|
Mary M. Galloway. Texture analysis using gray level run lengths. computer graphics and image processing, 4(2):172–179, June 1975. URL https://www.sciencedirect.com/science/article/pii/S0146664X75800086. Belur V. Dasarathy and Edwin B. Holder. Image characterizations based on joint gray level—run length distributions. Pattern Recognition Letters, 12(8):497–502, August 1991. ISSN 01678655. doi: 10.1016/0167-8655(91) 80014-2. URL http://linkinghub.elsevier.com/retrieve/pii/0167865591800142. A. Chu, C.M. Sehgal, and J.F. Greenleaf. Use of gray value distribution of run lengths for texture analysis. Pattern Recognition Letters, 11(6):415–419, June 1990. ISSN 01678655. doi: 10.1016/0167-8655(90)90112-F. URL http://linkinghub.elsevier.com/retrieve/pii/016786559090112F. Nida M. Zaitoun and Musbah J. Aqel. Survey on image segmentation techniques, September 2015. URL https://www.sciencedirect.com/science/article/pii/S1877050915028574. S. Selvarajah and S. R. Kodituwakku. Analysis and comparison of texture features for content based image retrieval. International Journal of Latest Trends in Computing, 2(1), 2011. URL http://www.ijltc.excelingtech.co.uk/vol2issue1/18-vol2issue1.pdf. H. H. Loh, J. G. Leu, and R. C. Luo. The analysis of natural textures using run length features. IEEE Transactions on Industrial Electronics, 35(2):323–328, May 1988. ISSN 0278-0046. doi: 10.1109/41.192665. J. S. Weszka, C. R. Dyer, and A. Rosenfeld. A Comparative Study of Texture Measures for Terrain Classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-6(4):269–285, April 1976. ISSN 0018-9472. doi: 10.1109/TSMC.1976.5408777. R.W. Conners and C. A. Harlow. A Theoretical Comparison of Texture Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-2(3):204–222, May 1980. ISSN 0162-8828. doi: 10.1109/TPAMI.1980.4767008. Robert M. Haralick, Karthikeyan Shanmugam, and others. Textural features for image classification. IEEE Transactions on systems, man, and cybernetics, 3(6):610–621, 1973. Xiaoou Tang. Texture information in run-length matrices. IEEE Transactions on Image Processing, 7(11):1602–1609, November 1998. ISSN 10577149. doi: 10.1109/83.725367. URL http://ieeexplore.ieee.org/document/725367/. G. Castellano, L. Bonilha, L. M. Li, and F. Cendes. Texture analysis of medical images. Clinical Radiology, 59(12):1061–1069, December 2004. ISSN 0009-9260, 1365-229X. doi: 10.1016/j.crad.2004.07.008. S. Herlidou, Y. Rolland, J. Y. Bansard, E. Le Rumeur, and J. D. De Certaines. Comparison of automated and visual texture analysis in MRI: characterization of normal and diseased skeletal muscle. Magnetic resonance imaging, 17(9):1393–1397, 1999. S. Poonguzhali and G. Ravindran. Automatic classification of focal lesions in ultrasound liver images using combined texture features. Information Technology Journal, 7(1):205–209, 2008. URL http://docsdrive.com/pdfs/ansinet/itj/2008/205-209.pdf. David Molina, Juli´an P´erez-Beteta, Alicia Mart´ınez- Gonz´alez, Juan Martino, Carlos Vel´asquez, Estanislao Arana, and V´ıctor M. P´erez-Garc´ıa. Influence of gray level and space discretization on brain tumor heterogeneity measures obtained from magnetic resonance images. Computers in Biology and Medicine, 78:49–57, November 2016. ISSN 00104825. doi: 10.1016/j.compbiomed.2016. 09.011. URL http://linkinghub.elsevier.com/retrieve/pii/S0010482516302372. Karthik Kalyan, Binal Jakhia, Ramachandra Dattatraya Lele, Mukund Joshi, and Abhay Chowdhary. Artificial neural network application in the diagnosis of disease conditions with liver ultrasound images. Advances in bioinformatics, 2014, 2014. URL https://www.hindawi.com/journals/abi/2014/708279/abs/. Markus Gipp, Guillermo Marcus, Nathalie Harder, Apichat Suratanee, Karl Rohr, Rainer K¨onig, and Reinhard M¨anner. Accelerating the computation of haralick’s texture features using graphics processing units (gpus). In Proceedings of the World Congress on Engineering, volume 1, 2008. J. Dixon and J. Ding. An empirical study of parallel solutions for GLCM calculation of diffraction images. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 3969–3972, August 2016. doi: 10.1109/EMBC. 2016.7591596. Kristina Doycheva, Christian Koch, and Markus K¨onig. Implementing textural features on GPUs for improved real-time pavement distress detection. Journal of RealTime Image Processing, pages 1–12, October 2016. ISSN 1861-8200, 1861-8219. doi: 10.1007/s11554-016-0648-1. H. Y. Tsai, H. Zhang, C. L. Hung, and G. Min. GPUaccelerated Features Extraction from Magnetic Resonance Images. IEEE Access., PP(99):1–1, 2017. doi: 10.1109/ACCESS.2017.2756624. Brainweb: Simulated brain database, . URL http://brainweb.bic.mni.mcgill.ca/brainweb/. Mcbic: About the MRI simulator, . URL http://brainweb.bic.mni.mcgill.ca/brainweb/mri_sim.html. Cub: Documentation copyright (c) 2011-2016, nvidia corporation. URL http://nvlabs.github.io/cub/index.html.
|