跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/22 14:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張楊正
研究生(外文):ZHANG, YANG-ZHENG
論文名稱:熱退火處理之氧化鋅薄膜沉積於p型矽基板及其應用於異質接面二極體之研究
論文名稱(外文):A Study on the Annealed ZnO Film Deposited onto the p-Si Substrate and its Application on the Heterojunction Diode
指導教授:劉代山
指導教授(外文):LIU, DAY-SHAN
口試委員:李欣縈林祐仲
口試委員(外文):LI, HSIN-YINGLIN, YU-CHUNG
口試日期:2019-07-11
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電工程系光電與材料科技碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:93
中文關鍵詞:射頻磁控共濺鍍p型矽基版氧化鋅氮化鋁侷限層異質接面二極體I-V特性
外文關鍵詞:RF magnetron co-sputtering systemp-type siliconZinc Oxidealuminum nitride confining layerhetero-junction diodesI-V characteristics
相關次數:
  • 被引用被引用:1
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用射頻磁控共濺鍍系統,分別利用ZnO、AlN靶材製程氧化鋅薄膜與氮化鋁-氧化鋅共濺鍍薄膜,經由不同環境(氮氣、氧氣)700度熱處理三種結構,分別為未摻雜ZnO薄膜、和加入阻障層AlN-ZnO薄膜雙異質結構提升薄膜電子電洞侷限能力,以及再加入氮化鋁侷限層來增加電子侷限能力使發光效益改變,利用霍爾量測電特性及光激發螢光光譜圖了解薄膜堆疊特性,由於氧氣能夠補償施體離子的效果,電特性可發現氮氣環境熱處理相較於氧氣有較高的載子濃度,雙異質結構由於鋁原子擴散而取代鋅原子的位置,除了能抑制氧化鋅的本質缺陷,更提高了結構之載子濃度,並改善氧化鋅的結晶性,而加入氮化鋁侷限層之後由於過多的鋁原子擴散進入主動區,多餘的鋁原子會與氧產生鍵結形成絕緣的效果,使得結構電阻率升高,載子濃度降低,導致氧化鋅的結晶性較差。本研究利用p型矽基板製成n-ZnO/p-Si、DH/p-Si及DH/AlN/p-Si異質接面二極體,從電流-電壓特性可以發現,AlN-ZnO薄膜雙異質結構導通電壓為2.62V時,電流比值為5.15,則再製程氮化鋁侷限層,導通電壓上升為2.74V,電流比值為40.89,兩者皆有良好的整流特性。進一步探討以不同溫度(700度、500度、400度)氮氣熱處理對於未摻雜ZnO薄膜、雙異質結構及加入氮化鋁侷限層的雙異質結構之影響,從電流-電壓特性可以發現,其元件之串聯電阻和啟動電壓隨著氮氣熱退火溫度上升而下降,AlN-ZnO薄膜雙異質結構在氮氣400度時導通電壓為2.00V,電流比值為9.13,當溫度上升到500度時,導通電壓下降為1.88V,電流比值為10.45,當溫度到達700度時,有最低的導通電壓為1.80V,電流比值為11.68。
In this study, using radio frequency magnetron co-sputtering system, zinc oxide thin films and aluminum nitride-zinc oxide co-sputtering thin films were prepared by using zinc oxide and AlN targets respectively. Three structures, namely, undoped zinc oxide thin films and barrier layer AlN-zinc oxide thin films, were annealed at 700 degrees in different environments (nitrogen and oxygen). The confinement ability of the thin films was enhanced by adding double heterostructures of barrier layer AlN-ZnO thin films, and the confinement layer of aluminum nitride. Increasing the electron confinement ability can change the luminescent efficiency. Hall measurements and photoinduced fluorescence spectroscopy are used to understand the stacking characteristics of thin films. Oxygen can compensate for the effect of donor ions. The electrical properties show that the nitrogen ambient heat treatment has higher carrier concentration than oxygen. The double heterostructure substitutes for the position of zinc atoms due to the diffusion of aluminum atoms, in addition to inhibiting zinc oxide. The intrinsic defect increases the carrier concentration of the structure and improves the crystallinity of zinc oxide. When the confined layer of aluminum nitride is added, the excess aluminum atoms will diffuse into the active region. The excess aluminum atoms will bond with oxygen to form an insulating effect, which increases the resistivity of the structure and reduces the carrier concentration, resulting in poor crystallinity of zinc oxide. In this study, n-ZnO/p-Si, DH/p-Si and DH/AlN/p-Si heterojunction dipoles are fabricated on p-type silicon substrates. From the current-voltage characteristics, it can be found that when the conduction voltage of AlN-ZnO double heterojunction is 2.62V, the current ratio is 5.15, then the limiting layer of AlN is fabricated. The conduction voltage rises to 2.74V and the current ratio is 40.89. Both of them have good rectification characteristics. The effects of nitrogen heat treatment at different temperatures (700, 500 and 400 degrees) on undoped ZnO thin films, double heterostructures and double heterostructures with aluminum nitride confinement layer were further investigated. From the current-voltage characteristics, it was found that the series resistance and start-up voltage of the components decreased with the increase of nitrogen heat annealing temperature. The double heterostructures of AlN-ZnO thin films were electrically conductive at 400 degrees nitrogen. Voltage is 2.00V and current ratio is 9.13. When the temperature rises to 500 degrees, the on-line voltage drops to 1.88V and the current ratio is 10.45. When the temperature reaches 700 degrees, the lowest on-line voltage is 1.80V and the current ratio is 11.68.
