跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:45cf:c86b:e393:b18b) 您好!臺灣時間:2025/01/13 09:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張丁文
研究生(外文):ZHANG, DING-WEN
論文名稱:可撓式有機發光二極體亮度提升之研究
論文名稱(外文):The Enhancement of Luminescence Intensity of Flexible Organic Light Emitting Diodes
指導教授:莊賦祥莊賦祥引用關係
指導教授(外文):JUANG, FUH-SHYANG
口試委員:莊賦祥蔡裕勝蘇水祥邱楗洺
口試委員(外文):JUANG, FUH-SHYANGTSAI, YU-SHENGSU, SHUI-HSIANGCHIU, JIAN-MING
口試日期:2019-07-10
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電工程系光電與材料科技碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:72
中文關鍵詞:可撓式有機發光二極體亮度提升光取出
外文關鍵詞:flexible organic light-emitting diodesluminance enhancementlight extraction
相關次數:
  • 被引用被引用:2
  • 點閱點閱:94
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以旋塗和蒸鍍製程製作1 cmx1 cm發光面積的綠光螢光可撓式有機發光二極體。首先,在元件結構中加入電洞注入層PEDOT:PSS,增加電洞注入能力,在8V時亮度提高到232 cd/m2,效率為0.33 cd/A。接著加入電洞阻擋層TPBi,藉由讓電洞限制在發光層中與電子複合機率提升,當TPBi 20 nm時,在8V時亮度提高到413.9 cd/m2,效率0.77 cd/A。接著多加入一層電子傳輸層Alq3,希望能提高發光層中電洞電子複合機率,當TPBi/Alq3厚度為20 nm/15 nm,在定電壓8V下亮度為59.67 cd/m2,效率為0.09 cd/A。
當元件結構中增加PEDOT:PSS厚度,增加電洞注入數量獲得提升,提高亮度與效率,在定電壓8V時,亮度從232 cd/m2提升至1085 cd/m2,效率從0.33 cd/A提升至2.05 cd/A。接著調整發光層Alq3厚度,當發光層厚度從55 nm降至45 nm,並加入電洞阻擋層TPBi 20 nm,實驗結果發現整體電流下降,推論為減少了發光層厚度而增加電洞阻擋層厚度,連帶影響到發光層中電洞電子複合的數量,在定電壓8V下,亮度為95.5 cd/m2,效率為0.7cd/A。
在ITO玻璃基板背面旋塗一層厚度為2.5 um之TiO2漿料,提升光取出效率,在電壓8V時亮度由1072 cd/m2提升至1386 cd/m2,效率從2.74 cd/A提高到3.64 cd/A。最後,在元件中加入一層10 nm之NiO作為電洞緩衝層,使總電流下降,效率提升,由實驗結果得知,效率為2.83 cd/A。



This paper has made use of spin-coating and evaporation processes to produce green fluorescent flexible organic light-emitting diodes, and its light-emitting area measures 1 cm x 1 cm. Firstly, PEDOT:PSS is added to the device structure to increase the injection capacity. At 8V, the luminance is increased to 232 cd/m2 and the efficiency is 0.33 cd/A. Then TPBi is added to increase the probability of recombination with electrons by limiting the hole in the emitting layer. When TPBi is 20 nm, the luminance increases to 413.9 cd/m2 at 8V, and the efficiency is 0.77 cd/A. Then, a layer of electron transport layer Alq3 is added to increase the recombination probability of the hole in the emitting layer. When the thickness of TPBi/Alq3 is 20 nm/15 nm, the luminance is 59.67 cd/m2 at a constant voltage of 8V, and the efficiency is 0.09 cd/A.
When the thickness of PEDOT:PSS is increased in the device structure, the number of hole injections is increased, and the luminance and efficiency are improved. At a constant voltage of 8V, the luminance is increased from 232 cd/m2 to 1085 cd/m2, and the efficiency is increased from 0.33 cd/A to 2.05 cd/A. Then adjust the thickness of Alq3 layer. When the thickness of Alq3 layer decreases from 55 nm to 45 nm and TPBi layer is added, the experimental results show that the overall current decreases. It is inferred that the thickness of the barrier layer increases in order to reduce the thickness of the luminous layer, which affects the number of hole electron recombination in the luminous layer. At a constant voltage of 8V, the luminance is 95.5 cd/m2 and the efficiency is 0.7 cd/A.
