. Lawn, Fracture of brittle solids, Cambridge solid state science series, Continuum 39(41) (1993) 44.
[52] J.E. Ayers, T. Kujofsa, P. Rago, J. Raphael, Heteroepitaxy of semiconductors: theory, growth, and characterization, CRC press (2016).
[53] K. Matsumaru, A. Takata, K. Ishizaki, Advanced thin dicing blade for sapphire substrate, Science and Technology of Advanced Materials 6(2) (2005) 120-122.
[54] M. Wood, How do LEDs work? Patterned sapphire substrates.
[55] C.-C. Kao, Y.-K. Su, C.-L. Lin, J.-J. Chen, The aspect ratio effects on the performances of GaN-based light-emitting diodes with nanopatterned sapphire substrates, Applied Physics Letters 97(2) (2010) 023111.
[56] S. Zhou, B. Cao, S. Liu, H. Ding, Improved light extraction efficiency of GaN-based LEDs with patterned sapphire substrate and patterned ITO, Optics & Laser Technology 44(7) (2012) 2302-2305.
[57] J. Sun, F. Qin, P. Chen, T. An, Z. Wang, Edge chipping of silicon wafers in rotating grinding, 2016 17th International Conference on Electronic Packaging Technology (ICEPT), IEEE (2016) 1099-1103.
[58] J.P. Chu, J. Jang, J. Huang, H. Chou, Y. Yang, J. Ye, Y.-C. Wang, J. Lee, F. Liu, P. Liaw, Thin film metallic glasses: Unique properties and potential applications, Thin Solid Films 520(16) (2012) 5097-5122.
[59] C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Mechanical behavior of amorphous alloys, Acta Materialia 55(12) (2007) 4067-4109.
[60] Y. Liu, T. Fujita, A. Hirata, S. Li, H. Liu, W. Zhang, A. Inoue, M. Chen, Deposition of multicomponent metallic glass films by single-target magnetron sputtering, Intermetallics 21(1) (2012) 105-114.
[61] S.T. Kassa, C.-C. Hu, Y.-C. Liao, J.-K. Chen, J.P. Chu, Thin film metallic glass as an effective coating for enhancing oil/water separation of electrospun polyacrylonitrile membrane, Surface and Coatings Technology 368 (2019) 33-41.
[62] C.-H. Chang, C.-L. Li, C.-C. Yu, Y.-L. Chen, S. Chyntara, J.P. Chu, M.-J. Chen, S.-H. Chang, Beneficial effects of thin film metallic glass coating in reducing adhesion of platelet and cancer cells: Clinical testing, Surface and Coatings Technology 344 (2018) 312-321.
[63] C.-L. Li, J.P. Chu, J.-W. Lee, Measuring notch toughness of thin film metallic glasses using focused ion beam-based microcantilever method: Comparison with Ti and TiN crystalline films, Materials Science and Engineering: A 698 (2017) 104-109.
[64] C. Chang, C. Lee, J. Chu, P. Liaw, S. Jang, Fatigue property improvements of ZK60 magnesium alloy: Effects of thin film metallic glass, Thin Solid Films 616 (2016) 431-436.
[65] C. Chang, C. Wang, J. Hsu, J. Huang, Al-Ni-Y-X (X= Cu, Ta, Zr) metallic glass composite thin films for broad-band uniform reflectivity, Thin Solid Films 571 (2014) 194-197.
[66] C. Chang, C. Yang, K.-K. Wang, J.-K. Liu, J. Hsu, J. Huang, On the reflectivity and antibacterial/antifungal responses of Al-Ni-Y optical thin film metallic glass composites, Surface and Coatings Technology 327 (2017) 75-82.
[67] J.P. Chu, T.-Y. Liu, C.-L. Li, C.-H. Wang, J.S. Jang, M.-J. Chen, S.-H. Chang, W.-C. Huang, Fabrication and characterizations of thin film metallic glasses: Antibacterial property and durability study for medical application, Thin Solid Films 561 (2014) 102-107.
[68] J.P. Chu, N. Bönninghoff, C.-C. Yu, Y.-K. Liu, G.-H. Chiang, Coating needles with metallic glass to overcome fracture toughness and trauma: Analysis on porcine tissue and polyurethane rubber, Thin Solid Films (2019).
[69] M. Hughes, What is HIPIMS? High Power Impulse Magnetron Sputtering (2016).
[70] P.J. Kelly, R.D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum 56(3) (2000) 159-172.
[71] M. Hughes, What Is Sputtering? Magnetron Sputtering? (2014).
[72] J. Keraudy, R.P.B. Viloan, M.A. Raadu, N. Brenning, D. Lundin, U. Helmersson, Bipolar HiPIMS for tailoring ion energies in thin film deposition, Surface and Coatings Technology 359 (2019) 433-437.
[73] B. Wu, I. Haehnlein, I. Shchelkanov, J. McLain, D. Patel, J. Uhlig, B. Jurczyk, Y. Leng, D.N. Ruzic, Cu films prepared by bipolar pulsed high power impulse magnetron sputtering, Vacuum 150 (2018) 216-221.
[74] N. Britun, M. Michiels, T. Godfroid, R. Snyders, Ion density evolution in a high-power sputtering discharge with bipolar pulsing, Applied Physics Letters 112(23) (2018) 234103.
[75] M. Samuelsson, Fundamental aspects of HiPIMS under industrial conditions, Linköping University Electronic Press (2012).
[76] K.L. Mittal, Adhesion measurement of films and coatings, VSP1995.
[77] Wikipedia, Gradient.
[78] A.W. Schmitt, Load wing attachment for bulldozer blade, Google Patents (1962).
[79] Q. Zhu, J.-F. Shao, A refined micromechanical damage–friction model with strength prediction for rock-like materials under compression, International Journal of Solids and Structures 60 (2015) 75-83.
[80] D. Marshall, A.G. Evans, B. Khuri Yakub, J. Tien, G. Kino, The nature of machining damage in brittle materials, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 385(1789) (1983) 461-475.
[81] G.L. Mains Jr, Method for material removal, Google Patents (1997).
[82] L. Precision Sapphire Technologies, About sapphire (2019).
[83] L. Sikora, Properties of silicon and silicon wafers.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top