跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/17 22:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王相霖
研究生(外文):WANG, HSIANG-LIN
論文名稱:應用於電動車儲能系統之交錯式雙向半橋CLLC 諧振直流-直流轉換器研製
論文名稱(外文):Implementation of Interleaved Bidirectional Half-Bridge CLLC Resonant DC-DC Converter for Energy Storage Systems of Electric Vehicles
指導教授:邱國珍邱國珍引用關係
指導教授(外文):CHIOU, GWO-JEN
口試委員:黃昭明黃怡碩陳政裕邱國珍
口試委員(外文):HUANG, ZHAO-MINGHUANG, YI-SHUOCHEN, JENG-YUECHIOU, GWO-JEN
口試日期:2019-07-16
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:電機工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:81
中文關鍵詞:電動車CLLC諧振轉換器交錯式負載分配
外文關鍵詞:Electric vehicleCLLC resonant converterInterleavedLoad sharing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近年來,電動車被視為分佈式電源,用於存儲電力並將電力送回電網,但電動車儲能系統需能夠以雙向功率傳輸運行。本論文旨在研製應用於電動車儲能系統之交錯式雙向CLLC諧振轉換器,此拓撲架構由兩組轉換器以開關訊號錯相90度的方式並聯,轉換器輸出直流電壓可通過頻率調變控制(PFM)進行電壓調節。本轉換器同時擁有以下特點:(1)對稱性架構,具有雙向功率傳輸特性,並且在雙向功率傳輸時功率開關皆具柔性切換;(2)使用交錯式技術,降低輸出電流漣波,並增加功率及穩定性;(3) 利用不對稱脈波調變(APWM),限制輸入功率以解決並聯時因諧振槽存在差異而產生負載分配不均的問題。本論文完成一適用於電動車儲能系統之直流-直流轉換器,其特性具雙向功率傳遞、具低輸出電流漣波與具負載平衡等特色。最後本論文研製出輸入直流電壓350V、輸出電壓為可調範圍280V~400V且最大功率1000W之直流-直流轉換器,經實驗結果得出其順向充電模式最高效率可達92.4%,反向放電模式最高效率亦有92.3%。
In recent years, electric vehicles have been viewed as distributed power sources for storing electricity and sending it back to the grid, but electric vehicle energy storage systems need to be capable of operating in bidirectional power transmission. The purpose of this thesis is to develop an interleaved bidirectional CLLC resonant converter for electric vehicle energy storage systems. This topology is connected in parallel by two sets of converters with phase-shifted switch by 90°. The converter output DC voltage can be voltage-regulated by frequency modulation control. The converter also has the following features: (1) Symmetrical architecture with bidirectional power transfer characteristics, and soft switching of power switches during bidirectional power transfer; (2) Use of interleaved technology to reduce output current ripple and increase Power and stability; (3) The asymmetric pulse modulation method is used to limit the input power to solve the problem of load sharing due to the difference of the resonant tanks in parallel. This paper completes a DC-DC converter for electric vehicle energy storage system, which features bidirectional power transmission, low output current ripple and load balancing. Finally, a DC-DC converter with an input DC voltage of 350V and an output voltage of 280V~400V and a maximum power of 1000W is developed. The experimental results show that the maximum efficiency of the charging mode can reach 92.4%, and the maximum efficiency of the discharge mode is also 92.3%.