Titanium dioxide slurry with a thickness of 2.5 um was spin-coated on the back of ITO glass substrate to improve the light extraction efficiency. At voltage 8V, the luminance increased from 1072 cd/m2 to 1386 cd/m2, and the efficiency increased from 2.74 cd/A to 3.64 cd/A. Finally, a 10 nm NiO layer is added to the device as a buffer layer, which decreases the total current and improves the efficiency. The experimental results show that the efficiency is 2.83 cd/A.



摘要.........i
Abstract.........ii
誌謝.........iv
目錄.........v
表目錄.........vii
圖目錄.........viii
第一章、緒論.........1
1.1有機發光二極體簡介.........1
1.2研究動機.........2
第二章、有機發光二極體原理及文獻探討.........3
2.1有機發光二極體原理.........3
有機發光二極體發光機制.........3
電流注入理論.........4
光取出層原理.........6
有機發光二極體各層結構介紹.........7
2.2有機發光二極體文獻探討.........9
第三章、實驗方法與步驟.........11
3.1實驗流程.........11
3.2陰陽極圖形製備.........12
雷雕基板圖形化.........12
基板清洗.........15
ITO基板表面處理.........15
3.3旋轉塗佈材料.........19
旋轉塗佈溶液材料製作流程.........19
旋轉塗佈溶液材料之選用.........20
旋轉塗佈光取出層製作流程.........20
3.4熱蒸鍍有機材料層.........22
熱蒸鍍有機材料層操作流程.........22
熱蒸鍍有機材料層之材料選用.........25
3.5熱蒸鍍金屬陰極.........27
3.6元件發光圖案定義流程.........29
3.6.1 ITO陰陽極定義.........29
3.6.2旋塗PEDOT:PSS溶液.........29
3.6.3有機材料蒸鍍.........30
3.6.4金屬材料蒸鍍.........31
3.7元件特性量測.........32
光電特性曲線量測.........32
第四章、結果與討論.........33
4.1 PEN/ITO製作有機發光二極體之光電特性研究.........33
4.1.1電洞元件之電流特性比較.........33
4.1.2電子元件之電流特性比較.........35
4.1.3電洞與電子元件之電流特性比較.........38
4.1.4加入電洞注入層之光電特性比較.........40
4.1.5加入電洞阻擋層之光電特性比較.........43
4.1.6加入電子傳輸層之光電特性比較.........46
4.1.7增厚電洞注入層之光電特性比較.........50
4.1.8調變發光層之光電特性比較.........53
4.1.9比較各階段元件特性.........56
4.2有機發光二極體亮度提升之研究.........60
4.2.1基板背面旋塗TiO2漿料對元件光電特性之影響.........60
4.2.2加入NiO對元件光電特性之影響.........63
第五章、結論.........66
參考文獻.........67
Extended Abstract.........70






[1] Zhongbin Wu, and Dongge Ma, 2016, “Recent advances in white organic light-emitting diodes”, Materials Science and Engineering: R: Reports, vol. 107, pp. 1-42.
[2] Deepak Kumar Dubey, Meenu Singh, Snehasis Sahoom, and Jwo-Huei Jou, 2018, “Simple-structured efficient white organic light emitting diode via solution process”, Microelectronics Reliability, vol. 83, pp. 293-296.
[3] 黃奕翔,2009,“微共振腔有機發光二極體元件結構與光學特性之模擬與分析”,國立彰化師範大學光電科技研究所碩士論文。
[4] 黃孝文、陳金鑫,2005,“有機電激發光材料與元件”,五南圖書出版社,pp. 34-36。
[5] Soon Moon Jeong, and Hideo Takezoe, 2012, “Effect of Photonic Structures in Organic Light-Emitting Diodes – Light Extraction and Polarization Characteristics”, Organic Light Emitting Devices, pp. 66-103.
[6] L. S. Hung, C.W. Tang, and M. G. Mason, 1997, “Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode”, Applied Physics Letters, vol. 70, pp. 152-154.
[7] G. E. Jabbour, Y. Kawabe, S. E. Shaheen, J. F. Wang, and M. M. Morrell, 1997, “Highly efficient and bright organic electroluminescent devices with an aluminum cathode”, Applied Physics Letters, vol. 71, pp. 1762-1764.
