|
Asur, S., & Huberman, B. A. (2010). Predicting the future with social media. Paper presented at the Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology-Volume 01. Baek, H., Oh, S., Yang, H.-D., & Ahn, J. (2017). Electronic word-of-mouth, box office revenue and social media. Electronic Commerce Research and Applications, 22, 13-23. doi:10.1016/j.elerap.2017.02.001 Basuroy, S., Chatterjee, S., & Ravid, S. A. (2003). How critical are critical reviews? The box office effects of film critics, star power, and budgets. Journal of marketing, 67(4), 103-117. Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32. Broekhuizen, T. L., Delre, S. A., & Torres, A. (2011). Simulating the Cinema Market: How Cross‐Cultural Differences in Social Influence Explain Box Office Distributions. Journal of Product Innovation Management, 28(2), 204-217. Brownlee, J. (2017). How to One Hot Encode Sequence Data in Python. Retrieved from https://machinelearningmastery.com/how-to-one-hot-encode-sequence-data-in-python/ Chen, H.-R. (2018). Forecasting Movie Box-office with Neural Networks. thesis. Conaway, B., & Ellis, D. (2015). Do MPAA Ratings Affect Box Office Revenues? (Vol. I). Delen, D., & Sharda, R. (2010). Predicting the financial success of hollywood movies using an information fusion approach. Indus Eng J, 21(1), 30-37. Delen, D., Sharda, R., & Kumar, P. (2007). Movie forecast Guru: A Web-based DSS for Hollywood managers. Decision Support Systems, 43(4), 1151-1170. doi:10.1016/j.dss.2005.07.005 Dhar, T., Sun, G., & Weinberg, C. B. (2012). The long-term box office performance of sequel movies. Marketing Letters, 23(1), 13-29. doi:10.1007/s11002-011-9146-1 Di, Z., Xiu, J., Lin, J., & Qian, Y. (2016, 17-19 Aug. 2016). Research on movie-box prediction model and algorithm based on neural network. Paper presented at the 2016 4th International Conference on Cloud Computing and Intelligence Systems (CCIS). Du, J., Xu, H., & Huang, X. (2014). Box office prediction based on microblog. Expert Systems with Applications, 41(4), 1680-1689. doi:10.1016/j.eswa.2013.08.065 Duan, W., Gu, B., & Whinston, A. B. (2008a). Do online reviews matter? — An empirical investigation of panel data. Decision Support Systems, 45(4), 1007-1016. doi:https://doi.org/10.1016/j.dss.2008.04.001 Duan, W., Gu, B., & Whinston, A. B. (2008b). The dynamics of online word-of-mouth and product sales—An empirical investigation of the movie industry. Journal of Retailing, 84(2), 233-242. doi:https://doi.org/10.1016/j.jretai.2008.04.005 Ghiassi, M., Lio, D., & Moon, B. (2015). Pre-production forecasting of movie revenues with a dynamic artificial neural network. Expert Systems with Applications, 42(6), 3176-3193. doi:10.1016/j.eswa.2014.11.022 Hur, M., Kang, P., & Cho, S. (2016). Box-office forecasting based on sentiments of movie reviews and Independent subspace method. Information Sciences, 372, 608-624. doi:10.1016/j.ins.2016.08.027 ink, F. (2016). 電影票房預測入門:讀懂影響票房預測的因素【一文】NO.83. Retrieved from https://read01.com/zh-tw/0GK8eD.html#.W3f5dOgzZPY Kim, T., Hong, J., & Kang, P. (2015). Box office forecasting using machine learning algorithms based on SNS data. International Journal of Forecasting, 31(2), 364-390. doi:10.1016/j.ijforecast.2014.05.006 Lee, K., Park, J., Kim, I., & Choi, Y. (2016). Predicting movie success with machine learning techniques: ways to improve accuracy. Information Systems Frontiers, 20(3), 577-588. doi:10.1007/s10796-016-9689-z Litman, B. R. (1983). Predicting success of theatrical movies: An empirical study. The Journal of Popular Culture, 16(4), 159-175. Litman, B. R., & Kohl, L. S. (1989). Predicting financial success of motion pictures: The'80s experience. Journal of Media Economics, 2(2), 35-50. Liu, Y. (2006). Word of Mouth for Movies: Its Dynamics and Impact on Box Office Revenue. Journal of marketing, 70(3), 74-89. doi:10.1509/jmkg.70.3.74 Mestyan, M., Yasseri, T., & Kertesz, J. (2013). Early Prediction of Movie Box Office Success Based on Wikipedia Activity Big Data. Plos One, 8(8), 8. doi:10.1371/journal.pone.0071226 Mishne, G., & Glance, N. S. (2006). Predicting movie sales from blogger sentiment. Paper presented at the AAAI spring symposium: computational approaches to analyzing weblogs. Montillo, A. A. (2009). Random forests. Lecture in Statistical Foundations of Data Analysis. MPAA. (2018). A comprehensive analysis and survey of the theatrical and home entertainment market enviroment (THEME) for 2017. Retrieved from https://www.mpaa.org/wp-content/uploads/2018/04/MPAA-THEME-Report-2017_Final.pdf Panaligan, R., & Chen, A. (2013). Quantifying movie magic with google search. Google Whitepaper—Industry Perspectives+ User Insights. Rhee, T. G., & Zulkernine, F. (2016, 18-20 Dec. 2016). Predicting Movie Box Office Profitability: A Neural Network Approach. Paper presented at the 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA). Sangkil Moon, Paul K. Bergey, & Iacobucci, D. (2010). Dynamic Effects Among Movie Ratings, Movie Revenues, and Viewer Satisfaction. Journal of marketing, 74(1), 108-121. doi:10.1509/jmkg.74.1.108 Sharda, R., & Delen, D. (2006). Predicting box-office success of motion pictures with neural networks. Expert Systems with Applications, 30(2), 243-254. doi:10.1016/j.eswa.2005.07.018 Shruti, Roy, S. D., & Zeng, W. (2014, 14-18 July 2014). Influence of social media on performance of movies. Paper presented at the 2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW). Terry, N., Butler, M., & De’Armond, D. A. (2011). The determinants of domestic box office performance in the motion picture industry. Southwestern Economic Review, 32, 137-148. Zhang, L., Luo, J., & Yang, S. (2009). Forecasting box office revenue of movies with BP neural network. Expert Systems with Applications, 36(3), 6580-6587. Zhang, W., & Skiena, S. (2009, 15-18 Sept. 2009). Improving Movie Gross Prediction through News Analysis. Paper presented at the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology.
|