摘要.........i
Abstract.........ii
誌謝.........iv
目錄.........v
表目錄.........viii
圖目錄.........ix
第一章緒論.........1
1-1 前言.........1
1-2 文獻回顧.........1
1-2-1 氧化鋅薄膜熱處理特性.........1
1-2-2 氧化鋅異質結構發光二極體.........2
1-2-3氮化鋁-氧化鋅共濺鍍薄膜.........3
1-3 研究動機與目的.........3
第二章理論基礎.........6
2-1 電漿理論.........6
2-2 射頻磁控濺鍍原理.........7
2-3 薄膜成核理論.........7
2-4 薄膜材料特性簡介.........8
2-4-1 氧化鋅薄膜.........8
2-4-2 氧化銦錫薄膜.........8
2-4-3 氮化鋁薄膜.........9
2-5 金屬與半導體接觸理論.........9
2-5-1 歐姆接觸理論.........9
2-5-2 傳輸線模型【43-45】.........10
第三章實驗製程方法與步驟.........19
3-1共濺鍍薄膜製作流程.........19
3-1-1 基板清洗.........19
3-1-2 濺鍍系統【44】.........19
3-1-3鍍膜製作流程.........20
3-2 傳輸線模型製程流程.........20
3-3 二極體製程流程.........21
3-3-1不同環境氧化鋅薄膜異質結構二極體.........21
3-3-2不同溫度氧化鋅薄膜異質結構二極體.........22
3-4 實驗儀器量測原理.........23
3-4-1 表面輪廓分析儀.........23
3-4-2 霍爾量測系統.........23
3-4-3 光學穿透率量測.........23
3-4-4 光激發螢光量測【45】【46】.........24
3-4-5 半導體參數分析儀.........24
3-4-6 低掠角X光繞射儀(GrazingincidentX-raydiffractionpattern;GIXRD).........24
第四章結果與討論.........34
4-1 不同環境快速熱退火處理氧化鋅薄膜特性分析.........34
4-1-1不同環境快速熱退火處理氧化鋅薄膜之電特性及結晶性分析.........34
4-1-2 不同環境快速熱退火處理氧化鋅薄膜之光學特性分析.........34
4-1-3不同環境快速熱退火氧化鋅異質接面二極體元件特性分析.........35
4-2氮氣快速熱退火氧化鋅薄膜異質結構接面二極體特性分析.........36
4-2-1氮氣快速熱退火氧化鋅薄膜異質結構之電特性及結晶性分析.........37
4-2-2氮氣快速熱退火氧化鋅薄膜異質結構之光學特性分析.........38
4-2-3氮氣快速熱退火氧化鋅薄膜異質結構接面二極體元件特性分析.........39
4-3不同溫度氮氣快速熱退火氧化鋅薄膜結構特性分析.........41
4-3-1不同溫度氮氣快速熱退火處理氧化鋅薄膜結構之電特性及結晶性分析.........41
4-3-2不同溫度氮氣快速熱退火處理氧化鋅薄膜結構之光學特性分析.........42
4-3-3不同溫度氮氣快速熱退火氧化鋅薄膜異質結構接面二極體特性分析.........42
第五章 結論與未來工作.........82
參考文獻.........84
Extended Abstract.........89


【1】D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, T. Goto, “Optically pumped lasing of ZnO at room temperature”, Appl. Phys.Lett., 70, 2230 (1997).
【2】Z. Z. Ye, Q. Qian, G. D. Yuan, B. H. Zhao, D. W. Ma, “Effect of oxygen partial ratios on the properties of Al-N co-doped ZnO thin films”, J. Cryst. Growth, 274, pp. 178-182 (2005).
