跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/28 13:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂婧瑄
研究生(外文):LU, CHING-HSUAN
論文名稱:全新設計杜普勒超音波假體
論文名稱(外文):A new design phantom for testing performance of Doppler ultrasound
指導教授:李文禮李文禮引用關係
指導教授(外文):LEE, WEN-LI
口試委員:崔博翔吳彬安李文禮
口試委員(外文):TSUI, PO-HSIANGWU, BIN-ANLEE, WEN-LI
口試日期:2019-07-31
學位類別:碩士
校院名稱:慈濟科技大學
系所名稱:放射醫學科學研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:58
中文關鍵詞:頻譜杜普勒超音波彩色杜普勒影像杜普勒測試假體
外文關鍵詞:Spectral Doppler ultrasoundColor Doppler imageDoppler test phantom
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
杜普勒測試假體主要區分為兩大類。第一類為模擬組織、血管及 血液性質的 flow phantom,利用組成的模擬物質形成一個模擬血流流 量灌注的型態;第二類為模擬物體(紅血球)移動的假體 string phantom。 本研究目的為設計及改良一種新的 string phantom。改良的內容包含 線靶及滑輪的多角度調整;測試不同線材的杜普勒頻譜特性,評估是 否適合作為 string phantom 的測試線靶;使用 Arduino IDE 程式編輯 的調控方法增加取樣範圍內具有多流速的頻譜呈現。

實驗方法,主要分為兩個部分。第一部分進行假體材料及設計內容的測試;第二部分評估馬達驅動電壓與線材速度關係,接著使用 Philips 及 Toshiba 兩台超音波掃描儀進行假體測試,最後比較 flow phantom 及設計改良的 string phantom 在兩台超音波掃描儀的測試結果。
由結果可以得知,馬達驅動電壓與線材速度的線性方程式關係; Philips 在高速可解析的能力優於 Toshiba;三種線材設置角度最佳的 杜普勒測試角度為 45 度;string phantom 可以同時產生兩種流速進行 彩色杜普勒流向辨別的測試,flow phantom 則無法同時產生兩種流速 進行流向的測試。

本實驗所設計之 string phantom 受限於驅動馬達的性能,導致可 調控的速度範圍受到限制,而且馬達的性能會進一步影響線材加速至 最大速度所需的時間。在 String phantom 的假體結構設計上,可再增 加兩線間隔寬度大小可調整的設計,此設計可以透過改變兩線的間隔距離,評估取樣點大小的準確性。
The Doppler test phantoms are generally divided into two types. The first type is flow phantom, which is blood flow mimic in the human body. The second one is string phantom, which performs the movement of objects (erythrocyte cells) by means of a moving string. In this study, we aim to design and reform a new string phantom. Some tasks are fulfilled in the newly designed phantom. They are multi-angle adjustment of the target string and pulley, selection of suitable material for string phantom and program-edited controlling multi-flow rates within the sample gate ranges.

The experiments in this study are mainly divided into two parts. The first part is to deal with both phantom material and the design performance testing. The second one consisted of three experiments. The first one is modeling the relation between motor drive voltage and moving speed of the string. The second one is to test the performance of two sonographic systems, Toshiba and Philips, by using the new design phantom. The third one is to test the performance of a flow phantom and the string one using the two sonographic systems.

The experimental results are concluded as follows: The relation between the motor drive voltage and the string speed is linear. Philips performs better resolving ability than Toshiba at high speed. The optimal angle for the three string settings is 45 degrees. String phantom can simultaneously generate two flow rates for testing discrimination of Doppler flow. Flow phantom is not able to produce two flow for testing different direction flows at the same time.

Some limitations are found when the new design string phantom is performed. The range of the adjustable speed of the moving string is limited due to inefficiency of drive motor power. Motor power inefficiency also extend the time required to accelerate the string to the maximum velocity. A further design is potentially useful to the phantom. The distance between two strings is adjustable to fit the width of a sample gate. In the circumstance, this design can be used to evaluate the accuracy of the sample gate size.
摘要
Abstract
目錄
表目錄
公式目錄
附錄

第一章 前言
1.1引言
1.2研究背景
1.2.1 Flow phantom的組成
1.2.2 Flow phantom的應用
1.2.3 Flow phantom設計限制
1.2.4 String phantom的組成
1.2.5 String phantom的應用
1.2.6市售String phantom設計限制
1.3研究動機與目的

第二章 文獻回顧
2.1線材測試
2.1.1線材結構對杜普勒頻譜的影響
2.1.2杜普勒角度對杜普勒頻譜的影響
2.1.3連續或打結的線材對杜普勒頻譜的影響
2.2最大峰值速度的評估
2.2.1內在頻譜增寬(Intrinsic spectral broadening,ISB)%
2.2.2最大速度準確度( Maximum velocity accuracy,MVA)誤差%
2.3驅動馬達振動對測量數值的影響
2.4線材浸泡液體時間對測量數值的影響
2.5不同探頭對測量數值的影響
2.6夾具對測量數值的影響
2.7取樣深度對測量數值的影響

第三章 材料與方法
3.1假體結構設計
3.2 研究程序與方法
3.2.1第一部分實驗:String phantom假體材料及設計內容測試
3.2.2第二部分實驗:假體效能的測試
3.3研究設備
3.4儀器操作
3.4.1 Pulsed-wave Doppler(PW-Doppler)
3.4.2 Color Doppler image(CDI)
3.4.3 Arduino IDE程式編譯軟體

