|
[1]J.Y. Kang, G.Y. Baek, Sreedevi Gedi, Y.J. Song, C.W. Jeon, Effects of the MoN diffusion barrier on the CZTSe growth behavior and solar cell performance, Journal of Alloys and Compounds, 748 (2018) 188. [2]J. Wang, C. Yang, J. Wang, L. Han, M. Wei, Two-dimensional MoN@N-doped carbon hollow spheres as an anode material for high performance lithium-ion battery, Electrochim. Acta, 295 (2019) 246. [3]B. Zhao, K.i Sun, Z. Song, J. Yang, Ultrathin Mo/MoN bilayer nanostructure for diffusion barrier application of advanced Cu metallization, Applied Surface Science, 256 (2010) 6003. [4]Syed Mustansar Abbas, Zia-ur-Rehman, Usman Ali Rana, Salah Ud-Din Khan, Zafar Iqbal, Nisar Ahmad, MoN-decorated nitrogen doped carbon nanotubes anode with high lithium storage performance, Electrochim. Acta, 190 (2016) 988. [5]B. Zhang, G. Cui, K. Zhang, L. Zhang, P. Han, S. Dong, Molybdenum nitride/nitrogen-doped graphene hybrid material for lithium storage in lithium ion batteries, Electrochim. Acta, 150 (2014) 15. [6]E. Jeong, J. Park, S. Choi, J. Kang, and Y.C. Kang, Korean Chem. Soc. Surface Characteristics of MoNx Thin Films Obtained by Reactive rf Magnetron Sputtering in UHV System, 36 (2015) 2446. [7]K.E. Pappacena , D. Singh , O.O. Ajayi , J.L. Routbort , O.L. Erilymaz , N.G. Demas , and G. Chen , Residual stresses, interfacial adhesion and tribological properties of MoN-Cu composite coatings, Wear, 278-279 (2012) 62. [8]C.C. Chang, J.S. Jeng, J.S. Chen, Microstructural and electrical characteristics of reactively sputtered Ta-N thin films, Thin Solid Films, 413 (2002) 48. [9]W.H. Lee, J.C. Lin, C. Lee, Microstructural and electrical characteristics of reactively sputtered Ta-N thin films, Materials Chemistry and Physics, 68 (2001) 268. [10]Y.H. Yang, D.J. Chen, F.B. Wu, Microstructure, hardness, and wear resistance of sputtering TaN coating by controlling RF input power, Surf. Coat. Technol., 303 (2016) 32. [11]Y.H. Yang, F.B. Wu, Microstructure evolution and protective properties of TaN multilayer coatings, Surf. Coat. Technol., 308 (2016) 108. [12]J.Y. Xiang, Z.X. Lin, E. Renoux, F.B. Wu, Microstructure evolution and indentation cracking behavior of MoN multilayer films, Surf. Coat. Technol., 350 (2018) 1020. [13]Q. Liu, F. Fang, F.J. Liang, J.X. Wang, J.F. Yang, C. Li, Synthesis and properties of nanocomposite MoSiN hard films, Surf. Coat. Technol., 201 (2006) 1894. [14]Z.G. Yuan, L. Sun, W.B. Gong, Z.L. Xu, X. Wu, Synthesis and mechanical properties of Mo–Al–Si–N films deposited by direct current magnetron sputtering, Thin Solid Films, 603 (2016) 75. [15]J.F. Yang, B. Prakash, Y. Jiang, X.P. Wang, Q.F. Fang, Effect of Si content on the microstructure and mechanical properties of Mo–Al–Si–N coatings, Vacuum, 86 (2012) 2010. [16]J.C. Ding, T.F. Zhang, Q.M. Wang, C.W. Song, T.G. Wang, K.H. Kim, Microstructure and mechanical properties of the Cr–Mo–Si–N nanocomposite coatings prepared by a hybrid system of AIP and HiPIMS technologies, J. Alloys Compd., 740 (2018) 774. [17]A. Niederhofer, P. Nesládek, H.