【3】Shang-Bin Zhu, Yang Geng, Hong-Liang Lu , Yuan Zhang, Qing-Qing Sun, Shi-Jin Ding, David Wei Zhang, “Effects of rapid thermal annealing on Hf-doped ZnO films grown byatomic layer deposition” ,Journal of Alloys and Compounds 577,340344 (2013).
【4】A. Zendehnam, M. Mirzaee, S. Miri, “Effect of annealing temperature on PL spectrum and surface morphology of zinc oxide thin films”Applied Surface Science 270 163 168(2013).
【5】J.D. Hwang , Y.H. Chen “Effects of pre-annealing conditions on the characteristicsof ZnOnanorods and ZnO/p-Si heterojunction diodes grown through hydrothermal method” Thin Solid Films 520 52945299(2012).
【6】A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO”, Nat. Mater., 4, 42 (2005).
【7】Hui Wang, Yang Zhao, Chao Wu, Guo-guang Wu, Yan Ma, Xin Dong, Bao-lin Zhang, Guo-tong Du, “Ultraviolet electroluminescence properties from devices based on n-ZnO/i-NiO/p-Si light-emitting diode” ,Optics Communications, 395, pp. 94-97 (2017)
【8】ZhaoChen,BoruiLi,Xiao-mingMo,KaiZhou,Song-zhanLi,Zeng-caiSong,Hong-weiLei,JianWen,Zi-qiangZhu,Guo-jiaFang,“Improved light emission from n-ZnO/p-Si heterojunction with HfO2 as an electron blocking layer”,Journal of Luminescence,184, pp. 211-216 (2017)
【9】YangZhao,HuiWang,ChaoWu,Wan-chengLi,Fu-binGao,Guo-guangWu,Bao-linZhang,Guo-tongDu,“Study on the electroluminescence properties of diodes based on n-ZnO/p-NiO/p-Si heterojunction” ,Optics Communications,336, pp. 1-4 (2015)
【10】Ya. I. Alivov, J. E. Van Nostrand, D. C. Look, M. V. Chukichev, B. M. Ataev,“Observation of 430nm electroluminesce from ZnO/GaN heterojunction light-emitting diodes”, Appl. Phys. Lett.,83,2943(2003).
【11】D. J. Rogers, F. Hosseini Teherani, A. Yasan, K. Minder, P. Kung, “Electroluminescence at 375nm form a ZnO/GaN: Mg/c-Al2O3 heterojunction light emitting diode” , Appl. Phys. Lett., 88 , 141918 (2006).
【12】Sejoon Lee , Deuk Young Kim, “Characteristics of ZnO/GaN heterostructure formed on GaN substrate by sputtering deposition of ZnO” , Materials Science and Engineering B , 137,80–84(2007).
【13】H. C. Chen, M. J. Chen, Y. H. Huang, W. C. Sun, W. C. Li, J. R. Yang, H. Kuan, and M. Shiojiri, “White-Light Electroluminescence From n-ZnO/p-GaN Heterojunction Light-Emitting Diodes at Reverse Breakdown Bias” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 58, NO. 11, NOVEMBER (2011).
【14】Chia-Cheng Ho1, Li-Wei Lai2, Ching-Ting Lee3, Kai-Chao Yang1, Bo-Ting Lai1 and Day-Shan Liu1, “Transparent cosputtered ITO–ZnO electrode ohmic contact to n-type ZnO for ZnO/GaN heterojunction light-emitting diode”, J. Phys. D: Appl. Phys. 46 ,315102 (2013).
【15】Hao Zheng, Z.X. Mei, Z.Q. Zeng, Y.Z. Liu, L.W. Guo , J.F. Jia , Q.K. Xue , Z. Zhang , X.L. Du , “Fabrication and characterization of high quality n-ZnO/p-GaN heterojunction light emission diodes” , Thin Solid Films,520,445-447(2011).
【16】H.Y. XU, Y.C. LIU, Y.X. LIU, C.S. XU, C.L. SHAO, R. MU, “Ultraviolet electroluminescence from p-GaN/i-ZnO/n-ZnO heterojunction light-emitting diodes”, Appl. Phys. B,80 , 871-874 (2005).
【17】D.S. Liu,C.S. Sheu, “Aluminum-nitride codoped zinc oxide films prepared using a radio-frequency magnetron cosputtering system.”, J. Appl. Phys. , 102,(2007).
【18】R.K.Shukla,A.Srivastava,A.Srivastava,and K.C.Dubey,“Growth of transparent conducting nanocrystalline Al doped ZnO thin films by pulsed laser deposition”,J.Cryst.Growth,294,p.427(2006).
