跳到主要內容

臺灣博碩士論文加值系統

(44.212.94.18) 您好!臺灣時間:2023/12/09 10:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林政昕
研究生(外文):LIN, ZHENG-XIN
論文名稱:共濺鍍技術製備MoSiN多層膜的微觀結構與機械性能分析
論文名稱(外文):Microstructure and Mechanical Properties of MoSiN Multilayer Coatings by Co-Sputtering Technique
指導教授:吳芳賓
指導教授(外文):WU, FAN-BEAN
口試委員:李志偉陳永逸
口試委員(外文):LEE, JYH-WEICHEN, YUNG-I
口試日期:2019-07-18
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:材料科學工程學系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:153
中文關鍵詞:氮化矽鉬多層膜輸入功率非晶機械性能
外文關鍵詞:MoSiNmultilayerinput poweramorphousmechanical properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:6
在本研究藉由輸出功率控制,成功透過射頻磁控濺鍍鍍製出不同特徵結構的氮化矽鉬單層膜。單層膜中矽含量控制在0至19原子百分比。隨著薄膜中矽含量和輸出功率的增加,單層膜的微觀結構從氮化鉬(111)優選取向演變為標準的氮化鉬,然後再演變為非晶結構。由Mo-3p1,Mo-3p3,Si-2p和N-1s的穩定鍵結表示氮化矽鉬薄膜具有良好的熱穩定性。氮化矽鉬多層膜系統由"優選取向/含矽優選取向" 、 “優選取向/非晶" 、"含矽優選取向/非晶"的結構特徵交互堆疊組成。由優選取向的氮化鉬和優選取向的氮化矽鉬製成的多層膜顯示出明顯的晶體結構,氮化矽鉬多層膜系統的非晶結構有效地抑制了柱狀晶生長的連續性。然而,由於晶粒不同的方向性和生長空間的限制,氮化鉬(200)的晶粒比氮化鉬(111)生長得更好。對於單層膜具有最高的硬度,楊氏模量和最低的磨擦係數,是由於晶粒細化和固溶強化的影響。氮化矽鉬多層膜在混合規則下,平均硬度在單層之間為17.2GPa。在磨耗性能評估,較高的矽含量約12原子百分比提供了相對緊湊的結構,S-100至S-150樣品在磨耗軌跡中沒有任何薄膜破裂。與單層膜相比,多層膜表現出更好的耐磨性。通過多層堆疊,韌性得到改善,CPR從469.8升至758.3。在刮痕測試中,多層膜與單層膜相比,裂紋和破裂被延後至到較高的載荷位置並限制在較小的區域。
In this research, the MoSiN single layer and multilayer films were fabricated by a reactive radio frequency, r.f., magnetron sputtering system with input power manipulation. The incorporation of Si contents in the coating was controlled from 0 to approximately 19 at.%. The microstructure of the MoSiN single layers evolved from Mo2N (111) preferred orientation to standard Mo2N, then to amorphous feature with Si doping amounts and input powers. Stable bonding of Mo-3p1, Mo-3p3, Si-2p, and N-1s, indicated a good thermal stability MoSiN films. The MoSiN multilayer coatings were fabricated with Mo-N and MoSiN layers with sequential stacking of any two building layers of distinct microstructure. The multilayer film made of Mo-N and MoSiN columnar layers showed an obvious crystalline structure, while the amorphous MoSiN layer incorporated multilayer MoSiN systems effectively suppressed the continuity of the columnar crystal growth. However, the grain of Mo2N (200) grew better than Mo2N (111), as a result of different directionality and limitation of grain growth space. Single layer has the highest hardness, Young’s modulus and lowest COFs, due to the grain refinement and solid solution strengthening. For the MoSiN multilayers, an average hardness of 17.2 GPa, which was between those staked single layers, was expected under the rule of mixture. For tribological analysis, a higher silicon content,12at. %, namely S-100 to S-150 provided the relatively compact structures without any chipping. As compared to monolayer coating, the multilayers coatings exhibited better wear resistance. By multilayer stacking, the toughness of the coatings was improved and the CPRs went from 469.8 to 758.3. And for scratch behavior, the cracking and chipping were delayed to higher load positions and were confined within smaller region, as compared with monolayers.
