跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/22 00:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃俊衛
研究生(外文):NG CHOON WEI
論文名稱:具振動及壓力感測之智慧感測裝置應用於自動研磨加工檢測
論文名稱(外文):An Intelligent Sensor with Vibrations and Pressures Measurement for Automated Polishing Machine Monitoring
指導教授:杜翌群
指導教授(外文):DU, YI-CHUN
口試委員:任春平林大偉
口試委員(外文):JEN, CHUN-PINGLIN, T.W. David
口試日期:2019-07-08
學位類別:碩士
校院名稱:南臺科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:62
中文關鍵詞:壓力感測振動感測自動化智慧系統
外文關鍵詞:Pressure sensorVibration sensorAutomatedIntelligent system
相關次數:
  • 被引用被引用:1
  • 點閱點閱:267
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
目前於傳統產業的表面研磨及拋光主要依靠人工操作,其缺點不僅效率低,在噪音及粉塵污染的環境下,人的健康也會受到危害。隨著工業4.0的發展,機械手臂已經大量應用於各式樣的工廠中。為了提高自動化研磨設備於製程中的精準度與重現性,加入了設備的即時監控與異常偵測,都期盼在最低的製造成本下,將機械手臂應用於拋光及研磨的製程上。本研究建置一套具振動及壓力量測之智慧感測裝置應用於自動研磨加工檢測,本智慧感測裝置在研磨過程中能即時感測並作出對應的動作。使用具高靈敏度之慣性感測器(IMU)及壓力感測器與微處理單晶片作整合,實現機械手臂的觸覺感測。當振動過大或受到外部撞擊時,機械手臂會立刻停止作業並回到安全點,等待操作人員前來檢測問題;並透過藍芽4.0無線傳輸技術,將振動感測訊號傳送至主控端系統介面作即時的回饋。此外研磨過程中加工品和研磨機的觸碰壓力相當重要,本系統利用壓力感測方式將加工品與研磨機的觸碰壓力控制在10牛頓(N)的精準範圍內,從而提升生產製程及良率。壓力感測器在標準壓力量測儀器驗證下,量測結果與市售儀器具有相當高的相關度(R2=0.9946)。在實際於機械手臂上測試可即時量測,並利用3種不同加工品進行研磨,其結果在力道20N、15N、10N及6N時平均數值分別為20±0.04、15±0.10、10±0.04及6±0.07。為了驗證IMU量測的穩定度,將裝置固定在振動平台上模擬出5至30Hz的頻率,實驗結果顯示本研究裝置確實能偵測到振動平台上之頻率。實際運動用在機械手臂進行研磨加工時,其研磨中的接觸壓力與在量測平台實驗數據進行比較後結果顯示誤差率在1%以內。而在異常加工品實驗中,其進行10次研磨後機械手臂確實每次都會發出警報聲。為方便使用者進行校正,本研究也設計了與本體分開的獨立電池裝置,透過此電池裝置可連續使用長達6小時的續航力。期待藉由本研究所提出的系統裝置與機械手臂的整合,能減少人工操作,並提升機械手之監控與智慧製造的願景。
The surface grinding and polishing process in traditional industries mainly rely on manual operation, which is not only inefficient, but also harmful to the labors’ health with the noise and particle pollution generated. With the development of Industry 4.0, robotic arms are widely used in all kinds of factories. In order to improve the accuracy and reproducibility of automated polishing machines in production process, functions like real-time monitoring and anomaly detection are added, and it is expected to apply robotic arms to polishing and grinding process, at the lowest manufacturing cost. This study proposes an intelligent sensing device for automated polishing machine with vibration and pressure sensor which can senses and responds instantly during grinding process. In this study, we integrate high sensitivity inertial measurement unit (IMU) sensor, pressure sensor, and micro-chip to implement the sense detection of the robotic arm in this study. When the vibration is over the setting limit or getting physical impact, the robot arm will stop working immediately and return to the safe point, waiting for inspection of the problem by staff. Through the Bluetooth 4.0 wireless transmission, the feedback of vibration signal will be transmitted to the main control