摘要......i
Abstract......ii
誌謝......iii
目錄......iv
表目錄......vi
圖目錄......vii
第一章 緒論......1
1.1 研究動機......1
1.2 文獻回顧......2
1.3 論文貢獻......4
1.4 論文概述......4
第二章 電動車儲能系統直流-直流級轉換器......6
2.1 柔性切換介紹......6
2.2 橋式諧振轉換器......7
2.2.1 逆變器電路......8
2.2.2 諧振電路......9
2.2.3 整流電路......15
2.2.4 濾波電路......17
2.3 交錯式轉換器......18
第三章 交錯式雙向半橋CLLC諧振轉換器......19
3.1 前言......19
3.2 雙向半橋CLLC諧振轉換器電路架構及工作階段分析......19
3.2.1 CLLC諧振介紹......19
3.2.2 雙向半橋CLLC諧振轉換器分析......21
3.2.3 雙向半橋CLLC諧振轉換器工作階段分析......24
3.3 交錯式雙向半橋CLLC諧振轉換器電路架構及工作階段分析......34
3.3.1 交錯式雙向半橋CLLC諧振轉換器電路架構及錯相角度分析......34
3.3.2 交錯式雙向半橋CLLC諧振轉換器工作階段分析......35
3.4 交錯式諧振轉換器負載平均分配......44
第四章 硬體電路實現與實驗結果......48
4.1 前言......48
4.2 交錯式雙向半橋CLLC諧振轉換器電路規格......48
4.3 交錯式雙向半橋CLLC諧振轉換器參數設計......49
4.3.1 功率開關選擇......49
4.3.2 高頻變壓器設計......50
4.3.3 諧振槽設計......51
4.3.4 低通濾波電容設計......53
4.4 控制電路......54
4.4.1 開關控制器介紹......54
4.4.2 光耦合隔離器......54
4.4.3 直流電源供應電路......55
4.5 電路模擬......56
4.5.1 順向充電模式電路模擬......57
4.5.2 反向放電模式電路模擬......58
4.6 實驗波形量測......60
4.6.1 順向充電模式電路實驗量測......60
4.6.2 反向放電模式電路實驗量測......64
4.7 交錯式雙向半橋CLLC諧振轉換器效率......68
第五章 結論與未來展望......72
5.1 結論......72
5.2 未來展望......73
參考文獻......74
Extended Abstract......77


[1]J. G. Pinto, V. Monteiro, H. Gonçalves and J. L. Afonso, "Onboard Reconfigurable Battery Charger for Electric Vehicles With Traction-to-Auxiliary Mode," IEEE Transactions on Vehicular Technology, vol. 63, no. 3, pp. 1104-1116, March 2014.
[2]K. Hu, P. Yi and C. Liaw, "An EV SRM Drive Powered by Battery/Supercapacitor With G2V and V2H/V2G Capabilities," IEEE Transactions on Industrial Electronics, vol. 62, no. 8, pp. 4714-4727, Aug. 2015.
[3]K. Hu and C. Liaw, "Incorporated Operation Control of DC Microgrid and Electric Vehicle," IEEE Transactions on Industrial Electronics, vol. 63, no. 1, pp. 202-215, Jan. 2016.
[4]V. Monteiro, J. G. Pinto and J. L. Afonso, "Operation Modes for the Electric Vehicle in Smart Grids and Smart Homes: Present and Proposed Modes," IEEE Transactions on Vehicular Technology, vol. 65, no. 3, pp. 1007-1020, March 2016.
[5]Y. Hsu, S. Kao, C. Ho, P. Jhou, M. Lu and C. Liaw, "On an Electric Scooter With G2V/V2H/V2G and Energy Harvesting Functions," IEEE Transactions on Power Electronics, vol. 33, no. 8, pp. 6910-6925, Aug. 2018.
[6]C. Saber, D. Labrousse, B. Revol and A. Gascher, "Challenges Facing PFC of a Single-Phase On-Board Charger for Electric Vehicles Based on a Current Source Active Rectifier Input Stage," IEEE Transactions on Power Electronics, vol. 31, no. 9, pp. 6192-6202, Sept. 2016.
[7]L. A. Barragan, D. Navarro, J. Acero, I. Urriza and J. M. Burdio, "FPGA Implementation of a Switching Frequency Modulation Circuit for EMI Reduction in Resonant Inverters for Induction Heating Appliances," IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 11-20, Jan. 2008.
[8]S. Yu, M. Q. Nguyen and W. Choi, "A Novel Soft-Switching Battery Charge/Discharge Converter With the Zero Voltage Discharge Function," IEEE Transactions on Power Electronics, vol. 31, no. 7, pp. 5067-5078, July 2016.
[9]H. Wang, Q. Sun, H. S. H. Chung, S. Tapuchi and A. Ioinovici, "A ZCS Current-Fed Full-Bridge PWM Converter With Self-Adaptable Soft-Switching Snubber Energy," in IEEE Transactions on Power Electronics, vol. 24, no. 8, pp. 1977-1991, Aug. 2009.