-D. Männling, K. Moto, S. Vepřek, M. Jı́lek, Structural properties, internal stress and thermal stability of nc-TiN/a-Si3N4, nc-TiN/TiSix and nc-( Ti1−yAlySix) N superhard nanocomposite coatings reaching the hardness of diamond, Surf. Coat. Technol., 120 (1999) 173. [18]S. Vepřek, New development in superhard coatings: the superhard nanocrystalline-amorphous composites, Thin Solid Films, 317 (1998) 449. [19]M. Diserens, J. Patscheider, F. Lévy, Mechanical properties and oxidation resistance of nanocomposite TiN–SiNx physical-vapor-deposited thin films, Surf. Coat. Technol., 120 (1999) 158. [20]H. Chen, Y. Ye, C. Wang, X. Ma, H. Wang, W. Liu, Understanding the corrosion and tribological behaviors of CrSiN coatings with various Si contents in HCl solution, Tribology International, 131 (2019) 530. [21]Harish C. Barshilia, B. Deepthi, A.S. Arun Prabhu, K.S. Rajam, Superhard nanocomposite coatings of TiN/Si3N4 prepared by reactive direct current unbalanced magnetron sputtering, Surf. Coat. Technol., 201 (2006) 329. [22]M. Bartosik, R. Hahn, Z.L. Zhang, I. Ivanov, M. Arndt, P. Polcik, P.H. Mayrhofer, Fracture toughness of Ti-Si-N thin films, Int. J. Refract. Met. Hard Mater., 72 (2018) 78. [23]Fei Pei, Yu X. Xu, Li Chen, Yong Du, Hou K. Zou, Structure, mechanical properties and thermal stability of Ti1-xSixN coatings, Ceram. Int., 44 (2018) 15503. [24]B. Bhushan, Overview of coating materials, surface treatments and screening techniques for tribological applications Part I: Coating materials and surface treatments, STP, 947 (1987) 289. [25]Allan Matthews, Chapter 2 Surface Coating Methods, Tribology Series, Kenneth Holmberg, 28 (1994) 7. [26]F. Fanelli, F. Fracassi, Atmospheric pressure non-equilibrium plasma jet technology: general features, specificities and applications in surface processing of materials, Surf. Coat. Technol., 322 (2017) 174. [27]L. Bárdos, H. Baránková, Cold atmospheric plasma: Sources, processes, and applications, Thin Solid Films, 518 (2010) 6705. [28]A. Schütze, J.Y. Jeong, S.E. Babayan, J. Park, G.S. Selwyn, R.F. Hicks, The atmospheric-pressure plasma jet: a review and comparison to other plasma sources, IEEE Trans. Plasma Sci., 26 (1998) 1685. [29]J. Laimer, H. Störi, Recent advances in the research on non-equilibrium atmospheric pressure plasma jets, Plasma Process. Polym., 4 (2007) 266. [30]A. Qayyum, Shaista Zeb, M.A. Naveed, N.U. Rehman, S.A. Ghauri, M. Zakaullah, Optical emission spectroscopy of Ar–N2 mixture plasma, J. Quant. Spectrosc. Radiat. Transfer, 107 (2007) 361. [31]Kirill E. Evdokimov, Maxim E. Konischev, Vladimir F. Pichugin, Z. Sun, Study of argon ions density and electron temperature and density in magnetron plasma by optical emission spectroscopy and collisional-radiative model, Resource-Efficient Technologies, 3 (2017) 187. [32]Z. Machala, M. Janda, K. Hensel, I. Jedlovský, L. Leštinská, V. Foltin, V. Martišovitš, M. Morvová, Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications, Journal of Molecular Spectroscopy, 243 (2007) 194. [33]G. Wattieaux, M. Yousfi, N. Merbahi, Optical emission spectroscopy for quantification of ultraviolet radiations and biocide active species in microwave argon plasma jet at atmospheric pressure, Spectrochimica Acta Part B: Atomic Spectroscopy, 89 (2013) 66. [34]L. Li, A. Nikiforov, N. Britun, R. Snyders, C. Leys, Emission and absorption spectroscopy study of Ar excited states in 13.56MHz argon plasma operating at sub-atmospheric to atmospheric pressure, Spectrochimica Acta Part B: Atomic Spectroscopy, 107 (2015) 75. [35]X. Jin, L. Chen, J. Yu, R. Liu, W. Xue, H. Shang, Temperature measurement and OES analysis during CPEO on stainless steel, Surf. Coat. Technol, 363 (2019) 