[8] Jihyun Yoon, Jang-Joo Kim, Tae-Woo Lee, and O-Ok Park, 2000, “Evidence of band bending observed by electroabsorption studies in polymer light emitting device with ionomer/Al or LiF/Al cathode”, Applied Physics Letters, vol. 76, pp 2152-2154.
[9] H. C. Card, and E. H. Rhoderick, 1971, “Studies of tunnel MOS diodes I . Interface effects in silicon Schottky diodes”, IOP science, vol. 4, pp. 1589-1601.
[10] T. M.Brown, R. H. Friend, I. S. Millard, D. J. Lacey, and J. H. Burroughes, 2000, “LiF/Al cathodes and the effect of LiF thickness on the device characteristics and built-in potential of polymer light-emitting diodes”, Applied Physics Letters, vol. 77, pp. 3096-3098.
[11] Xiaoming Wu, Liying Shen, Yulin Hua, Musen Dong, Yueju Su, Zhiqiang Jiao, Xiaoyan Yang, and Shougen Yin, 2012, “Highly efficient flexible organic light-emitting devices utilizing F4-TCNQ/m-MTDATA multiple quantum well structures”, Journal of Luminescence, vol. 132, pp. 1261-1264.
[12] Xinkai Wu, Jun Liu, Dongqing Wu, Yanru Zhao, Xindong Shi, Jing Wang, Saijun Huang, and Gufeng He, 2014, “Highly conductive and uniform graphene oxide modified PEDOT:PSS electrodes for ITO-Free organic light emitting diodes”, Journal of Materials Chemistry, vol. 2, pp. 4044-4050.
[13] Xiaoxiao Wu, Fushan Li, Wei Wu, and Tailiang Guo, 2014, “Flexible organic light emitting diodes based on double-layered graphene/PEDOT:PSS conductive film formed by spray-coating”, Vacuum, vol. 101, pp. 53-56.
[14] Mansu Kim, and Young Chul Kim, 2014, “Single wall carbon nanotube
/poly(3,4-ethylenedioxythiophene) nanocomposite film as a transparent electrode for flexible organic light-emitting diodes”, Synthetic Metals, vol. 198, pp. 31-35.
[15] Mohammad Hassani Yousefi, Ali Fallahzadeh, Jaber Saghaei, and Mahdi Davoudi Darareh, 2016, “Fabrication of Flexible ITO-Free OLED Using Vapor-Treated PEDOT:PSS Thin Film As Anode”, Journal of display technology, vol. 12, pp. 1647-1651.
[16] M. V. MADHAVA RAO, Y. K. SU, Y.C. LIU, and T.S. HUANG, 2016, “Low driving voltage for flexible organic light emitting diodes based on transparent anode”, Digest Journal of Nanomaterials and Biostructures, vol. 11, pp. 865-872.
[17] Woo Jin Hyun, Sang Hyuk Im, O Ok Park, and Byung Doo Chin, 2012, “Solution-processible corrugated structure and scattering layer for enhanced light extraction from organic light-emitting diodes”, Journal of Information Display, vol. 13, pp. 151-157.
[18] Ki-Han Kim, and Soo-Young Park, 2016, “Enhancing light-extraction efficiency of OLEDs with high- and low-refractive-index organic-inorganic hybrid materials”, Organic Electronics, vol. 36, pp. 103-112.
[19] Tae-Wook Koh, Joshua A Spechler, Kyung Min Lee, Craig B. Arnold, and Barry P. Rand, 2015, “Enhanced Outcoupling in organic light emitting diodes via a high-index contrast scattering layer”, ACS Photonics, vol. 2, pp. 1366-1372.
[20] Jongchan Kim, Yue Qu, Caleb Coburn, and Stephen R. Forrest, 2018, “Efficient Outcoupling of Organic Light-Emitting Devices Using a Light-Scattering Dielectric Layer”, ACS Photonics, vol. 5, pp. 3315-3321.
[21] Yue Qu, Jongchan Kim, Caleb Coburn, and Stephen R. Forrest, 2018, “Efficient, Nonintrusive Outcoupling in Organic Light Emitting Devices Using Embedded Microlens Arrays”, ACS Photonics, vol. 5, pp. 2453-2458.
