跳到主要內容

臺灣博碩士論文加值系統

(44.212.94.18) 您好!臺灣時間:2023/12/11 23:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳家倫
研究生(外文):CHEN, CHIA-LUN
論文名稱:具正輪係值之單迴路行星減速機的嚙合效率與傳動效率分析
論文名稱(外文):The Meshing Efficiency and Transmission Efficiency Analysis of Single-loop Planetary Gear Reducer with Positive Train Value
指導教授:謝龍昌謝龍昌引用關係陳子夏
指導教授(外文):HSIEH, LUNG-CHANGCHEN, TZU-CHIA
口試委員:謝樹林徐孟輝陳子夏謝龍昌
口試委員(外文):HSIEH, SHU-LINHSU, MENG-HUICHEN, TZU-CHIAHSIEH, LUNG-CHANG
口試日期:2019-07-11
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:動力機械工程系機械與機電工程碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:122
中文關鍵詞:漸開線理論相對功理論嚙合效率行星減速機正輪系值傳動效率
外文關鍵詞:Involute theoremlatent power theoremmeshing efficiencyplanetary gear reducerpositive train valuetransmission efficiency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究主要針對具正輪係值之單迴路行星減速機的嚙合效率與傳動效率分析,並由唐修晨依據Stribeck Curve修正Buckingham所提出的摩擦係數經驗公式,修正並分析出內外齒輪對嚙合效率。本論文設計出減速比20之行星減速機(FPR+20)並計算其相對嚙合效率 ( ),再依據相對功理論,計算出行星減速機之嚙合效率( ),並計算軸承效率、油封效率與攪油效率,求出整體行星減速機之理論效率( );再設計一組減速比-20之行星減速機(FPR-20),並計算其嚙合效率( )在與(FPR+20)之嚙合效率進行比較。本研究成果如下:
1. 螺旋齒輪行星減速機(FPR+20)使用齒輪油75W90,在輸入轉速從100 rpm至3600 rpm、輸出負載從80 N-m至400N-m,理論嚙合效率為71.764%~93.401%,理論傳動效率介於66.526%~92.226%。
2. 螺旋齒輪行星減速機(FPR-20)使用齒輪油75W90,在輸入轉速從100 rpm至3600 rpm、輸出負載從80 N-m至400N-m,理論嚙合效率為57.39%~91.01%。
3. 由第五章可得知行星減速機(FPR+20)理論嚙合效率比行星減速機(FPR-20)之理論嚙合效率高出-0.2676%~14.374%。
4. 螺旋齒輪行星減速機(FPR+20)使用2號潤滑脂潤滑,在輸入轉速從100 rpm至3600 rpm、輸出負載從80 N-m至400N-m,理論嚙合效率為58.654%~88.849%之間,理論傳動效率介於51.784%~87.613%。
5. 對行星減速機(FPR+20)而言,使用2號潤滑脂的理論嚙合效率較使用75W90機油小約4.552%~13.11%,理論傳動效率則小約4.61%~14.74%。

In general, planetary gear reducers have negative gear train values, reduction ratios of single-stage planetary gear reducers Rr<10. 3K type and 2K-2H type planetary gear reducers have high reduction ratio, However, their meshing and transmission efficiencies are low. Some scholars and companies want to use N-type and NN-type involute gear drive with small teeth difference to replace the cycloid gear. However, due to involute interference and balance problems, it can’t be used in powertrain. In order to ameliorate the above problems, By referring to the NN-type involute gear drive with small teeth difference, this research proposes “single-loop planetary gear reducer with positive gear train value” to provide high reduction ratio. However, due to the reason that single-loop planetary gear reducer will not produce power circulation and the tooth surface force amplification phenomenon, it will have better theoretical meshing efficiency and transmission efficiency.
This research focuses on the transmission efficiency of planetary spur-gear reducer. In this research, the gear reducer with reduction ratio Rr=+20 (FPR+20) and the gear reducer with reduction ratio Rr=-20 (FPR-20) are synthesized. Then, the meshing efficiency equations of external and internal spur gear pairs are derived firstly. According to the “Stribeck Curve”, the empirical formula of friction coefficient proposed by Buckingham was modified and the corresponding meshing efficiencies external and internal spur gear pairs are analyzed. Based on the latent power theory, the theoretical meshing efficiencies of gear reducers (FPR+20 and FPR-20) are analyzed. Then, the efficiencies of bearings, oil seals, and oil stirring are also calculated and the corresponding theoretical transmission efficiencies are analyzed. The results are summarized as follows:
1. For the gear reducer (FPR+20) with oil 75W90, its theoretical meshing and transmission efficiencies are between 71.764%~93.401% and 66.526%~92.226% under input speed form 100rpm to 3600rpm and output load from 80N-m to 400N-m.
2. For the gear reducer (FPR-20) with oil 75W90, its theoretical meshing efficiencies are between 57.39%~91.01% under input speed form 100rpm to 3600rpm and output load from 80N-m to 400N-m.
3. The theoretical meshing efficiencies of gear reducer (FPR+20) are larger than (FPR-20) by -0.2676%~14.374%.
4. For the gear reducer (FPR+20) with grease No.2, its theoretical meshing efficiencies are between 58.654%~88.849% under input speed form 100rpm to 3600rpm and output load from 80N-m to 400N-m.
5. The theoretical meshing efficiencies of gear reducer (FPR+20) with grease No.2 are less than gear reducer (FPR+20) with oil 75W90 by 4.552%~13.11%.