摘要 I
Abstract II
Contents III
Table List VI
Figure Captions VII
Chapter 1 Introduction 1
1.1 Background 1
1.2 Material Systems 1
1.3 Critical Issues 2
1.4 Objective 2
Chapter 2 Literature review 3
2.1 Surface engineering 3
2.1.1 Surface engineering and applications 4
2.2 Sputter technology 5
2.2.1 Plasma theory 5
2.2.2 Plasma detection 5
2.2.3 Sputtering theory 6
2.2.4 RF sputtering 7
2.2.5 Magnetron sputtering 7
2.2.6 Reactive Hysteresis effect 8
2.2.7 Thin film growth 8
2.3 Multilayer coatings 9
2.4 MoN coatings 10
2.4.1 Introduction of hard coatings 10
2.4.2 Introduction to MoN coatings 10
2.4.3 Microstructure and phase characteristics 11
2.4.4 Mechanical properties 11
2.4.5 Wear resistant 12
2.5 Nanocomposite 13
2.6 MoN Multilayer coatings 13
Chapter 3 Experimental Procedures 34
3.1 Design Philosophy 34
3.2 Sputtering deposition of MoN coatings 34
3.2.1 Substrate preparation 34
3.2.2 Coating sputtering process 35
3.3 Measurements and analysis 36
3.3.1 Microstructure features 36
3.3.2 Characteristic analysis 37
Chapter 4 Results and Discussion 54
4.1 MoSiN single layer coatings 54
4.1.1 Composition analysis 54
4.1.2 Phase identification 54
4.1.3 Plasma identification 55
4.1.4 Microstructure investigation 56
4.2 MoN multilayer coatings 59
4.2.1 Composition analysis 59
4.2.2 Phase identification 59
4.2.3 Microstructure investigation 60
4.2.4 Chemical composition analysis 65
4.3 Mechanical characterization 66
4.3.1 Hardness evaluation 66
4.3.2 Wear resistance 67
4.3.3 Rockwell C adhesion test 69
4.3.4 Scratch test 70
Chapter 5 Conclusions 138
References 140
Appendix 152

[1]J.Y. Kang, G.Y. Baek, Sreedevi Gedi, Y.J. Song, C.W. Jeon, Effects of the MoN diffusion barrier on the CZTSe growth behavior and solar cell performance, Journal of Alloys and Compounds, 748 (2018) 188.
[2]J. Wang, C. Yang, J. Wang, L. Han, M. Wei, Two-dimensional MoN@N-doped carbon hollow spheres as an anode material for high performance lithium-ion battery, Electrochim. Acta, 295 (2019) 246.
[3]B. Zhao, K.i Sun, Z. Song, J. Yang, Ultrathin Mo/MoN bilayer nanostructure for diffusion barrier application of advanced Cu metallization, Applied Surface Science, 256 (2010) 6003.
[4]Syed Mustansar Abbas, Zia-ur-Rehman, Usman Ali Rana, Salah Ud-Din Khan, Zafar Iqbal, Nisar Ahmad, MoN-decorated nitrogen doped carbon nanotubes anode with high lithium storage performance, Electrochim. Acta, 190 (2016) 988.
[5]B. Zhang, G. Cui, K. Zhang, L. Zhang, P. Han, S. Dong, Molybdenum nitride/nitrogen-doped graphene hybrid material for lithium storage in lithium ion batteries, Electrochim. Acta, 150 (2014) 15.
[6]E. Jeong, J. Park, S. Choi, J. Kang, and Y.C. Kang, Korean Chem. Soc. Surface Characteristics of MoNx Thin Films Obtained by Reactive rf Magnetron Sputtering in UHV System, 36 (2015) 2446.
