跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/14 17:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:趙博荃
研究生(外文):CHAO, PO-CHUAN
論文名稱:以網頁探勘技術探索客戶喜好
論文名稱(外文):Exploring Customer Preference by Web Mining
指導教授:鄭麗珍鄭麗珍引用關係
指導教授(外文):CHENG, LI-CHEN
口試委員:黃正魁劉育津
口試委員(外文):HUANG, CHENG-KUEILIU, YU-CHIN
口試日期:2019-07-23
學位類別:碩士
校院名稱:東吳大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:35
中文關鍵詞:網頁探勘Word2Vec評論關聯規則客戶分群
外文關鍵詞:Web MiningWord2VecReviewAssociation RuleCustomer Segmentation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
誌謝 i
摘要 ii
ABSTRACT iii
目錄 iv
表目錄 vi
圖目錄 vii
1. 緒論 1
2. 相關文獻 2
2.1 評論意見探勘 2
2.2 網頁探勘 4
2.3 客戶分群 6
3. 研究方法 8
3.1 資料前處理模組 9
3.1.1 非結構化資料-評論 9
3.1.2 結構化資料-Weblog 10
3.2 特徵提取模組 10
3.3 客戶分群模組 11
3.3.1 RFE分群 11
3.3.2 關聯規則 12
4. 實驗結果 14
4.1 實驗資料 14
4.2 實驗流程 14
4.3 實驗結果 15
4.3.1 特徵提取模組:文字雲 15
4.3.2 不同支持度的群間頻繁資料集數目比較 16
4.3.3. 不同支持度的群間強關聯數量比較 19
5. 結論與未來研究 22
5.1 研究結果 22
5.2 研究限制 22
5.3 未來研究 22
6. 參考文獻 23
資策會產業情報研究所. (2016) 《行動購物消費者調查》跨螢購物行為占整體網購近50%.https://mic.iii.org.tw/IndustryObservations_PressRelease02.aspx?sqno=430
資策會產業情報研究所. (2018) 【網購大調查系列一】日常購物頻率 網購已達45%.https://mic.iii.org.tw/IndustryObservations_PressRelease02.aspx?sqno=488
林朝興, & 唐瑩荃. (2006). 以顧客價值分析與權重漸進探勘來進行協力式音樂推薦.Journal of Information, Technology and Society,1, 1.
Adomavicius, G., Tuzhilin, A. J. D. M., & Discovery, K. (2001). Expert-driven validation of rule-based user models in personalization applications. 5(1-2), 33-58.
Ady, M., & Quadri-Felitti, D. J. R. f. h. w. g. c. s. (2015). Consumer research identifies how to present travel review content for more bookings.
Aggarwal, C. C., Procopiuc, C., Yu, P. S. J. I. T. o. K., & Engineering, D. (2002). Finding localized associations in market basket data. 14(1), 51-62.
Berkhin, P. (2006). A survey of clustering data mining techniques. In Grouping multidimensional data (pp. 25-71): Springer.
Çakir, M. U., & Güldamlasioğlu, S. (2016). Text mining analysis in Turkish language using big data tools. Paper presented at the 2016 IEEE 40th Annual Computer Software and Applications Conference (COMPSAC).
Changchien, S. W., Lee, C.-F., & Hsu, Y.-J. J. E. S. w. A. (2004). On-line personalized sales promotion in electronic commerce. 27(1), 35-52.
Chen, D., Sain, S. L., Guo, K. J. J. o. D. M., & Management, C. S. (2012). Data mining for the online retail industry: A case study of RFM model-based customer segmentation using data mining. 19(3), 197-208. doi:10.1057/dbm.2012.17
Chen, R., Zheng, Y., Xu, W., Liu, M., & Wang, J. J. D. S. S. (2018). Secondhand seller reputation in online markets: A text analytics framework. 108, 96-106.
Chen, Y.-L., Kuo, M.-H., Wu, S.-Y., Tang, K. J. E. C. R., & Applications. (2009). Discovering recency, frequency, and monetary (RFM) sequential patterns from customers’ purchasing data. 8(5), 241-251.
Cooley, R., Mobasher, B., Srivastava, J. J. K., & systems, i. (1999). Data preparation for mining world wide web browsing patterns. 1(1), 5-32.
Hu, M., & Liu, B. (2004). Mining and summarizing customer reviews. Paper presented at the Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining.
Hu, Y.-H., Chen, Y.-L., Chou, H.-L. J. I. P., & Management. (2017). Opinion mining from online hotel reviews–A text summarization approach. 53(2), 436-449.
Hughes, A. M. (2005). Strategic database marketing: McGraw-Hill Pub. Co.
Johnson, F., & Gupta, S. K. J. I. J. o. C. A. (2012). Web content mining techniques: a survey. 47(11).
Jun, S. H., Vogt, C. A., MacKay, K. J. J. J. o. T., & Marketing, T. (2010). Online information search strategies: A focus on flights and accommodations. 27(6), 579-595.
Khajvand, M., Zolfaghar, K., Ashoori, S., & Alizadeh, S. (2011). Estimating customer lifetime value based on RFM analysis of customer purchase behavior: Case study. Procedia Computer Science, 3, 57-63. doi:https://doi.org/10.1016/j.procs.2010.12.011
Kosala, R., & Blockeel, H. J. A. S. E. N. (2000). Web mining research: A survey. 2(1), 1-15.