摘要...i
Abstract...ii
誌謝...iv
目錄...v
表目錄...viii
圖目錄...ix
符號說明...xi
第一章 前言...1
1.1 文獻回顧...1
1.1.1齒輪摩擦...1
1.1.2滑動速度...1
1.1.3齒輪潤滑...2
1.1.4相對功理論...2
1.2 研究動機與目的...2
1.3論文架構...2
第二章 相關專利...3
2.1專利分析...3
第三章 行星減速機與理論效率...7
3.1輪系方程式與減速比...7
3.2 相對功理論...7
3.3 齒輪嚙合效率...8
3.3.1 減速比正值(Rr>1)之行星減速機...8
3.3.2 減速比負值(Rr<-1)之行星減速機...9
3.4 外齒輪為主動之內齒輪對之嚙合效率...10
3.4.1 漸近區主動齒輪的輸入功(外齒輪主動)...13
3.4.2 漸遠區主動齒輪的輸入功(外齒輪主動)...14
3.4.3 漸近區從動齒輪的輸出功(外齒輪主動)...15
3.4.4 漸遠區從動齒輪的輸出功(外齒輪主動)...16
3.4.5 外齒輪為主動之內齒輪對嚙合效率...17
3.5 內齒輪為主動之內齒輪對嚙合效率...18
3.4.1 漸近區主動齒輪的輸入功(內齒輪主動)...20
3.4.2 漸遠區主動齒輪的輸入功(內齒輪主動)...21
3.4.3 漸近區從動齒輪的輸出功(內齒輪主動)...22
3.4.4 漸遠區從動齒輪的輸出功(內齒輪主動)...23
3.4.5 內齒輪為主動之內齒輪對嚙合效率...24
3.6 內齒輪嚙合效率...25
3.5.1 螺旋齒輪嚙合效率...25
3.6.2 螺旋齒輪內嚙合效率...26
3.6 摩擦係數...27
3.6.1 摩擦係數修正...27
3.7 軸承效率...29
3.8 油封效率...32
3.9 攪油效率...32
3.10 理論傳動效率...33
第四章 減速比20行星減速機之傳動效率...34
4.1減速比20行星減速機(FPR+20)...35
4.2理論嚙合效率(協同2號油脂)...37
4.2.1摩擦修正係數...38
4.2.2內齒輪為主動之內嚙合效率...38
4.2.3外齒輪為主動之內嚙合效率...42
4.2.4滾針軸承效率...45
4.2.5行星齒輪相對嚙合效率...48
4.2.6行星減速機(FPR+20)理論嚙合效率...50
4.3理論嚙合效率(使用Mobil Synthetic Gear Oil 75W-90)...52
4.3.1摩擦修正係數...52
4.3.2內齒輪為主動之內嚙合效率...52
4.3.3外齒輪為主動之內嚙合效率...56
4.3.4滾針軸承效率...59
4.3.5行星齒輪相對嚙合效率...62
4.3.6行星減速機(FPR+20)理論嚙合效率...64
4.4 不同油品嚙合效率之比較...66
4.5理論傳動損失之效率...67
4.5.1軸承效率...67
4.5.2油封效率...77
4.5.3攪油效率...80
4.6理論傳動效率...85
4.6.1 理論傳動效率(75W90)...85
4.6.2理論傳動效率(2號油脂)...88
4.6.3不同油品傳動效率比較...91
4.6.4 理論傳動效率(損失功率相加)...92
4.6.5 損失效率相乘與相加之效率比較...95
第五章 減速比-20行星減速機之嚙合效率...96
5.1 減速比-20行星減速機(FPR-20)...96
5.2 理論嚙合效率...98
5.2.1 摩擦修正係數...98
5.2.2 內齒輪為主動之內嚙合效率...99
5.2.3 外齒輪為主動之內嚙合效率...102
5.2.4 滾針軸承效率...105
5.2.5 行星齒輪相對嚙合效率...108
5.2.6 星減速機(FPR-20)理論嚙合效率...110
5.3 (FPR+20)與(FPR-20)效率之比較...112
第六章 結論與未來展望...114
參考文獻...116
Extended Abstract...118