[22] Jan B. Preinfalk, Thomas Eiselt, Thomas Wehlus, Valentina Rohnacher, Thomas Hanemann, Guillaume Gomard, and Uli Lemmer, 2017, “Large-Area Screen-Printed Internal Extraction Layers for Organic Light-Emitting Diodes”, ACS Photonics, vol. 4, pp. 928-933.
[23] Thomas Eiselt, Jan B Preinfalk, Karsten Bittkau, Guillaume Gomard, Thomas Hanemann and Uli Lemmer, 2018, “Inkjet-printed internal light extraction layers for organic light emitting diodes”, Flexible and Printed Electronics, vol. 3, 015007, pp. 1-9.
[24] Daniel Riedel, Thomas Wehlus, Thilo C.G. Reusch, and Christoph J. Brabec, 2016, “Polymer-based scattering layers for internal light extraction from organic light emitting diodes”, Organic Electronics, vol. 32, pp. 27-33.
[25] Kwing Tong, Xiaofeng Liu, Fangchao Zhao, Dustin Chen, Qibing Pei, 2018, “Efficient Light Extraction of Organic Light‐Emitting Diodes on a Fully Solution‐Processed Flexible Substrate”, Advanced Optical Materials, vol.5, 1700307, pp. 1-8.
[26] Sangmin Park, Se Jin Lim, Joobin Kim, Jae-Woong Yu, 2017, “Organic Light-Emitting Diodes with an Internal Light Extraction Layer Prepared by Intense Pulsed Light”, Macromolecular Research, October, vol.25, pp.1022-1027.
[27] Jaeyoung Lee, Jaekyung Kim, Euy Sik Jeon, 2018, “Analysis of light-extraction efficiency according to the size of random nanostructures for OLED”, Journal of Mechanical Science and Technology, vol. 32, pp.2707-2713.
[28] Chamika Hippola, Rajiv Kaudal, Eeshita Manna, Teng Xiao, Akshit Peer, Rana Biswas,Warren Dennis Slafer, Tom Trovato, Joseph Shinar, and Ruth Shinar, 2018, “Enhanced Light Extraction from OLEDs Fabricated on Patterned Plastic Substrates”, Advanced Optical Materials, vol. 6, 1701244, pp. 1-11.
[29] Wen-Kai Kuo, Guan-Fu Kuo, Syuan-You Lin and Hsin Her Yu, 2015, “Fabrication and characterization of artificial miniaturized insect compound eyes for imaging”, Bioinspiration & Biomimetics, vol. 10, 056010, pp. 1-10.
[30] Zhen Xu, Min Yin, Jing Sun, Guqiao Ding, Linfeng Lu, Paichun Chang, Xiaoyuan Chen and Dongdong Li, 2016, “3D periodic multiscale TiO2 architecture: a platform decorated with graphene quantum dots for enhanced photo electrochemical water splitting”, Nanotechnology, vol. 27, 115401, pp. 1-11.
[31] Wen-Kai Kuo, Hsueh-Ping Weng, Jyun-Jheng Hsu, Hsin Her Yu, 2016, “A bioinspired color-changing polystyrene microarray as a rapid qualitative sensor for methanol and ethanol”, Materials Chemistry and Physics, vol. 173, pp. 285-290.
[32] Wen-Kai Kuo, Jyun-Jheng Hsu, Chih-Kai Nien, and Hsin Her Yu, 2016, “Moth-Eye-Inspired Biophotonic Surfaces with Antireflective and Hydrophobic Characteristics”, ACS Appl. Mater. Interfaces, vol. 8, pp. 32021-32030.
[33] Dustin Chen, Jiajie Liang, Chao Liu, Fangchao Zhao, 2015, “Thermally Stable Silver Nanowire-Polyimide Transparent Electrode Based on Atomic Layer Deposition of Zinc Oxide on Silver Nanowires”, Advanced Functional Materials, vol. 25, pp. 7512-7520.
[34] Yi-Bo Zhang, Qing-Dong Ou, Yan-Qing Li, Jing-De Chen, Xin-Dong Zhao, Jian Wei, Zhong-Zhi Xie, and Jian-Xin Tang, 2017, “Transparent organic light-emitting diodes with balanced white emission by minimizing waveguide and surface plasmonic loss”, Optics Express, vol. 25, pp. 15662-15675.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top