第四章 結果與討論
4.1線材測試結果
4.1.1杜普勒測試角度對ISB%的影響
4.1.2杜普勒測試角度對MVA誤差%的影響
4.2馬達驅動電壓及線材真實速度關係
4.3 Philips及Toshiba兩台超音波掃描儀之可解析速度關係
4.4線材與探頭不同初始設置夾角之最佳杜普勒測試角度
4.5杜普勒脈衝頻譜窗口的影響因素
4.6兩種測試假體在彩色杜普勒之影像特性
4.6.1 String phantom兩線同方向不同流速測試
4.6.2 String phantom兩線不同速度不同方向測試
4.6.3 Flow phantom單一流向測試
4.7新設計的String phantom與市售String phantom的比較
4.8新設計的String phantom的限制

第五章 結論
5.1新設計杜普勒假體實驗測試得出的結論
5.2未來展望

第六章 參考文獻


1. Thrush A, Hartshorne T. Optimising the scan. Peripheral vascular ultrasound
how, why and when 2nd ed Edinburgh: Churchill Livingstone. 2005:75-84.
2. Gittins J, Martin K. The leicester Doppler phantom--a digital electronic
phantom for ultrasound pulsed Doppler system testing. Ultrasound Med
Biol.2010;36(4):647-55.
3. Browne JE. A review of Doppler ultrasound quality assurance protocols and
test devices. Phys Med. 2014;30(7):742-51.
4. Hoskins PR. Simulation and validation of arterial ultrasound imaging and
blood flow. Ultrasound Med Biol. 2008;34(5):693-717.
5. Law YF, Cobbold RS, Johnston KW, Bascom PA. Computer-controlled pulsatile
pump system for physiological flow simulation. Med Biol Eng Comput.
1987;25(5):590-5.
6. Ramnarine KV, Nassiri DK, Hoskins PR, Lubbers J. Validation of a new blood-
mimicking fluid for use in Doppler flow test objects. Ultrasound Med Biol.
1998;24(3):451-9.
7. Zhou X, Xia C, Khan F, Corner GA, Huang Z, Hoskins PR. Investigation of
ultrasound-measured flow rate and wall shear rate in wrist arteries using
flow phantoms. Ultrasound in medicine & biology. 2016;42(3):815-23.
8. King DM, Fagan AJ, Moran CM, Browne JE. Comparative imaging study in
ultrasound, MRI, CT, and DSA using a multimodality renal artery phantom.
Medical physics. 2011;38(2):565-73.
9. King DM, Ring M, Moran CM, Browne JE. Development of a range oanatomically
realistic renal artery flow phantoms. Ultrasound Med Biol.
2010;36(7):1135- 44.
10. Poepping TL, Nikolov HN, Rankin RN, Lee M, Holdsworth DW. An in vitro
system for Doppler ultrasound flow studies in the stenosed carotid artery
bifurcation. Ultrasound Med Biol. 2002;28(4):495-506.
11. Browne JE, Brown I, Hoskins PR, Watson AJ, Elliott AT. Colour Doppler
spatial resolution performance testing. Ultrasound. 2007;15(3):162-6.
12. Browne JE, Watson AJ, Hoskins PR, Elliott AT. Validation of a sensitivity
performance index test protocol and evaluation of colour Doppler
sensitivity for a range of ultrasound scanners. Ultrasound Med Biol.
2004;30(11):1475-83.
13. Rickey DW, Picot PA, Christopher DA, Fenster A. A wall-less vessel phantom
for Doppler ultrasound studies. Ultrasound Med Biol. 1995;21(9):1163-76.
14. Hoskins P. Review of the design and use of string phantoms.
15. Phillips DJ, Hossack J, Beach KW, Strandness Jr DE. Testing ultrasonic
pulsed Doppler instruments with a physiologic string phantom. Journal of
Ultrasound in Medicine. 1990;9(8):429-36.
16. Walker A. Performance testing of ultrasound Doppler equipment: Linköpings
universitet; 2003.
17. Walker A, Olsson E, Wranne B, Ringqvist I, Ask P. Accuracy of spectral
Doppler flow and tissue velocity measurements in ultrasound systems.
Ultrasound in medicine & biology. 2004;30(1):127-32.
18. Cournane S, Fagan AJ, Browne JE. An audit of a hospital-based Doppler
ultrasound quality control protocol using a commercial string Doppler
phantom. Phys Med. 2014;30(3):380-4.
19. Cathignol D, Dickerson K, Newhouse VL, Faure P, Chapelon JY. On the
spectral properties of Doppler thread phantoms. Ultrasound Med Biol.
1994;20(7):601-10.
20. Hoskins P. Choice of moving target for a string phantom: II. On the
performance testing of Doppler ultrasound systems. Ultrasound in Medicine
and Biology. 1994;20(8):781-9.
21. Hoskins PR. Choice of moving target for a string phantom: I. Measurement of
filament backscatter characteristics. Ultrasound Med Biol. 1994;20(8):773-
80.
22. Guidi G, Licciardello C, Falteri S. Intrinsic spectral broadening (ISB) in
ultrasound Doppler as a combination of transit time and local geometrical
broadening. Ultrasound in medicine & biology. 2000;26(5):853-62.
23. Omari ON. Validating Intrinsic Spectral Broadening models via Doppler
Ultrasound Simulations 2017.
24. Hoskins P. Accuracy of maximum velocity estimates made using Doppler
ultrasound systems. The British journal of radiology. 1996;69(818):172-7.
25. Thijssen JM, van Wijk MC, Cuypers MH. Performance testing of medical e
echo/Doppler equipment. European journal of ultrasound : official journal
of the European Federation of Societies for Ultrasound in Medicine and
Biology. 2002;15(3):151-64.
26. Arduino - PWM [Available from: https://www.arduino.cc/en/Tutorial/PWM.
27. Arduino - Pulse Width Modulation [Available from: http://that’s
worth.blogspot.com/2014/04/arduino-pwm-arduino-pulse-width.html.
電子全文 電子全文(網際網路公開日期:20240827)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top