Lilleberg, J., Zhu, Y., & Zhang, Y. (2015). Support vector machines and word2vec for text classification with semantic features. Paper presented at the 2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC).
Litvin, S. W., Goldsmith, R. E., & Pan, B. J. T. m. (2008). Electronic word-of-mouth in hospitality and tourism management. 29(3), 458-468.
Liu, B., & Zhang, L. (2012). A survey of opinion mining and sentiment analysis. In Mining text data (pp. 415-463): Springer.
Liu, Z., & Park, S. J. T. M. (2015). What makes a useful online review? Implication for travel product websites. 47, 140-151.
Ma, L., & Zhang, Y. Using Word2Vec to process big text data. Paper presented at the 2015 IEEE International Conference on Big Data (Big Data).
Meng, X., & Wang, H. (2009). Mining user reviews: from specification to summarization. Paper presented at the Proceedings of the ACL-IJCNLP 2009 conference short papers.
Mikolov, T., Chen, K., Corrado, G., & Dean, J. J. a. p. a. (2013). Efficient estimation of word representations in vector space.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Paper presented at the Advances in neural information processing systems.
Narock, T., Zhou, L., & Yoon, V. (2013). Semantic similarity of ontology instances using polarity mining. Journal of the American Society for Information Science and Technology, 64(2), 416-427. doi:10.1002/asi.22769
Nithya, P., Sumathi, P. J. I. J. o. C. T., & Applications. (2012). A survey on Web usage mining: theory and applications. 3(4).
Pandagre, K., & Veenadhari, D. S. (2017). DATA MINING TECHNIQUES WITH WEB LOG: A REVIEW. 2017, 8(7), 3 %J International Journal of Advanced Research in Computer Science. doi:10.26483/ijarcs.v8i7.4294
Priyogi, B., Sanderson, M., Salim, F., Chan, J., Tomko, M., & Ren, Y. (2018). Identifying In-App User Actions from Mobile Web Logs. Paper presented at the Pacific-Asia Conference on Knowledge Discovery and Data Mining.
Ren, H., & Wei, Z. J. C. S. (2016). Study on sentiment analyzing of internet commodities review based on word2vec. 43(S1), 387-389.
Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. Paper presented at the Proceedings of the 10th international conference on World Wide Web.
Shihab, S. H., Afroge, S., & Mishu, S. Z. (2019). RFM Based Market Segmentation Approach Using Advanced K-means and Agglomerative Clustering: A Comparative Study. Paper presented at the 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE).
Sparks, B. A., & Browning, V. J. T. m. (2011). The impact of online reviews on hotel booking intentions and perception of trust. 32(6), 1310-1323.
Suadaa, L. H. (2014). A survey on web usage mining techniques and applications. Paper presented at the Information Technology Systems and Innovation (ICITSI), 2014 International Conference on.
Suh, E., Noh, K., & Suh, C. J. E. s. w. A. (1999). Customer list segmentation using the combined response model. 17(2), 89-97.
Suneetha, K., Krishnamoorthi, R. J. I. I. J. o. C. S., & Security, N. (2009). Identifying user behavior by analyzing web server access log file. 9(4), 327-332.
Tsai, C.-F., & Chen, M.-Y. J. E. S. w. A. (2010). Variable selection by association rules for customer churn prediction of multimedia on demand. 37(3), 2006-2015.
Turney, P. D. (2002). Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. Paper presented at the Proceedings of the 40th annual meeting on association for computational linguistics.
Verma, R. J. C. H. Q. (2010). Customer choice modeling in hospitality services: A review of past research and discussion of some new applications. 51(4), 470-478.
Wei, J.-T., Lin, S.-Y., & Wu, H.-H. J. A. J. o. B. M. (2010). A review of the application of RFM model. 4(19), 4199-4206.
Xu, X., Dutta, K., Datta, A., Ge, C. J. J. o. t. A. f. I. S., & Technology. (2018). Identifying functional aspects from user reviews for functionality‐based mobile app recommendation. 69(2), 242-255.
Yan, B., & Chen, G. (2011). AppJoy: personalized mobile application discovery. Paper presented at the Proceedings of the 9th international conference on Mobile systems, applications, and services.
Ye, K., Li, L., Guo, M., Qian, Y., & Yuan, H. (2015). Summarizing product aspects from massive online review with word representation. Paper presented at the International Conference on Knowledge Science, Engineering and Management.
Yeh, I.-C., Yang, K.-J., & Ting, T.-M. J. E. S. w. A. (2009). Knowledge discovery on RFM model using Bernoulli sequence. 36(3), 5866-5871.
Zhang, D., Xu, H., Su, Z., & Xu, Y. J. E. S. w. A. (2015). Chinese comments sentiment classification based on word2vec and SVMperf. 42(4), 1857-1863.
Zhao, L., & Li, C. (2009). Ontology based opinion mining for movie reviews. Paper presented at the International Conference on Knowledge Science, Engineering and Management.
Zhuang, L., Jing, F., & Zhu, X.-Y. (2006). Movie review mining and summarization. Paper presented at the Proceedings of the 15th ACM international conference on Information and knowledge management.
電子全文 電子全文(網際網路公開日期:20240730)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