【19】Z.Z.Ye,Q.Qian,G.D.Yuan,B.H.Zhao,D.W.Ma,“Effect of oxygen partial ratios on the properties of Al-N co-doped ZnO thin films”,J.Cryst. Growth,274,pp. 178-182(2005).
【20】K.P. Bhuvana, J. Elanchezhiyan, N. Gopalakrishnan, T. Balasubramanian, “Codoped (AlN) and monodoped (Al) ZnO thin films grown by RF sputtering: Acomparative study”, Applied Surface Science ,255,2026-2029(2008).
【21】Day-Shan Liu, Chia-Sheng Sheu,Ching-Ting Lee, “Aluminum-nitride codoped zinc oxide films prepared using a radio-frequency magnetron cosputtering system”, JOURNAL OF APPLIED PHYSICS, 102, 033516(2007).
【22】Li-Wen Lai, Jheng-Tai Yan, Chia-Hsun Chen, Li-Ren Lou, Ching-Ting Lee, “Nitrogen function of aluminum codopedZnOfilms deposited using coputter system”, J. Mater. Res., 24,No.7(2009).
【23】Min Wei, Hong Deng , Xueran Deng, Chunrong Yang, Jinju Chen, “Structure and optical properties of AlxZn1-xO alloys sol-gel technique”, Materials Research Bulletin, 46,755-759(2011).
【24】JianfengSua, ChunheZang, Chunxiao Cheng, QiangNiu, Yongsheng Zhang, Ke Yu, “Structural , optical and electrical properties of Al-N codopedZnOfilms by RF-assisted MOCVD method”,Applied Surface Science, 257,160-164(2010).
【25】Bhupendra K. Sharma, NeerajKhare , D. Haranath, “Photoluminescence lifetime of Al-doped ZnOfilms in visible region”, Solid State Communications , 150, 2341-2345(2010).
【26】黃瑞皓,“利用氮化鋁-氧化鋅與氧化鎂-氧化鋅共濺鍍薄膜製作雙異質接面結構之特性研究”,國立虎尾科技大學光電與材料科技研究所碩士論文 (2012).
【27】S.P Chang,R.W Chuang,S.J Chang,Y.Z Chiou,C.Y Lu,“MBE n-ZnO/MOCVD p-GaNheterojunction light-emitting diode” ,Thin Solid Films, 517, pp. 5054-5056 (2009)
【28】S. Li, M.E. Ware, J. Wu, V.P. Kunets, M. Hawkridge, P. Minor, Z. Wang, Z. Wu, Y. Jiang, G.J. Salamo, “Polarization doping: Reservoir effects of the substrate in AlGaN graded layers” ,Journal of Applied Physics,112,053711 (2012)
【29】Shibin Li, Morgan Ware, Jiang Wu, Paul Minor, Zhiming Wang, Zhiming Wu, Yadong Jiang, Gregory J. Salamo, “Polarization induced pn-junction without dopant in graded AlGaN coherently strained on GaN” ,Appl. Phys. Lett.101, 122103 (2012)
【30】H. Xiao, 2003, Introduction to Semiconductor Manufacturing Technology, Prentice-Hall Inc.
【31】J. R. Roth, 1995, Industrial Plasma Engineering, Volume 1: Principles, Institute of Physics Publishing.
【32】D. S. Liu, F. C. Tsai, C. T. Lee, and C. W. Sheu, 2008,“Properties of Zinc Oxide Films Cosputtered with Aluminum at Room Temperature”, Jpn. J. Appl. Phys., 47, No. 4, pp. 3056-3062.
【33】D. S. Liu, C. C. Wu, and C. T. Lee, 2005,“A Transparent and Conductive Film Prepared by RF Magnetron Cosputtering System at Room Temperature”, Jpn. J. Appl. Phys., 44, No. 7, pp. 5119-5121.
【34】T. Minami, 2005, “Transparent conducting oxide semiconductors for transparent electrodes”, Semicond. Sci. Technol., 20, pp. S35-S44.
【35】D.J. Leary, J. O. Barnes, and A. G. Jordan, 1982, “Calculation of carrier concentration in polycrystalline films as a function of surface acceptor state density: application for ZnO gas sensors”, J. Electrochem. Soc., 29, pp. 1382-1386.
【36】C. Caliendo, G. Saggio, P. Verardi and E. Verona, 1993, “Piezoelectric AlN Film for SAW Devices Application”, IEEE, Ultrasonics symposium, pp. 249-252.
【37】E. Janczak-Bienk, H. Jensen and G. Sorensen, Mater. Sci and Eng. A140, p. 696, (1991)
【38】S. M. Sze, and K. K. Ng, 2006, Physics of Semiconductor Devices, 3rd Edition, John Wiley & Sons, Inc.