[7]K.E. Pappacena , D. Singh , O.O. Ajayi , J.L. Routbort , O.L. Erilymaz , N.G. Demas , and G. Chen , Residual stresses, interfacial adhesion and tribological properties of MoN-Cu composite coatings, Wear, 278-279 (2012) 62.
[8]C.C. Chang, J.S. Jeng, J.S. Chen, Microstructural and electrical characteristics of reactively sputtered Ta-N thin films, Thin Solid Films, 413 (2002) 48.
[9]W.H. Lee, J.C. Lin, C. Lee, Microstructural and electrical characteristics of reactively sputtered Ta-N thin films, Materials Chemistry and Physics, 68 (2001) 268.
[10]Y.H. Yang, D.J. Chen, F.B. Wu, Microstructure, hardness, and wear resistance of sputtering TaN coating by controlling RF input power, Surf. Coat. Technol., 303 (2016) 32.
[11]Y.H. Yang, F.B. Wu, Microstructure evolution and protective properties of TaN multilayer coatings, Surf. Coat. Technol., 308 (2016) 108.
[12]J.Y. Xiang, Z.X. Lin, E. Renoux, F.B. Wu, Microstructure evolution and indentation cracking behavior of MoN multilayer films, Surf. Coat. Technol., 350 (2018) 1020.
[13]Q. Liu, F. Fang, F.J. Liang, J.X. Wang, J.F. Yang, C. Li, Synthesis and properties of nanocomposite MoSiN hard films, Surf. Coat. Technol., 201 (2006) 1894.
[14]Z.G. Yuan, L. Sun, W.B. Gong, Z.L. Xu, X. Wu, Synthesis and mechanical properties of Mo–Al–Si–N films deposited by direct current magnetron sputtering, Thin Solid Films, 603 (2016) 75.
[15]J.F. Yang, B. Prakash, Y. Jiang, X.P. Wang, Q.F. Fang, Effect of Si content on the microstructure and mechanical properties of Mo–Al–Si–N coatings, Vacuum, 86 (2012) 2010.
[16]J.C. Ding, T.F. Zhang, Q.M. Wang, C.W. Song, T.G. Wang, K.H. Kim, Microstructure and mechanical properties of the Cr–Mo–Si–N nanocomposite coatings prepared by a hybrid system of AIP and HiPIMS technologies, J. Alloys Compd., 740 (2018) 774.
[17]A. Niederhofer, P. Nesládek, H.-D. Männling, K. Moto, S. Vepřek, M. Jı́lek, Structural properties, internal stress and thermal stability of nc-TiN/a-Si3N4, nc-TiN/TiSix and nc-( Ti1−yAlySix) N superhard nanocomposite coatings reaching the hardness of diamond, Surf. Coat. Technol., 120 (1999) 173.
[18]S. Vepřek, New development in superhard coatings: the superhard nanocrystalline-amorphous composites, Thin Solid Films, 317 (1998) 449.
[19]M. Diserens, J. Patscheider, F. Lévy, Mechanical properties and oxidation resistance of nanocomposite TiN–SiNx physical-vapor-deposited thin films, Surf. Coat. Technol., 120 (1999) 158.
[20]H. Chen, Y. Ye, C. Wang, X. Ma, H. Wang, W. Liu, Understanding the corrosion and tribological behaviors of CrSiN coatings with various Si contents in HCl solution, Tribology International, 131 (2019) 530.
[21]Harish C. Barshilia, B. Deepthi, A.S. Arun Prabhu, K.S. Rajam, Superhard nanocomposite coatings of TiN/Si3N4 prepared by reactive direct current unbalanced magnetron sputtering, Surf. Coat. Technol., 201 (2006) 329.
[22]M. Bartosik, R. Hahn, Z.L. Zhang, I. Ivanov, M. Arndt, P. Polcik, P.H. Mayrhofer, Fracture toughness of Ti-Si-N thin films, Int. J. Refract. Met. Hard Mater., 72 (2018) 78.