314. [36]J. Yu, Y. Zhang, X. Jin, L. Chen, Jiancheng Du, Wenbin Xue, Fabrication and optical emission spectroscopy of enhanced corrosion-resistant CPEO films on Q235 low carbon steel, Surf. Coat. Technol., 363 (2019) 411. [37]Micro Magnetics Inc., http://www.directvacuum.com/sputter.asp. [38]D.M. Mattox, Particle bombardment effects on thin-film deposition: A review, J. Vac. Sci. Technol. A7, 1105 (1989). [39]Matt Hughes, Semicore Equipment, Inc., http://www.semicore.com/what-is-sputtering [40]Chih-Wen Chang, Dr. Cheng-Tsung Liu, Smooth Substrate Deposition Design and Process Emulations of DC Magnetron Sputters, Department of Electrical Engineering National Sun Yat-sen University, Master Thesis. [41]J.A. Thornton, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings, Journal of Vacuum Science and Technology Sci., 11 (1974) 668. [42]A. Anders, A structure zone diagram including plasma-based deposition and ion etching, Thin Solid Films, 518 (2010) 4089. [43]J.J. Jeong, S.K. Hwang, C. Lee, Hardness and adhesion properties of HfN/Si3N4 and NbN/Si3N4 multilayer coatings, Materials Chemistry and Physics, 77 (2002) 27. [44]Y.X. Wang, S. Zhang, Toward hard yet tough ceramic coatings, Surf. Coat. Technol., 258 (2014) 1. [45]Y. Cui, P. Huang, F. Wang, T.J. Lu, K.W. Xu, The hardness and related deformation mechanisms in nanoscale crystalline–amorphous multilayers, Thin Solid Films, 584 (2015) 270. [46]C. Escobar, M. Villarreal, J.C. Caicedo, W. Aperador, P. Prieto, Novel performance in physical and corrosion resistance HfN/VN coating system, Surf. Coat. Technol., 221 (2013) 182. [47]Artur R. Shugurov, Marina S. Kazachenok, Mechanical properties and tribological behavior of magnetron sputtered TiAlN/TiAl multilayer coatings, Surf. Coat. Technol., 353 (2018) 254. [48]G. Li, J. Sun, Ye Xu, Yi Xu, J. Gu, L. Wang, K. Huang, K. Liu, L. Li, Microstructure, mechanical properties, and cutting performance of TiAlSiN multilayer coatings prepared by HiPIMS, Surf. Coat. Technol., 353 (2018) 274. [49]S.K. Tien, J.G. Duh, Comparison of microstructure and phase transformation for nanolayered CrN/AlN and TiN/AlN coatings at elevated temperatures in air environment, Thin Solid Films, 515 (2006) 1097. [50]P.L. Sun, C.Y. Su, T.P. Liou, C.H. Hsu, C.K. Lin, Mechanical behavior of TiN/CrN nano-multilayer thin film deposited by unbalanced magnetron sputter process, Journal of Alloys and Compounds, 509 (2011) 3197. [51]L. Chen, Y. X. Xu, Influence of interfacial structure on the mechanical and thermal properties of CrAlN/ZrN multilayer coatings, Materials & Design, 106 (2016) 1. [52]C.H. Lin, Y.Z. Tsai, J.G.Duh, Effect of grain size on mechanical properties in CrAlN/SiNx multilayer coatings, Thin Solid Films, 518 (2010) 7312. [53]J. Musil, Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness, Surf. Coat. Technol., 207 (2012) 50. [54]C.W. Jeon, T. Cheon, H. Kim, M.S. Kwon, S.H. Kim, Controlled formation of MoSe2 by MoNx thin film as a diffusion barrier against Se during selenization annealing for CIGS solar cell, Journal of Alloys and Compounds, 644 (2015) 317. [55]X. Zhu, Z. Zhou, Y. Wang, L. Zhang, A. Li, F. Huang, Determining factor of MoSe2 formation in Cu(In,Ga)Se2 solar Cells, Sol. Energy Mater. Sol. Cells, 101 (2012) 57. [56]Z.H. Li, E.S. Cho, S.J. Kwon, Molybdenum thin film deposited by in-line DC magnetron sputtering as a back contact for Cu(In,Ga)Se2 solar