system instantly. In addition, during the grinding process, the pressure between the processed product and the grinder is very important. The proposed system uses a pressure sensing method to precisely control the touch pressure between the processed product and the grinder within a range of 10 Newton (N), thereby improving the production process and the yield rate. The pressure sensor had a high correlation with the value of standard pressure measuring instruments (R2=0.9946). During polishing, the device can be measured on the actual robotic arm by using 3 different work pieces. The average values of the force at 20N, 15N, 10N and 6N were 20±0.04, 15±0.10, 10±0.04, 6±0.07. In order to verify the stability of the IMU measurement, we set the IMU device on the vibration platform and simulate a frequency from 5Hz to 30 Hz. The experiment results show that the device of the study can indeed detect the frequency on the vibration platform. When in actual used in polishing process of the robotic arm, the contact pressure during the polishing compared with the experimental data of the measuring instruments, and the error rate is within 1%. In the abnormal word pieces experiment, the robotic arm does sound an alarm every time after 10 polishing. In order to facilitate the operator do the correction, this study also designed a separate battery, through the battery device can continuously use up to 6 hours of endurance. We hope that through the integration of the proposed device and robot arms, we can decrease manual operation and be helpful with the vision of robotic arm monitoring and smart manufacturing.
摘要 I
ABSTRACT III
致謝 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 研究背景 4
1.2.1 研磨型機械手臂種類 4
1.2.2 工業之變化 5
1.2.3 物聯網通訊技術 6
1.3 研究動機與目的 7
1.3.1 研磨災害案列 8
第二章 文獻回顧 9
2.1 機械臂附帶研磨機相關研究 9
2.2 本實驗室機械手臂振動量測之先前研究成果 11
第三章 系統架構與原理 13
3.1 系統架構 13
3.2 機械手臂 14
3.2.1 機械手臂控制及模擬介面 15
3.3 慣性感測器(IMU) 16
3.4 薄膜壓力感測器 17
3.5 感測裝置外殼設計 18
3.5.1 整體機構設計 18
3.6 感測裝置之開發 20
3.6.1 nRF52832單晶片 20
3.6.2 硬體電路設計 21
3.6.3 電源供給 22
3.6.4 USB傳輸模組 23
3.6.5 韌體開發程式 23
3.7 系統介面設計 24
第四章 實驗設計 26
4.1 實驗設計架構 26
4.1.1 壓力感測系統驗證實驗 (A1) 26
4.1.2 壓力感測裝置比較實驗 (A2) 27
4.1.3 感測裝置對不同的加工品點位訊號量測實驗 (A3) 28
4.1.4 振動靈敏度實驗(A4) 30
4.2 實際應用實驗 31
4.2.1 機械手臂結合感測裝置驗證實驗 (B1) 31
4.2.2 異常加工品實驗 (B2) 32
第五章 實驗結果與討論 33
5.1 機構及感測實驗結果 33
5.1.1 壓力感測系統驗證實驗結果 (A1) 33
5.1.2 壓力感測裝置比較實驗結果(A2) 34
5.1.3 利用不同加工品進行推壓實驗結果(A3) 36
5.1.4 振動靈敏度實驗結果(A4) 41
5.2 實際應用實驗結果 42
5.2.1 機械手臂結合感測裝置實驗結果 (B1) 42
5.2.2 異常加工品實驗結果 (B2) 45
第六章 結論 47
參考文獻 48


[1]Xiaohu, X. U., Dahu, Z. H. U., ZHANG, H., Sijie, Y. A. N., & Han, D. I. N. G. (2019). Application of novel force control strategies to enhance robotic abrasive belt grinding quality of aero-engine blades. Chinese Journal of Aeronautics.