[23]Fei Pei, Yu X. Xu, Li Chen, Yong Du, Hou K. Zou, Structure, mechanical properties and thermal stability of Ti1-xSixN coatings, Ceram. Int., 44 (2018) 15503.
[24]B. Bhushan, Overview of coating materials, surface treatments and screening techniques for tribological applications Part I: Coating materials and surface treatments, STP, 947 (1987) 289.
[25]Allan Matthews, Chapter 2 Surface Coating Methods, Tribology Series, Kenneth Holmberg, 28 (1994) 7.
[26]F. Fanelli, F. Fracassi, Atmospheric pressure non-equilibrium plasma jet technology: general features, specificities and applications in surface processing of materials, Surf. Coat. Technol., 322 (2017) 174.
[27]L. Bárdos, H. Baránková, Cold atmospheric plasma: Sources, processes, and applications, Thin Solid Films, 518 (2010) 6705.
[28]A. Schütze, J.Y. Jeong, S.E. Babayan, J. Park, G.S. Selwyn, R.F. Hicks, The atmospheric-pressure plasma jet: a review and comparison to other plasma sources, IEEE Trans. Plasma Sci., 26 (1998) 1685.
[29]J. Laimer, H. Störi, Recent advances in the research on non-equilibrium atmospheric pressure plasma jets, Plasma Process. Polym., 4 (2007) 266.
[30]A. Qayyum, Shaista Zeb, M.A. Naveed, N.U. Rehman, S.A. Ghauri, M. Zakaullah, Optical emission spectroscopy of Ar–N2 mixture plasma, J. Quant. Spectrosc. Radiat. Transfer, 107 (2007) 361.
[31]Kirill E. Evdokimov, Maxim E. Konischev, Vladimir F. Pichugin, Z. Sun, Study of argon ions density and electron temperature and density in magnetron plasma by optical emission spectroscopy and collisional-radiative model, Resource-Efficient Technologies, 3 (2017) 187.
[32]Z. Machala, M. Janda, K. Hensel, I. Jedlovský, L. Leštinská, V. Foltin, V. Martišovitš, M. Morvová, Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications, Journal of Molecular Spectroscopy, 243 (2007) 194.
[33]G. Wattieaux, M. Yousfi, N. Merbahi, Optical emission spectroscopy for quantification of ultraviolet radiations and biocide active species in microwave argon plasma jet at atmospheric pressure, Spectrochimica Acta Part B: Atomic Spectroscopy, 89 (2013) 66.
[34]L. Li, A. Nikiforov, N. Britun, R. Snyders, C. Leys, Emission and absorption spectroscopy study of Ar excited states in 13.56MHz argon plasma operating at sub-atmospheric to atmospheric pressure, Spectrochimica Acta Part B: Atomic Spectroscopy, 107 (2015) 75.
[35]X. Jin, L. Chen, J. Yu, R. Liu, W. Xue, H. Shang, Temperature measurement and OES analysis during CPEO on stainless steel, Surf. Coat. Technol, 363 (2019) 314.
[36]J. Yu, Y. Zhang, X. Jin, L. Chen, Jiancheng Du, Wenbin Xue, Fabrication and optical emission spectroscopy of enhanced corrosion-resistant CPEO films on Q235 low carbon steel, Surf. Coat. Technol., 363 (2019) 411.
[37]Micro Magnetics Inc., http://www.directvacuum.com/sputter.asp.
[38]D.M. Mattox, Particle bombardment effects on thin-film deposition: A review, J. Vac. Sci. Technol. A7, 1105 (1989).
[39]Matt Hughes, Semicore Equipment, Inc., http://www.semicore.com/what-is-sputtering
[40]Chih-Wen Chang, Dr. Cheng-Tsung Liu, Smooth Substrate Deposition Design and Process Emulations of DC Magnetron Sputters, Department of Electrical Engineering National Sun Yat-sen University, Master Thesis.
[41]J.A. Thornton, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings, Journal of Vacuum Science and Technology Sci., 11 (1974) 668.