cells, Applied Surface Science, 257 (2011) 9682. [57]L. Li, W. Chu, C. Ding, X. Xi, R. Jiang, J. Yan, Embedded MoN@C nanocomposites as an advanced catalyst for ammonia decomposition to COx-free hydrogen, International Journal of Hydrogen Energy, 42 (2017) 30630. [58]Lateef A. Jolaoso, Sharif F. Zaman, S. Podila, H. Driss, Abdulrahim A. Al-Zahrani, Muhammad A. Daous, Lachezar Petrov, Ammonia decomposition over citric acid induced γ-Mo2N and Co3Mo3N catalysts, International Journal of Hydrogen Energy, 43 (2018) 4839. [59]N. Haberkorn, S. Bengio, S. Suárez, P.D. Pérez, M. Sirena, J. Guimpel, Effect of the nitrogen-argon gas mixtures on the superconductivity properties of reactively sputtered molybdenum nitride thin films, Materials Letters, 215 (2018) 15. [60]N. Haberkorn, S. Bengio, H. Troiani, S. Suárez, P.D. Pérez, P. Granell, F. Golmar, M. Sirena, J. Guimpel, Thickness dependence of the superconducting properties of γ- Mo2N thin films on Si (001) grown by DC sputtering at room temperature, Materials Chemistry and Physics, 204 (2018) 48. [61]H. Jehn, P. Ettmayer, The molybdenum-nitrogen phase diagram, J. Less-Common Met., 58 (1978) 85. [62]Y. Wang, R. Y. Lin, Amorphous molybdenum nitride thin films prepared by reactive sputter deposition, Materials Science & Engineering B, 112 (2004) 42. [63]T.G. Wang, D. Jeong, Y. Liu, Q. Wang, S. Iyengar, S. Melin, K.H. Kim, Study on nanocrystalline Cr2O3 films deposited by arc ion plating: II. Mechanical and tribological properties, Surf. Coat. Tech., 206 (2012) 2638. [64]T. Chen, W. Lu, J. Li, S. Chen, C. Li, G. J. Weng, Tailoring tensile ductility of thin film by grain size graded substrates, International Journal of Solids and Structures, 166 (2019) 124. [65]X. Lu, X. Zhang, M. Shi, F. Roters, G. Kang, D. Raabe, Dislocation mechanism based size-dependent crystal plasticity modeling and simulation of gradient nano-grained copper, International Journal of Plasticity, 113 (2019) 52. [66]A. Bhattacharyya, D. Maurice, On the evolution of stresses due to lattice misfit at a Ni-superalloy and YSZ interface, Surfaces and Interfaces, 12 (2018) 86. [67]H. A. E. Hawa, A. Bhattacharyya, D. Maurice, Modeling of thermal and lattice misfit stresses within a thermal barrier coating, Mechanics of Materials, 122 (2018) 159. [68]C. Sarioglu, U. Demirler, M.K. Kazmanli, M. Urgen, Measurement of residual stresses by X-ray diffraction techniques in MoN and Mo2N coatings deposited by arc PVD on high-speed steel substrate, Surf. Coat. Technol., 190 (2005) 238. [69]B. Bouaouina, A. Besnard, S.E. Abaidia, A. Airoudj, F. Bensouici, Correlation between mechanical and microstructural properties of molybdenum nitride thin films deposited on silicon by reactive R.F. magnetron discharge, Surf. Coat. Technol., 333 (2018) 32. [70]F. Levy, P. Hones, P.E. Schmid, R. Sanjines, M. Diserens, C. Wiemer, Electronic states and mechanical properties in transition metal nitride, Surf. Coat. Technol., 120–121 (1999) 284. [71]B.O. Postolnyi, V.M. Beresnev, G. Abadias, O.V. Bondar, L. Rebouta, J.P. Araujo, A.D. Pogrebnjak, Multilayer design of CrN/MoN protective coatings for enhanced hardness and toughness, Journal of Alloys and Compounds, 725 (2017) 1188. [72]Q. Yang, Wear resistance and solid lubricity of molybdenum-containing nitride coatings deposited by cathodic arc evaporation, Surf. Coat. Technol., 332 (2017) 