(18.210.12.229) 您好!臺灣時間:2021/02/26 09:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃奎盛
研究生(外文):HUANG,KUEI-SHENG
論文名稱:圓柱曲面雕刻路徑之研究
論文名稱(外文):Research on Engraving Path of Cylindrical Surface
指導教授:林聰德林聰德引用關係
口試委員:林子寬陳宗基林聰德
口試日期:2019-07-18
學位類別:碩士
校院名稱:聖約翰科技大學
系所名稱:機械與電腦輔助工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:49
中文關鍵詞:滾輪印章圓柱曲面旋轉軸為B軸ABS
外文關鍵詞:roller stampcylindrical surfacerotational fourth axis
DOI:ABS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:26
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
農委會防檢局委託本系製作屠宰合格滾輪印章20枚,該滾輪印章需運用具有旋轉軸為B軸的加工機,在直徑61mm的圓柱曲面上雕刻『防檢局屠宰衛生合格』的合格字樣,但因該滾輪印的加工程序繁瑣且費時,尤其是在雕刻圓柱曲面上的文字更花費許多工時。雖然本次所承製的滾輪印章數量不多,但為了後續若有大訂單時之考量,故決定要找出最合適的加工參數以提升加工效率及品質,同時對於減少刀具磨耗與增加刀具壽命亦為本研究所探討的方向。
本研究將針對直徑1mm端銑刀的加工參數及刀具路徑規劃方式做探討,其中針對刀具路徑規劃的探討內容包括雙向加工法、等距環切加工法及螺旋線加工法。本研究首先採用相同的加工參數在不同的刀具路徑上,探討加工工時及品質上的差異,藉以判斷何者是最佳的刀具路徑規劃方式。其次,再針對最佳的加工路徑規劃法代入不同的切削參數(如切削深度、進給率、轉數),找出最合適的加工參數,同時亦探討刀具壽命與加工效率的問題。
本研究結果顯示三種刀具路徑的規劃方式中以雙向加工法最省時,螺旋加工法最耗時,此外,螺旋加工法的加工品質最佳,而雙向加工法與等距環切加工法的加工品質幾乎相同,因此在考量加工效率的前提下,本研究選用最省時的雙向加工法來做後續的實驗。本研究得知在加工圓柱型滾輪印時,如果增加旋轉軸(C軸)的切削進給速率並不會縮短加工的工時,因為C軸的伺服馬達與X、Y軸的伺服馬達不同,C軸實際切削進給率與設定的參數並非相等使加工時間並無縮短,反而會影響刀具壽命與工件品質。另外,切削ABS滾輪印章藉由研究設定的參數進行比較找出的最佳參數為:每次加工深度為2.5 mm、主軸轉數為12000 rpm、切削進給速率為 4000 mm/min及切削間距為0.3mm(刀徑的30%)。

The Bureau of Animal and Plant Health Inspection and Quarantine entrusted the department to produce 20 qualified roller stamps for slaughtering. The roller stamps must be processed by a processing machine with a rotational fourth axis to engrave the words of the "Slaughter sanitary inspection Qualified " on a cylindrical surface with a diameter of 61 mm. However, since the processing procedure of the roller seal is cumbersome and time consuming, especially in the engraving of the text on the cylindrical surface. Although the quantity of roller stamps made in this time is small, in order to follow a larger order. It was decided to find the most suitable processing parameters to improve the efficiency and quality, and to reduce tool wear and increase its life.

This study will discuss the machining parameters and tool path planning methods for 1mm diameter end mills. The discussion of tool path planning includes bidirectional machining method, equidistant ring cutting method and spiral machining method. First of all, we used the same machining parameters on different tool path planning to explore their differences in processing time and quality, to determine which is the best tool path planning method. Secondly, we introduce different cutting parameters (such as cutting depth, feed rate, and rotational speed) for the optimal machining path planning method to find the most suitable machining parameters, and also discuss the problem of tool life and efficiency.


The results of this study show that the bidirectional machining method is the most time-saving, and the spiral machining method is the most time-consuming. In addition, The surface quality of the work piece obtained by the spiral processing method is the best, while the surface quality of the bidirectional machining method and the equidistant ring cutting method are almost the same. Therefore, under the premise of considering the processing efficiency, this study selects the most time-saving bidirectional processing method for subsequent experiments. This study shows that increasing the cutting feed rate of the rotating axis (C-axis) does not shorten the machining time when machining the cylindrical roller stamps , but it will affect the tool life and its quality. In addition, the best parameters for cutting ABS roller stamps are: 2.5 mm per machining depth, 12,000 rpm spindle speed, 4,000 mm/min cutting feed rate and 0.3 mm cutting pitch (30% of tool radius).

摘要 1
ABSTRACT 3
誌謝 5
目錄 6
圖目錄 8
表目錄 10
第一章 緒論 11
1.1研究動機與背景 12
1.2研究目的與方法 12
1.3參考文獻 13
1.4本文架構 14
第二章加工理論 16
2.1切削參數 16
2.1.1切削速度 16
2.1.2進給率與每刃切削量 17
2.1.3切削深度 17
2.2曲面加工路徑 18
2.2.1等參數法 18
2.2.2等間距平面法 20
2.2.3螺旋線投影法 21
2.3曲面加工誤差 22
2.3.1弦高誤差 23
2.3.2扇形餘料高度 25
第三章 實驗方法與設備 27
3.1準備加工材料 28
3.2 CAM路徑規劃與後處理 30
3.2.1 CAM路徑規劃 30
3.2.2 後處理轉檔 33
3.2.3利用Vericut軟體以確認NC程式的正確性 35
3.3實驗參數 37
3.4實驗設備 38
第四章 研究結果與討論 40
4.1工法實驗 40
4.2切削參數實驗 42
4.3 實體切削驗證 46
第五章 結論 47
參考文獻 48
附錄一、 49

[1] 尤世承,球形端銑刀加工曲面之表面粗糙度及精度探討,華梵大學,碩士論文,2009。
[2] Lufeng CHEN, Pengcheng HU, Ming LUO, Kai TANG, “Optimal interface surface determination for multi-axis freeform surface machining with both roughing and finishing”, Chinese Journal of Aeronautics, 2018, 31(2): pp.370–384.
[3] Chih-Ching Lo, “Efficient cutter-path planning for five-axis surface machining with a flat-end cutter”, ELSEVIER, Computer-Aided Design 31, 1999, pp.557–566.
[4] H. S. Choy, K. W. Chan, “A corner-looping based tool path for
pocket milling”, ELSEVIER, Computer-Aided Design 35, 2003, pp.155–166.
[5] 楊益綸,酒桶刀應用於五軸加工曲面時最佳化參數之探討,國立屏東科技大學機械工程系,碩士論文,2018。
[6] 王淳揚,球端銑刀加工複合曲面刀具路徑建構法研究,國立台北科技大學,碩士論文,2014。
[7] 羅仁昱,橢圓螺旋式曲面加工刀具路徑規劃研究,國立臺北科技大學,碩士論文,2015。
[8] 陳彥甫,曲面加工等扇形高螺旋刀具路徑規劃,國立臺北科技大學,碩士論文,2010。
[9] Mikkel Abrahamsen, “Spiral tool paths for high-speed machining of 2D pockets with or without islands”, Journal of Computational Design and Engineering, 2019, pp. 105–117

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