[42]A. Anders, A structure zone diagram including plasma-based deposition and ion etching, Thin Solid Films, 518 (2010) 4089.
[43]J.J. Jeong, S.K. Hwang, C. Lee, Hardness and adhesion properties of HfN/Si3N4 and NbN/Si3N4 multilayer coatings, Materials Chemistry and Physics, 77 (2002) 27.
[44]Y.X. Wang, S. Zhang, Toward hard yet tough ceramic coatings, Surf. Coat. Technol., 258 (2014) 1.
[45]Y. Cui, P. Huang, F. Wang, T.J. Lu, K.W. Xu, The hardness and related deformation mechanisms in nanoscale crystalline–amorphous multilayers, Thin Solid Films, 584 (2015) 270.
[46]C. Escobar, M. Villarreal, J.C. Caicedo, W. Aperador, P. Prieto, Novel performance in physical and corrosion resistance HfN/VN coating system, Surf. Coat. Technol., 221 (2013) 182.
[47]Artur R. Shugurov, Marina S. Kazachenok, Mechanical properties and tribological behavior of magnetron sputtered TiAlN/TiAl multilayer coatings, Surf. Coat. Technol., 353 (2018) 254.
[48]G. Li, J. Sun, Ye Xu, Yi Xu, J. Gu, L. Wang, K. Huang, K. Liu, L. Li, Microstructure, mechanical properties, and cutting performance of TiAlSiN multilayer coatings prepared by HiPIMS, Surf. Coat. Technol., 353 (2018) 274.
[49]S.K. Tien, J.G. Duh, Comparison of microstructure and phase transformation for nanolayered CrN/AlN and TiN/AlN coatings at elevated temperatures in air environment, Thin Solid Films, 515 (2006) 1097.
[50]P.L. Sun, C.Y. Su, T.P. Liou, C.H. Hsu, C.K. Lin, Mechanical behavior of TiN/CrN nano-multilayer thin film deposited by unbalanced magnetron sputter process, Journal of Alloys and Compounds, 509 (2011) 3197.
[51]L. Chen, Y. X. Xu, Influence of interfacial structure on the mechanical and thermal properties of CrAlN/ZrN multilayer coatings, Materials & Design, 106 (2016) 1.
[52]C.H. Lin, Y.Z. Tsai, J.G.Duh, Effect of grain size on mechanical properties in CrAlN/SiNx multilayer coatings, Thin Solid Films, 518 (2010) 7312.
[53]J. Musil, Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness, Surf. Coat. Technol., 207 (2012) 50.
[54]C.W. Jeon, T. Cheon, H. Kim, M.S. Kwon, S.H. Kim, Controlled formation of MoSe2 by MoNx thin film as a diffusion barrier against Se during selenization annealing for CIGS solar cell, Journal of Alloys and Compounds, 644 (2015) 317.
[55]X. Zhu, Z. Zhou, Y. Wang, L. Zhang, A. Li, F. Huang, Determining factor of MoSe2 formation in Cu(In,Ga)Se2 solar Cells, Sol. Energy Mater. Sol. Cells, 101 (2012) 57.
[56]Z.H. Li, E.S. Cho, S.J. Kwon, Molybdenum thin film deposited by in-line DC magnetron sputtering as a back contact for Cu(In,Ga)Se2 solar cells, Applied Surface Science, 257 (2011) 9682.
[57]L. Li, W. Chu, C. Ding, X. Xi, R. Jiang, J. Yan, Embedded MoN@C nanocomposites as an advanced catalyst for ammonia decomposition to COx-free hydrogen, International Journal of Hydrogen Energy, 42 (2017) 30630.
[58]Lateef A. Jolaoso, Sharif F. Zaman, S. Podila, H. Driss, Abdulrahim A. Al-Zahrani, Muhammad A. Daous, Lachezar Petrov, Ammonia decomposition over citric acid induced γ-Mo2N and Co3Mo3N catalysts, International Journal of Hydrogen Energy, 43 (2018) 4839.
