跳到主要內容

臺灣博碩士論文加值系統

(98.84.25.165) 您好!臺灣時間:2024/11/10 01:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李國賓
研究生(外文):LI, KUO-PIN
論文名稱:減輕餐廳爽約策略之效果研究
論文名稱(外文):Strategies of Mitigating Customer’s No-shows at Restaurants
指導教授:陳世良陳世良引用關係
指導教授(外文):CHEN, SHIEH-LIANG
口試委員:陳世良邱文宏莊淑惠張世其林呈昱
口試委員(外文):CHEN, SHIEH-LIANGCHIU, WEN-HONGCHUANG, SHU-HUICHANG, SHIH-CHILIN, CHEN-YU
口試日期:2019-03-14
學位類別:博士
校院名稱:亞洲大學
系所名稱:經營管理學系
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:106
中文關鍵詞:爽約重新劃位超額劃位限制劃位爽約罰金
外文關鍵詞:No-showReoffering seatsOverbookingPartial reservationsNo-show penalties
相關次數:
  • 被引用被引用:1
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本研究的目的是分析餐廳為減輕客戶爽約所採行的各種預約策略,以實證方式進行驗證餐廳採行減輕客戶爽約策略的效果;有別於許多研究大多是從服務品質探討餐廳收入管理的問題,或者以理論性的模型分析如何以超售的方式增加收入,而過去Alexandrov & Lariviere (2012)的研究則以推導模型方式建立「重新劃位」、「超額劃位」、「限制劃位」、「爽約罰金」等策略分析如何減輕客戶爽約。而本研究先透過文獻探討分析國內外有關餐廳預約策略採行方式的理論與實務,並輔以專家深度訪談方式進行,歸納訪談結果提出「重新劃位」、「超額劃位」、「限制劃位」、「爽約罰金」等四種預約策略以建立構念和發展題項,經過專家學者修正及項目分析進行題項的篩選與確認,建立初步的量表架構與測量題項,以發展出減輕餐廳爽約策略之評估量表,這也是過去研究從未嘗試的方法。之後即以餐廳的主管階層做為發放調查對象,較能以公司採行預約策略之實際狀況回應本研究。
本研究收集66家餐廳的有效問卷66份,回收問卷後進行階層迴歸分析處理。研究過程依餐廳的規模型態考量餐廳「座位數」及「價格」因素,研究結果顯示餐廳同時採取四種預約策略時,以「重新劃位」、「限制劃位」、「爽約罰金」都可有效減輕客戶爽約程度,且因為不同的餐廳的座位數、餐廳的平均客單價等經營規模因素,也會產生不同的影響效果。「超額劃位」則是受到餐廳座位數的交互作用而對減輕客戶爽約程度產生不同的影響,這也驗證Alexandrov & Lariviere (2012)研究中提到超額預訂政策的複雜性。
The purpose of this research paper is to analyze the reservation strategies adopted by the restaurant to Strategies of Mitigating Customer’s No-shows at Restaurants, and to verify the effect of the restaurant's adoption of the Customer’s No-shows strategy ; unlike many studies, the issue of restaurant revenue management is mostly discussed from the quality of service, or A theoretical model analyzes how to increase income by overbooking. In the past, Alexandrov & Lariviere (2012) research used the model to build "Re-offering seats", "Overbooking", "Partial reservations", and "No-show penalties", analyze how to mitigating No-show. This study explores the theory and practice of the adoption methods of restaurant reservation strategies at home and abroad through the literature, and conducts in-depth interviews with experts. The results of the interviews suggest "Re-offering seats", "Overbooking", "Partial reservations", and "No-show penalties" four kinds of reservation strategies. Developed an assessment scale to strategies mitigating of customer’s No-show. This is also the method that past research has never tried. After that, the management of the restaurant was used as the object of investigation, and the study was more able to respond to the actual situation of the restaurant's reservation strategies.