[2]Ji, W., & Wang, L. (2019). Industrial robotic machining: a review. The International Journal of Advanced Manufacturing Technology, 1-17.
[3]勞動部職業安全衛生署-全國職業傷病診治網絡職業疾病通報統計概況網址:網址:https://www.osha.gov.tw/1106/1113/1114/24256/檢索日期:2019/06/18。
[4]Wan, J.; Tang, S.; Shu, Z.; Li, D.; Wang, S.; Imran, M.; Vasilakos, A.V. Software-defined industrial internet of things in the context of industry 4.0. IEEE Sens. J. 2016, 16, 7373–7380.
[5]Wang, S.;Wan, J.; Li, D.; Zhang, C. Implementing smart factory of industrie 4.0: An outlook. Int. J. Distrib.
[6]Li, J. (2017). Analyzing “Made in China 2025” Under the Background of “Industry 4.0”. In Proceedings of the 23rd International Conference on Industrial Engineering and Engineering Management 2016 (pp. 169-171). Atlantis Press, Paris.
[7]Kozák, Š., Ružický, E., Štefanovič, J., & Schindler, F. (2018). Research and education for industry 4.0: Present development. In 2018 Cybernetics & Informatics (K&I) (pp. 1-8). IEEE.
[8]Gaol, F. L., Napitupulu, T. A., Soeparno, H., & Trisetyarso, A. (2018, September). Learning Framework in the Industrial Age 4.0 in Higher Education. In 2018 Indonesian Association for Pattern Recognition International Conference (INAPR) (pp. 227-232). IEEE.
[9]Rajnai, Z., & Kocsis, I. (2017, September). Labor market risks of industry 4.0, digitization, robots and AI. In 2017 IEEE 15th International Symposium on Intelligent Systems and Informatics (SISY) (pp. 000343-000346). IEEE.
[10]Colak, M., Kaya, I., & Erdogan, M. (2019). A Fuzzy Based Risk Evaluation Model for Industry 4.0 Transition Process. In Industrial Engineering in the Big Data Era (pp. 201-215). Springer, Cham.
[11]Market Research Future 檢索日期:2019/06/18。
網址:https://www.marketresearchfuture.com/reports/sensor-fusion-market-1696
[12]Li, J., Zhang, T., Liu, X., Guan, Y., & Wang, D. (2018, December). A Survey of Robotic Polishing. In 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 2125-2132). IEEE.
[13] Xu, X., Zhu, D., Wang, J., Yan, S., & Ding, H. (2018). Calibration and accuracy analysis of robotic belt grinding system using the ruby probe and criteria sphere. Robotics and Computer-Integrated Manufacturing, 51, 189–201.doi:10.1016/j.rcim.2017.12.006
[14]Liao, J. Y., Xie, J., Yang, H., & Sun, J. X. (2019). Modeling of curved diamond wheel errors for improvement of freeform grinding accuracy. The International Journal of Advanced Manufacturing Technology, 1-14.
[15]Ma, K., Wang, X., & Shen, D. (2018, November). Design and Experiment of Robotic Belt Grinding System with Constant Grinding Force. In 2018 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP) (pp. 1-6). IEEE.
[16]Krinitsyn, N., Babaev, A., & Stolov, E. (2018, December). Robotized System For Processing Of Helical Surfaces. In 2018 18th International Conference on Mechatronics-Mechatronika (ME) (pp. 1-7). IEEE.
[17]Chen, F., Zhao, H., Li, D., Chen, L., Tan, C., & Ding, H. (2019). Robotic grinding of a blisk with two degrees of freedom contact force control. The International Journal of Advanced Manufacturing Technology, 101(1-4), 461-474.
[18]Mattila, J., Koivumäki, J., Caldwell, D. G., & Semini, C. (2017). A survey on control of hydraulic robotic manipulators with projection to future trends. IEEE/ASME Transactions on Mechatronics, 22(2), 669-680.