[59]N. Haberkorn, S. Bengio, S. Suárez, P.D. Pérez, M. Sirena, J. Guimpel, Effect of the nitrogen-argon gas mixtures on the superconductivity properties of reactively sputtered molybdenum nitride thin films, Materials Letters, 215 (2018) 15.
[60]N. Haberkorn, S. Bengio, H. Troiani, S. Suárez, P.D. Pérez, P. Granell, F. Golmar, M. Sirena, J. Guimpel, Thickness dependence of the superconducting properties of γ- Mo2N thin films on Si (001) grown by DC sputtering at room temperature, Materials Chemistry and Physics, 204 (2018) 48.
[61]H. Jehn, P. Ettmayer, The molybdenum-nitrogen phase diagram, J. Less-Common Met., 58 (1978) 85.
[62]Y. Wang, R. Y. Lin, Amorphous molybdenum nitride thin films prepared by reactive sputter deposition, Materials Science & Engineering B, 112 (2004) 42.
[63]T.G. Wang, D. Jeong, Y. Liu, Q. Wang, S. Iyengar, S. Melin, K.H. Kim, Study on nanocrystalline Cr2O3 films deposited by arc ion plating: II. Mechanical and tribological properties, Surf. Coat. Tech., 206 (2012) 2638.
[64]T. Chen, W. Lu, J. Li, S. Chen, C. Li, G. J. Weng, Tailoring tensile ductility of thin film by grain size graded substrates, International Journal of Solids and Structures, 166 (2019) 124.
[65]X. Lu, X. Zhang, M. Shi, F. Roters, G. Kang, D. Raabe, Dislocation mechanism based size-dependent crystal plasticity modeling and simulation of gradient nano-grained copper, International Journal of Plasticity, 113 (2019) 52.
[66]A. Bhattacharyya, D. Maurice, On the evolution of stresses due to lattice misfit at a Ni-superalloy and YSZ interface, Surfaces and Interfaces, 12 (2018) 86.
[67]H. A. E. Hawa, A. Bhattacharyya, D. Maurice, Modeling of thermal and lattice misfit stresses within a thermal barrier coating, Mechanics of Materials, 122 (2018) 159.
[68]C. Sarioglu, U. Demirler, M.K. Kazmanli, M. Urgen, Measurement of residual stresses by X-ray diffraction techniques in MoN and Mo2N coatings deposited by arc PVD on high-speed steel substrate, Surf. Coat. Technol., 190 (2005) 238.
[69]B. Bouaouina, A. Besnard, S.E. Abaidia, A. Airoudj, F. Bensouici, Correlation between mechanical and microstructural properties of molybdenum nitride thin films deposited on silicon by reactive R.F. magnetron discharge, Surf. Coat. Technol., 333 (2018) 32.
[70]F. Levy, P. Hones, P.E. Schmid, R. Sanjines, M. Diserens, C. Wiemer, Electronic states and mechanical properties in transition metal nitride, Surf. Coat. Technol., 120–121 (1999) 284.
[71]B.O. Postolnyi, V.M. Beresnev, G. Abadias, O.V. Bondar, L. Rebouta, J.P. Araujo, A.D. Pogrebnjak, Multilayer design of CrN/MoN protective coatings for enhanced hardness and toughness, Journal of Alloys and Compounds, 725 (2017) 1188.
[72]Q. Yang, Wear resistance and solid lubricity of molybdenum-containing nitride coatings deposited by cathodic arc evaporation, Surf. Coat. Technol., 332 (2017) 283.
[73]X. Zhu, D. Yue, C. Shang, M. Fan, B. Hou, Phase composition and tribological performance of molybdenum nitride coatings synthesized by IBAD, Surf. Coat. Technol., 228 (2013) S184.
[74]F. Ge, T. Shao, C. Jia, P. Li, F. Huang, Tribological behaviors of a magnetron sputtered CrSiN coating under ambient air and wet environments, Surf. Coat. Technol., 332 (2017) 304.