In this study, 66 valid questionnaires were collected from 66 restaurants, and the questionnaires were collected and analyzed by hierarchical regression analysis. The research process considers the "seat number" and "price" factors of the restaurant according to the size of the restaurant. The results of the study show that the restaurant adopts four kinds of reservation strategies, with "Re-offering seats", "Partial reservations", and "No-show penalties". It can effectively mitigating for customer’s No-show, and because of the number of seats in different restaurants, the average price of the restaurant and other scale factors, it will have different effects. The “Overbooking” is influenced by the interaction of the number of seats in the restaurant and has a different impact on reducing the customer's No-show. This also confirms the complexity of the overbooking strategy mentioned in the Alexandrov & Lariviere (2012) research.
目 錄 頁次
謝誌...................................................................I
中文摘要...............................................................II
英文摘要...............................................................III
目錄...................................................................IV
表目次.................................................................VI
圖目次.................................................................VII
第一章 緒論.............................................................1
第一節 研究背景與動機....................................................1
第二節 研究目的..........................................................4
第三節 研究範圍與對象....................................................5
第四節 研究內容與流程....................................................6
第二章 文獻探討..........................................................7
第一節 餐廳收入管理......................................................7
第二節 餐廳的預約制度....................................................15
第三節 餐廳減輕爽約的策略................................................20
第三章 研究方法.........................................................29
第一節 研究架構及假說...................................................29
第二節 操作型定義.......................................................33
第三節 研究工具.........................................................40
第四節 資料處理.........................................................41
第四章 研究結果.........................................................52
第一節 預約策略迴歸分析..................................................52
第二節 預約策略與餐廳座位數、餐廳平均客單價交互作用分析.....................58
第五章 結論與建議........................................................79
第一節 研究結論與貢獻....................................................79
第二節 研究限制..........................................................83
參考文獻................................................................84
附錄一 預約策略對減輕客戶爽約程度的迴歸模型T值&p值表........................91
附錄二 預約策略與餐廳座位數對減輕客戶爽約的交互作用迴歸模型T值&p值表..........92
附錄三 預約策略與餐廳平均單價對減輕客戶爽約的交互作用迴歸模型T值& p值表.......93