【39】陳鼎堯,2008, “氧化鎂鋅鋁薄膜應用於氮化鋁鎵接觸之特性研究”,國立虎尾科技大學光電與材料科技研究所碩士論文。
【40】徐政維,氧化鎂鋅鋁箔膜應用於氮化鋁鎵接觸之特性研究,國立虎尾科技大學光電與材料科技研究所碩士論文,2008年。
【41】吳俊慶,“以射頻共濺鍍系統於室溫下沉積透明導電膜研究”國立虎尾科技大學光電與材料科技研究所碩士論文 (2005).
【42】林俊興,“共濺鍍氧化銦鋅透明導電膜熱穩定性之研究”,國立虎尾科技大學光電與材料科技研究所碩士論文(2006).
【43】莊翔鈞,“不同氣體環境熱處理氧化鋅緩衝層對共濺鍍薄膜特性影響之研究”,國立虎尾科技大學光電與材料科技研究所碩士論文(2008).
【44】施敏、伍國玨,“半導體元件物理學 ” 第三版-上冊(2011).
【45】汪建民,“材料分析”,中國材料科學學會 (2005) .
【46】Y. J. Zeng, Z. Z. Ye, J. G. Lu, L. P. Zhu, D. Y. Li, B. H. Zhao and J. Y. Huang, 2005, “Effects of Al content on properties of Al–N codoped ZnO films”, Appl. Surf. Sci. 249, pp. 203-207.
【47】In Soo Kim, Eun-Kyung Jeong, Do Yun Kim, Manoj Kumar, Se-Young Choi, “Investigation of p-type behavior in Ag-doped ZnO thin films by E-beam evaporation”, Applied Surface Science 255 (2009) 4011–4014.
【48】Zhi-Min Liao , Hong-Zhou Zhang , Yang-Bo Zhou , Jun Xua, Jing-Min Zhang , Da-PengYua,, “Surface effects on photoluminescence of single ZnO nanowires”, Appl. Phys. Lett.(2008).
【49】R. Vinodkumar,“Highly conductive and transparent laser ablated nanostructured Al:ZnO thin films.”,Appl.phys.Lett.,257,pp.708-716 (2010).
【50】Dieter K. Schroder “SemiconductorMaterial and DeviceCharacterization”,John Wiley & Sons Inc.
【51】N. Gopalakrishnan, L. Balakrishnan, V. SenthamizhPavai, J. Elanchezhiyan, T. Balasubramanian,“Characterization of (ZnO)1-x(AlN)x/ZnO junction for optoelectronic applications” Current Applied Physics 11 (2011) 834e837
【52】L. Balakrishnan , P. Premchander , T. Balasubramanian , N. Gopalakrishnan “AlNcodoping and fabrication of ZnOhomojunction by RF sputtering” Vacuum 85 (2011) 881-886
【53】W. J. Maeng, Sang-Jun Kim, Jin-Seong Park, Kwun-Bum Chung, Hyungjun Kim, “Low temperature atomic layer deposited Al-doped ZnO thin films and associated semiconducting properties” ,Vac. Sci. Technol. B, 30, 031210(2012).
【54】Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo,H. Koinuma and Y. Segawa, 1998, “Room-temperature ultraviolet laser emission from self-assembled ZnOmicrocrystallite thin films”, Applied Physics Letters,72(25), pp.3270.
【55】Y. W. Heo, D.P.Norton, S.J.pearton, “Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy”, Journal of Applied physics, 98,073502 (2005).
【56】Zhi-Min Liao , Hong-Zhou Zhang , Yang-Bo Zhou , Jun Xua, Jing-Min Zhang , Da-PengYua, “Surface effects on photoluminescence of single ZnO nanowires”, Appl. Phys. Lett.(2008).
【57】L. Balakrishnana, P. Premchanderb, T. Balasubramaniana, N. Gopalakrishnana, “AlNcodoping and fabrication of ZnOhomojunction by RF sputtering” , Vacuum,85, pp.881-886(2011).
【58】J. G. Lu, L. P. Zhu, Z. Z. Ye,“Improved N-Al codoped p-type ZnO thin films by introduction of a homo-buffer layer”, J. Crys. Growth, 274, pp.425-429 (2005).
【59】S.Y. Hu,Y.C. Lee,J.W. Lee,J.C. Huang,J.L. Shen,W. Water, “The structural and optical properties of ZnO/Si thin films by RTA treatments”, Applied Surface Science, 254,pp.1578-1582¬(2008)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