[1]秦大同,2005,“機械傳動科學技術的發展歷史與研究進展”,重慶大學機械傳動國家重點實驗室:中國科技論文在線,3月
[2]吳茂榮,2005,“包含潤滑特性之正齒輪動態分析”,中華大學,碩士論文
[3]張哲誌、林英隆,2014,“行星齒輪傳動機構簡介及運動分析”,精密機械研究發展中心、台灣發展研究院智能機器人研究所
[4]Reuleaux, 1893 , The Costructor, 4th ed., p.134(Suplee).Phila
[5]Weisbach and Herman, 1894 , The Mechanics of Machinery, translatred by J.V.Klein, Vol.III, p.347(Wiley,New York)
[6]Leutwiler, 1917, Elements of Machine Design, p.319(McGraw-Hill,New York)
[7]Earle Buckingham, 1949, Analytical Mechanic of Gears, Dover Publicayions, INC
[8]姚建初、陳義保、周濟、余俊,2001,“齒輪傳動嚙合效率計算方程的研究” ,機械工程學報, 37卷, 11期,11月
[9]Nelson, C.A. and Cipra, R.J. (2005), “Simplified Kinematic Analysis of Bevel Epicyclic Gear Trains with Application to Power-Flow and Efficiency Analyses,” ASME Transactions, Journal of Mechanical Design, Vol.127, pp. 278-286
[10]周哲波,2004,“彈流潤滑狀態下齒輪嚙合效率研究” ,機械設計,21卷,12期,12月
[11]協友東,2005,“新型兩齒差外嚙合行星齒輪傳動的效率及壽命研究” ,安嶶理工大學,碩士論文
[12]崔麗、秦大同、石方凱,2006,“行星齒輪傳動嚙合分析” ,重慶大學學報(自然科學版),29卷,3期,3月
[13]趙寧、魏方、惠廣林、康士朋,2009,“齒輪基本參數對內齒輪嚙合效率影響的研究” ,現代製造工程, 8期
[14]陳倖豪,2011,“電動代步車齒輪箱效率分析與驗證” ,國立虎尾科技大學,碩士論文
[15]郭曉薈,2012,“正齒輪對與行星齒輪系之傳動效率分析與測試” ,國立虎尾科技大學,碩士論文
[16]唐修晨,2014,“漸開線齒輪傳動系統之機械效率分析與工程應用”國立虎尾科技大學,博士論文
[17]林靜臣,1990,“考慮背隙及偏心量之正齒輪動態分析” ,國立交通大學,碩士論文
[18]Buckingham, 1928, Spur Gear Design, Operation, and Production, First Edition, McGraw-Hill, New York
[19]楊沛霖,2001,“正齒輪滾動滑動特性與齒面疲勞試驗模型之比較” ,國立成功大學,碩士論文
[20]洪政豪,1984,“粗度對齒輪潤滑影響之微擾法分析” ,國立成功大學,碩士論文
[21]黃社振,2005,“齒輪潤滑油添加劑磨潤性能之預測模式與最佳化” ,國立中正大學,博士論文
[22]Hsieh, L.C., and Yan, H.S. 1993, “On the Bias Ratio of Automotive Worm-Gear differentials,” International Journal of Vehicle Design, Vol.14, No.2/3 pp.212-225.
[23]Yan, H.S., and Hsieh, L.C., 1994, “On the Maximum Mechanical Efficiency of Infinitely Variable Transmissions,” Mechanism and Machine Theory, Vol.29, No.5, pp.777-784.


[24]Hsieh, L.C., and Chen T.H., 2012, “The Kinematic and Efficiency Analysis of Planetary Gear Trains With Single Train Circuit,” Information-An International Interdisciplinary Journal.
[25]吳宗蔚,2008,“高減速比行星齒輪系之系統化設計” ,國立虎尾科技大學,碩士論文
[26]謝龍昌、李安謙、陳子夏、唐修晨,2013,“行星齒輪減速機” ,中華民國專利No. M454479
[27]陳威穎,2017,“行星齒輪減速機構” ,中華民國專利No. M553382
[28]周隆焜,2018,“行星減速機” ,中華民國專利No. M571919
[29]鍾克育、林鈞偉、鄭旭珉,“減速機” ,中華民國專利No.M573395
[30]Hsieh, L.C., and Chen T.H., 2013, “The Kinematic and Efficiency Analysis of Planetary Gear Trains With Single Train Circuit,” International Information Institute, Vol.16, No.9, pp7025-7032
[31]Benedict G.H, Kelley B.W, 1961, Instantaneous Coefficients of Gear Tooth Friction. ASLE Trans , Apr, 1961
[32]鄧四二、賈群義、薛進學,2014,“滾動軸承設計原理 第二版”,中國標準出版社,北京
[33]Parker, 2006, Rotary Seal Design Guide , Catalog EPS 5350/USA, p.p2-9
[34]陳富強,2015,“工業齒輪箱傳動效率計算方法的研究”,學術交流,南京高精密齒輪集團有限公司。

電子全文 電子全文(網際網路公開日期:20240827)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