附錄四 餐廳預約管理問卷調查...............................................94

表目錄
表2-1 其他餐廳收入管理的研究 12
表2-1 其他餐廳收入管理的研究 續 13
表2-1 其他餐廳收入管理的研究 續 14
表2-2 預約方式之種類 17
表2-3 其他預約制度的研究 18
表2-4 餐廳減輕爽約策略的研究 27
表2-4 餐廳減輕爽約策略的研究 續 28
表3-1 受訪者的基本資料 33
表3-2 重新劃位操作型定義與衡量問項
表3-3 超額劃位操作型定義與衡量問項 36
表3-4 限制劃位操作型定義與衡量問項 37
表3-5 爽約罰金操作型定義與衡量問項 38
表3-6 餐廳的預約策略量表構面與題項 39
表3-7 受測者基本資料 41
表 3-7 受測者基本資料 續 42
表3-8 無回應偏差 卡方檢定 45
表 3-9 餐廳的預約制度量表題目鑑別力分析 47
表 3-10 KMO 統計量數之判斷準則 48
表3-11 餐廳的預約策略量表題目之因素分析表 49
表3-12 餐廳的預約制度量表信度分析表 51
表4-1 自變數與控制變數對減輕客戶爽約的迴歸模型 53
表4-2 預約策略與餐廳座位數對減輕客戶爽約的交互作用迴歸模型 59
表4-3 預約策略與餐廳平均客單價對減輕客戶爽約的交互作用迴歸模型 69
表5-1 假設驗證結果 81

圖目錄
圖1-1 研究流程圖 6
圖3-1 研究架構 29
圖 3-2 餐廳的預約制度量表萃取 4 個因素 50
圖4-1 餐廳不同座位數下重新劃位策略與客戶爽約程度之間的關係 61
圖4-2 餐廳不同座位數下超額劃位策略與客戶爽約程度之間的關係 62
圖4-3 餐廳不同座位數下限制劃位策略與客戶爽約程度之間的關係 64
圖4-4 餐廳不同座位數下爽約罰金策略與客戶爽約程度之間的關係 66
圖4-5 餐廳不同座位數下超額劃位策略與客戶爽約程度之間的關係 68
圖4-6 餐廳不同平均客單價下重新劃位策略與客戶爽約程度之間的關係 71
圖4-7 餐廳不同平均客單價下超額劃位策略與客戶爽約程度之間的關係 73
圖4-8 餐廳不同平均客單價下限制劃位策略與客戶爽約程度之間的關係 74
圖4-9 餐廳不同平均客單價下爽約罰金策略與客戶爽約程度之間的關係 76

參考文獻
一、中文部分
白宜弘(2000),「餐飲業等候線之電腦模擬-以王品牛排館為例」東海大學食品科學系碩士論文。
汪進財、蔡言宏(2001),航空公司超額訂位控制策略之研究。運輸計劃季刊,30卷1期,頁135 – 164。
林逸群(2012),「依顧客價值為基礎之餐廳訂位策略探討」國立中興大學行銷學系所博士論文。
林震岩(2018),多變量分析:SPSS的操作與應用。台灣:智勝文化事業有限公司。
吳明隆、涂金堂(2011),SPSS與統計應用分析(二版)。台灣:五南出版社。
高婕(2013),「情境因素影響下之餐廳消費者預約訂位與其因應行為之研究」國立高雄餐旅大學餐旅管理研究所碩士論文。
張凱嵐(2009),「餐飲業預約制度之模擬研究-以涓豆腐板橋店為例」東海大學餐旅管理學系碩士論文。
孫千山、吳明軒、張恩輔(2018),臺鐵實施超額訂位及自由座之分析探討。中興工程季刊,第140期,頁63-70。
陳曉晴(1997),「服務容量過預約上限政策訂定之研究」。元智大學工業工程研究所碩士論文。
陳正昌、程炳林、陳新豐、劉子鍵(2011),多變量分析方法:統計軟體應用(6版)。台灣:五南出版社。
陳昭宏(1997),「航空公司營收管理模式之研究---整合艙位配置與超額訂位之動態策略」國立成功大學交通管理(科學)學系博士論文。
鄭永祥、楊仕欣、余宗軒(2008),鐵路超額訂位收益模式之構建-以臺灣高鐵為例。運輸計劃季刊,37卷4期,頁431 – 463。
二、英文部分
Alexandrov, Alexei & Lariviere, Martin A., (2012). Are Reservations Recommended? Manufacturing & Service Operations Management, Vol. 14, No. 2, Spring 2012, pp. 218-230.
Baker, T. K., & Collier, D. A. (1999). A comparative revenue analysis of hotel yield management heuristics. Decision Sciences, 30(1), 239-263.
Bertsimas, D., & Shioda, R. (2003). Restaurant revenue management. OperationsResearch, 51, pp.472-486.
Bill J. Gregorash.,(2016). Restaurant revenue management: apply reservation management?. Information Technology & Tourism. Vol. 16, Issue 4, pp. 331-346.
Chen, C.C., Xie, K.L., (2013). Differentiation of cancellation policies in the U.S. hotel industry. International Journal of Hospitality Management, Vol. 34, p.66-72.
Cil, Eren B., Lariviere, Martin A., (2013). Saving Seats for Strategic Customers. Operations Research, Vol 61(6), pp.1321-1332.
Cindy Yoon joung Heo.,(2017). New performance indicators for restaurant revenue management: ProPASH and ProPASM .International Journal of Hospitality Management. Vol 61, February 2017, pp.1-3.
Collier, David (1982), Aggregate Safety Stock Levels and Component Part Commonality. Management Science, 28, pp.1296-1303.
Dana, J.D.J., (1998). Advanced purchase discounts and price discrimination in competitive markets. Journal of Political Economy, 106 (2), pp.395-422.