[19]Zhu, D., Luo, S., Yang, L., Chen, W., Yan, S., & Ding, H. (2015). On energetic assessment of cutting mechanisms in robot-assisted belt grinding of titanium alloys. Tribology International, 90, 55–59.doi:10.1016/j.triboint.2015.04.004
[20]Cheng, M., Zhang, J., Xu, B., Ding, R., & Wei, J. (2018). Decoupling compensation for damping improvement of the electrohydraulic control system with multiple actuators. IEEE/ASME Transactions on Mechatronics, 23(3), 1383-1392.
[21]Koivumäki, J., & Mattila, J. (2017). Adaptive and nonlinear control of discharge pressure for variable displacement axial piston pumps. Journal of Dynamic Systems, Measurement, and Control, 139(10), 101008.
[22]Lampinen, S., Koivumäki, J., & Mattila, J. (2018, August). Full-dynamics-based bilateral teleoperation of hydraulic robotic manipulators. In 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE) (pp. 1343-1350). IEEE.
[23]Mäkinen, P., & Mattila, J. (2017, October). Finite element-based control of a single-link flexible hydraulic manipulator. In ASME/BATH 2017 Symposium on Fluid Power and Motion Control (pp. V001T01A032-V001T01A032). American Society of Mechanical Engineers.
[24]Hermann, M., Pentek, T., & Otto, B. (2016, January). Design principles for industries 4.0 scenarios. In 2016 49th Hawaii international conference on system sciences (HICSS) (pp. 3928-3937). IEEE.
[25]Lu, Y. (2017). Industry 4.0: A survey on technologies, applications and open research issues. Journal of Industrial Information Integration, 6, 1-10.
[26]Xu, L. D., Xu, E. L., & Li, L. (2018). Industry 4.0: state of the art and future trends. International Journal of Production Research, 56(8), 2941-2962.
[27]Tao, F., Zuo, Y., Da Xu, L., & Zhang, L. (2014). IoT-based intelligent perception and access of manufacturing resource toward cloud manufacturing. IEEE Transactions on Industrial Informatics, 10(2), 1547-1557.
[28]DIGITIMES電子時報-因研磨造成燃爆及化學品事故 檢索日期:2019/06/18。
網址: https://www.digitimes.com.tw/iot/package_show.asp?cat=158&id=561741&packageid=13470
[29]ETtoday 新聞網-研磨鋁粉引發粉塵爆炸 檢索日期:2019/06/18。
網址:https://www.ettoday.net/news/20141101/420675.htm
[30]中國新聞網-昆山爆炸事故 檢索日期:2018/06/18
網址:http://www.chinanews.com/sh/2014/08-02/6452649.shtml
[31]行政院勞工委員會勞工安全衛生研究所科技研究發展計畫工作手冊
檢索日期:2018/06/18
http://ebooks.lib.ntu.edu.tw/1_file/ilosh/2016080329/2016080329.pdf
[32]Mohammad, A. E. K., Hong, J., & Wang, D. (2018). Design of a force-controlled end-effector with low-inertia effect for robotic polishing using macro-mini robot approach. Robotics and Computer-Integrated Manufacturing, 49, 54-65.
[33]Du, Y. C., Lin, D. T., Jen, C. P., Ng, C. W., Chang, C. Y., & Wen, Y. X. (2019). Development of a Wireless Mesh Sensing System with High-Sensitivity LiNbO3 Vibration Sensors for Robotic Arm Monitoring. Sensors, 19(3), 507.
[34]羅博特科技檢索日期:2019/06/18。
網址:https://www.robot-tech.com.tw/
[35]Tosi, J., Taffoni, F., Santacatterina, M., Sannino, R., & Formica, D. (2017). Performance evaluation of Bluetooth low energy: a systematic review. Sensors, 17(12), 2898.
[36]Nordic Semiconductor – nRF52832檢索日期:2019/06/18。
網址:https://www.nordicsemi.com/

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top