[75]T. Wang, G. Zhang, B. Jiang, Microstructure, mechanical and tribological properties of TiMoN/Si3N4 nano-multilayer films deposited by magnetron sputtering, Applied Surface Science, 326 (2015) 162.
[76]T. Wang, G. Zhang, B. Jiang, Comparison in mechanical and tribological properties of CrTiAlMoN and CrTiAlN nano-multilayer coatings deposited by magnetron sputtering, Applied Surface Science, 363 (2016) 217.
[77]Y.C. Lu, H.W. Chen, C.C. Chang, C.Y. Wu, J.G. Duh, Tribological properties of nanocomposite Cr-Mo-Si-N coatings at elevated temperature through silicon content modification, Surf. Coat. Technol., 338 (2018) 69.
[78]V.S. Sergevnin, I.V. Blinkov, A.O. Volkhonskii, D.S. Belov, D.V. Kuznetsov, M.V. Gorshenkov, E.A. Skryleva, Wear behaviour of wear-resistant adaptive nano-multilayered Ti-Al-Mo-N coatings, Applied Surface Science, 388 (2016) 13.
[79]Araya Worede Tesfay, S.K. Nath, S. Ray, Effect of transfer layer on dry sliding wear behaviour of cast Al-based composites synthesized by addition of TiO2 and MoO3, Wear, 266 (2009) 1082.
[80]Q. Yang, L.R. Zhao, P.C. Patnaik, X.T. Zeng, wear resistant TiMoN coatings deposited by magnetron sputtering, Wear, 261 (2006) 119.
[81]G. Zhang, T. Fan, T. Wang, H. Chen, Microstructure, mechanical and tribological behavior of MoNx/SiNx multilayer coatings prepared by magnetron sputtering, Applied Surface Science, 274 (2013) 231.
[82]T. Wang, Y. Jin, L. Bai, G. Zhang, Structure and properties of NbN/MoN nano-multilayer coatings deposited by magnetron sputtering, Journal of Alloys and Compounds, 729 (2017) 942.
[83]N. Vidakis, A. Antoniadis, N. Bilalis, The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds, Journal of Materials Processing Technology, 143–144 (2003) 482.
[84]Xin Zhang, Xiu-Bo Tian, Zhi-Wei Zhao, Jian-Bo Gao, Yan-Wen Zhou, Peng Gao, Yuan-Yuan Guo, Zhe Lv, Evaluation of the adhesion and failure mechanism of the hard CrN coatings on different substrates, Surf. Coat. Technol., 364 (2019) 135.
[85]Maedeh Falsafein, Fakhreddin Ashrafizadeh, Alireza Kheirandish, Influence of thickness on adhesion of nanostructured multilayer CrN/CrAlN coatings to stainless steel substrate, Surfaces and Interfaces, 13 (2018) 178.
[86]P.L. Ge, M.D. Bao, H.J. Zhang, K. You, X.P. Liu, Effect of plasma nitriding on adhesion strength of CrTiAlN coatings on H13 steels by closed field unbalanced magnetron sputter ion plating, Surf. Coat. Technol., 229 (2013) 146.
[87]S.J. Heo, K.H. Kim, M.C. Kang, J. H. Suh, C.G. Park, Syntheses and mechanical properties of Mo–Si–N coatings by a hybrid coating system, Surf. Coat. Technol., 201 (2006) 4180.
[88]V.P. Anitha, S. Major, D. Chandrashekharam, M. Bhatnagar, Deposition of molybdenum nitride thin films by r.f. reactive magnetron sputtering, Surf. Coat. Technol., 79 (1996) 50.
[89]P.B. Mirkarimi, L. Hultman, S.A. Barnett, Enhanced hardness in lattice‐matched single‐crystal TiN/V0.6Nb0.4N superlattices, Appl. Phys. Lett., 57 (1990) 2654.
[90]Nam.P. Suh, H.-C. Sin, The genesis of friction, Wear, 69 (1981) 91.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