Feldman, Jacob., (2010). "Optimizing Restaurant Reservation Scheduling". HMC Senior Theses. 22.
Garrow, Laurie A., Koppelman, Frank S., (2004). Predicting air travelers’ no-show and standby behavior using passenger and directional itinerary information. Journal of Air Transport Management, 10(6), pp.401-411.
Garrow, Laurie A., Koppelman, Frank S., (2004). Multinomial and nested logit models of airline passengers' no-show and standby behaviour. Journal of Revenue and Pricing Management, Vol. 3, No. 3, pp. 237-253.
Gary M. Thompson (2002). Optimizing a Restaurant’s Seating Capacity: Use Dedicated or Combinable Tables? Cornell Hotel and Restaurant Administration Quarterly, 43 (August), pp.48-57.
Gosavii, A., Bandla, N., & Das, T. K. (2002). A reinforcement learning approach to a single leg airline revenue management problem with multiple fare classes and overbooking. IIE Transactions, 34, pp.729-742.
Guerriero, F., Miglionico, G., & Olivito, F. (2014). Strategic and operational decisions in restaurant revenue management. European Journal of Operational Research, 237, pp.1119-1132
Hwang, J., & Wen, L. (2009). The effect of perceived fairness toward hotel overbooking and compensation practices on customer loyalty. International Journal of Contemporary Hospitality Management, 21(6), pp.659-675.
Heo, C.Y., Lee, S., Mattila, A., Hu, C. (2013). Restaurant revenue management: do perceived capacity scarcity and price differences matter? Int. J. Hospitality Manage. 35, pp.316-326.
Kimes, Shirley E. Chase, Richard B. Choi, Sunmee Lee, Philip Y. Ngonzi, Elizabeth N.,(1998). Restaurant revenue management: applying yield management to the restaurant industry. Cornell Hotel & Restaurant Administration Quarterly. 39(3), pp.32-39.
Kimes, S.E. (1999). Implementing restaurant revenue management: a five step approach. Cornell Hotel Restaurant. Adm. Q. 40 (3), pp.16-21.
Kimes, S. E., Barrash D. I., & Alexander, J. E. (1999). Developing a restaurant revenue-management strategy [Electronic version]. Cornell Hotel and Restaurant Administration Quarterly, 40(5), pp.18-29.
Kimes, Sheryl E., Jochen, Wirtz., Breffni M. Noone (2002). How Long Should Dinner Take? Measuring Expected Meal Duration for Restaurant Revenue Management. Journal of Revenue and Pricing Management, 1, pp.220-33.
Kimes, S., & Wirtz, J. (2002). Perceived fairness of demand-based pricing for restaurants. The Cornell Hotel and Restaurant Administration Quarterly, 43(1), pp.31-37.
Kimes, S.E., Wirtz, J.(2003). Has revenue management become acceptable? Findings from an international study on the perceived fairness of rate fences. J. Serv.Res. 6 (2), pp.125-135.
Kimes, S. (2004). Restaurant revenue management: Implementation at Chevys Arrowhead. The Cornell Hotel and Restaurant Administration Quarterly, 45(1), pp.52-67.
Kimes, S., & Robson, S. (2004). The impact of restaurant table characteristics on mal duration and spending. Cornell Hotel and Restaurant Administration Quarterly, 45(4), pp.333-346.
Kimes, S. E., & Thompson, G. M. (2004). Restaurant revenue management at Chevys: Determining the best table mix. Decision Sciences, 35, pp.371-392.
Kimes, Sheryl E., Thompson, Gary M. (2005). An Evaluation of Heuristic Methods for Determining the Best Table Mix in Full-Service Restaurants. Journal of Operations Management, 23, pp.599-617.
Kimes SE (2011). Customer attitudes towards restaurant reservations policies. J Revenue Pricing Manag 10(3): pp.244-260.
Lambert, C., Lambert, J., & Cullen, T. (1989). The overbooking question: A simulation. Cornell Hotel and Restaurant Administration Quarterly, 30(2), pp.14-20.