[10]F. Musavi, W. Eberle and W. G. Dunford, "Efficiency evaluation of single-phase solutions for AC-DC PFC boost converters for plug-in-hybrid electric vehicle battery chargers," 2010 IEEE Vehicle Power and Propulsion Conference, Lille, 2010, pp. 1-6.
[11]H. Wang, S. Dusmez and A. Khaligh, "Design and Analysis of a Full-Bridge LLC-Based PEV Charger Optimized for Wide Battery Voltage Range," IEEE Transactions on Vehicular Technology, vol. 63, no. 4, pp. 1603-1613, May 2014.
[12]J. Deng, S. Li, S. Hu, C. C. Mi and R. Ma, "Design Methodology of LLC Resonant Converters for Electric Vehicle Battery Chargers," in IEEE Transactions on Vehicular Technology, vol. 63, no. 4, pp. 1581-1592, May 2014.
[13]N. Shafiei, M. Ordonez, M. Craciun, C. Botting and M. Edington, "Burst Mode Elimination in High-Power LLC Resonant Battery Charger for Electric Vehicles," IEEE Transactions on Power Electronics, vol. 31, no. 2, pp. 1173-1188, Feb. 2016.
[14]Y. Shen, W. Zhao, Z. Chen and C. Cai, "Full-Bridge LLC Resonant Converter With Series-Parallel Connected Transformers for Electric Vehicle On-Board Charger," IEEE Access, vol. 6, pp. 13490-13500, 2018.
[15]L. Xue, Z. Shen, D. Boroyevich, P. Mattavelli and D. Diaz, "Dual Active Bridge-Based Battery Charger for Plug-in Hybrid Electric Vehicle With Charging Current Containing Low Frequency Ripple," IEEE Transactions on Power Electronics, vol. 30, no. 12, pp. 7299-7307, Dec. 2015.
[16]林承諺,混合切換定頻LLC之相移式全橋轉換器研製,國立虎尾科技大學電機工程系碩士論文,西元2018年。
[17]J. Jung, H. Kim, M. Ryu and J. Baek, "Design Methodology of Bidirectional CLLC Resonant Converter for High-Frequency Isolation of DC Distribution Systems," IEEE Transactions on Power Electronics, vol. 28, no. 4, pp. 1741-1755, April 2013.
[18]P. He and A. Khaligh, "Comprehensive Analyses and Comparison of 1 kW Isolated DC–DC Converters for Bidirectional EV Charging Systems," IEEE Transactions on Transportation Electrification, vol. 3, no. 1, pp. 147-156, March 2017.
[19]Z. J. Zhang, H. M. Li, Y. L. Peng and Y. B. Li, "Phase shift control for multi-phase parallel LLC voltage-fed inverter," Electronics Letters, vol. 46, no. 6, pp. 442-444, 18 March 2010.
[20]H. Wang, Y. Chen and Y. Liu, "A Passive-Impedance-Matching Technology to Achieve Automatic Current Sharing for a Multiphase Resonant Converter," IEEE Transactions on Power Electronics, vol. 32, no. 12, pp. 9191-9209, Dec. 2017.
[21]白育丞,含差異量之LLC諧振式直流-直流轉換器並聯之分析與控制設計,國立雲林科技大學電機工程系碩士論文,西元2017年。
[22]陳昱凱,雙相交錯式半橋LLC諧振轉換器之研製,國立成功大學碩士論文電機工程學系碩士論文,西元2012年。
[23]洪嘉伸,LLC諧振轉換器設計步驟,國立台灣大學電機電信電子產業研發碩士專班碩士論文,西元2009年。
[24]B. Kim, K. Park and G. Moon, "Asymmetric PWM Control Scheme During Hold-Up Time for LLC Resonant Converter," in IEEE Transactions on Industrial Electronics, vol. 59, no. 7, pp. 2992-2997, July 2012.
[25]Z. Hu, Y. Liu and P. C. Sen, "Cycle-by-cycle average input current sensing method for LLC resonant topologies," 2013 IEEE Energy Conversion Congress and Exposition, Denver, CO, 2013, pp. 167-174.
[26]J. W. Kim, J. K. Han and J. S. Lai, "APWM adapted half-bridge LLC converter with voltage doubler rectifier for improving light load efficiency," Electronics Letters, vol. 53, no. 5, pp. 339-341, March 2017.

電子全文 電子全文(網際網路公開日期:20240809)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top