283. [73]X. Zhu, D. Yue, C. Shang, M. Fan, B. Hou, Phase composition and tribological performance of molybdenum nitride coatings synthesized by IBAD, Surf. Coat. Technol., 228 (2013) S184. [74]F. Ge, T. Shao, C. Jia, P. Li, F. Huang, Tribological behaviors of a magnetron sputtered CrSiN coating under ambient air and wet environments, Surf. Coat. Technol., 332 (2017) 304. [75]T. Wang, G. Zhang, B. Jiang, Microstructure, mechanical and tribological properties of TiMoN/Si3N4 nano-multilayer films deposited by magnetron sputtering, Applied Surface Science, 326 (2015) 162. [76]T. Wang, G. Zhang, B. Jiang, Comparison in mechanical and tribological properties of CrTiAlMoN and CrTiAlN nano-multilayer coatings deposited by magnetron sputtering, Applied Surface Science, 363 (2016) 217. [77]Y.C. Lu, H.W. Chen, C.C. Chang, C.Y. Wu, J.G. Duh, Tribological properties of nanocomposite Cr-Mo-Si-N coatings at elevated temperature through silicon content modification, Surf. Coat. Technol., 338 (2018) 69. [78]V.S. Sergevnin, I.V. Blinkov, A.O. Volkhonskii, D.S. Belov, D.V. Kuznetsov, M.V. Gorshenkov, E.A. Skryleva, Wear behaviour of wear-resistant adaptive nano-multilayered Ti-Al-Mo-N coatings, Applied Surface Science, 388 (2016) 13. [79]Araya Worede Tesfay, S.K. Nath, S. Ray, Effect of transfer layer on dry sliding wear behaviour of cast Al-based composites synthesized by addition of TiO2 and MoO3, Wear, 266 (2009) 1082. [80]Q. Yang, L.R. Zhao, P.C. Patnaik, X.T. Zeng, wear resistant TiMoN coatings deposited by magnetron sputtering, Wear, 261 (2006) 119. [81]G. Zhang, T. Fan, T. Wang, H. Chen, Microstructure, mechanical and tribological behavior of MoNx/SiNx multilayer coatings prepared by magnetron sputtering, Applied Surface Science, 274 (2013) 231. [82]T. Wang, Y. Jin, L. Bai, G. Zhang, Structure and properties of NbN/MoN nano-multilayer coatings deposited by magnetron sputtering, Journal of Alloys and Compounds, 729 (2017) 942. [83]N. Vidakis, A. Antoniadis, N. Bilalis, The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds, Journal of Materials Processing Technology, 143–144 (2003) 482. [84]Xin Zhang, Xiu-Bo Tian, Zhi-Wei Zhao, Jian-Bo Gao, Yan-Wen Zhou, Peng Gao, Yuan-Yuan Guo, Zhe Lv, Evaluation of the adhesion and failure mechanism of the hard CrN coatings on different substrates, Surf. Coat. Technol., 364 (2019) 135. [85]Maedeh Falsafein, Fakhreddin Ashrafizadeh, Alireza Kheirandish, Influence of thickness on adhesion of nanostructured multilayer CrN/CrAlN coatings to stainless steel substrate, Surfaces and Interfaces, 13 (2018) 178. [86]P.L. Ge, M.D. Bao, H.J. Zhang, K. You, X.P. Liu, Effect of plasma nitriding on adhesion strength of CrTiAlN coatings on H13 steels by closed field unbalanced magnetron sputter ion plating, Surf. Coat. Technol., 229 (2013) 146. [87]S.J. Heo, K.H. Kim, M.C. Kang, J. H. Suh, C.G. Park, Syntheses and mechanical properties of Mo–Si–N coatings by a hybrid coating system, Surf. Coat. Technol., 201 (2006) 4180. [88]V.P. Anitha, S. Major, D. Chandrashekharam, M. Bhatnagar, Deposition of molybdenum nitride thin films by r.f. reactive magnetron sputtering, Surf. Coat. Technol., 79 (1996) 50. [89]P.B. Mirkarimi, L. Hultman, S.A. Barnett, Enhanced hardness in lattice‐matched single‐crystal TiN/V0.6Nb0.4N superlattices, Appl. Phys. Lett., 57 (1990) 2654. [90]Nam.P. Suh, H.-C. Sin, The genesis of friction, Wear, 69 (1981) 91.
|