Martin, M. (2001). Side dish. Riverfront Times (May 2), http://www.riverfronttimes.com/2011-05-02/restaurants/side-dish/.
Mattila, A. (1999). An examination of factors affecting service recovery in a restaurant setting. Journal of Hospitality & Tourism Research, 23(3), pp.284-298.
McGuire, K., & Kimes, S. (2006). The perceived fairness of waitlist management techniques for restaurants. Cornell Hotel and Restaurant Administration Quarterly, 47(2), pp.121-134.
Moe, W., Fader, P.S., (2002). Using advance purchase orders to forecast new product sales. Marketing Science, 21 (3), pp.347–364.
Noone, B. M. and Lee, C. H. (2011). Hotel overbooking. The effect of overcompensation on customers’ reactions denied service. Journal of Hospitality & Tourism Research, 35(3), pp.334-357.
Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1985). A conceptual model of service quality and its implications for future research. The Journal of Marketing, 45(3), 41-50.
Sheu, Chwen and John G. Wacker. (1997). The Effects of Purchased Parts Commonality on Manufacturing Lead Time. International Journal of Operations and Production Management, 17, pp.725-45.
Shields, J., 2006. Restaurant revenue management: an investigation into changing standard operating procedures to maximize revenue. J. Small Bus. Strategy 17(1), pp.77-85.
Shugan, S.M., Xie, J., (2005). Advance-selling as a competitive marketing tool. International Journal of Research in Marketing, 22 (3), pp.351-373.
Smith, B. C., Leimkuhler, J. F., & Darrow, R. M. (1992). Yield management at American airlines. Interfaces, 22(1), 8e31.
Toh, R. S. (1985). An inventory depletion overbooking model for the hotel industry. Journal of Travel Research, 23(4), pp.24-30.
Toh, R. S. (1986). Coping with no-shows, late cancellations and oversales: American hotels out-do the airlines. International Journal of Hospitality Management, 5(3), pp.121-125.
Toh, R. S. and DeKay, F. (2002). Hotel room-inventory management: An overbooking model. Cornell Hotel and Restaurant Administration Quarterly, 43(4), pp.79-90.
Thompson, Gary M., Kwortnik, Jr.,Robert J., (2008). Pooling Restaurant Reservations to Increase Service Efficiency. Journal of Service Research, 10(4), pp.335-346
Thompson, G.(2002). Optimizing a restaurant’s seating capacity: Use dedicated or combinabletables? Cornell Hotel and Restaurant Administration Quarterly, 43(3), pp.48-57.
Thompson, G. (2003). Optimizing restaurant-table configurations: Specifying combinable tables. The Cornell Hotel and Restaurant Administration Quarterly, 44(1), 53–60.
Thompson, G. M. (2009). Revenue benefits of reducing dining duration in restaurants. Cornell Hospitality Quarterly, 50, pp.96-112.
Thompson, G. (2010). Restaurant profitability management: The evolution of restaurant revenue management. Cornell Hospitality Quarterly, 51(3), 308–322.
Tony S. M. Tsea and Yiu-Tung Poonb (2017). Modeling no-shows, cancellations, overbooking, and walk-ins in restaurant revenue management. Journal of Foodservice Business Research, 20:2, pp.127-145.
Weatherford, L., & Bodily, S. (1992). A taxonomy and research overview of perishable-asset revenue management: Yield management, overbooking, and pricing. Operations Research, 40(5), pp.831-844.
Webb Pressler, M. (2003). Wonder why you’re simmering? Turnover, atmosphere shape policies on making diners wait. Washington Post (July 27) F5.
Vidotto, A., Brown, K., & Beck, C. (2007). Managing restaurant tables using constraints. Knowledge-Based Systems, 20, pp.160-169.
Wilson, Robert H. (2007). Internet Hotel Reservations: The ‘Terms and Conditions’ Trap. Cornell Hotel and Restaurant Administration Quarterly, 48, pp.361-69.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