跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/04/01 15:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳建融
研究生(外文):WU, JIAN-RONG
論文名稱:雙重增顯拉曼光譜技術開發及於角膜潰瘍感染之微生物檢測評估
論文名稱(外文):Development of Multiple SERS Enhancement Technique for Keratitis Bacteria Detection
指導教授:林其昌
指導教授(外文):LIN, CHI-CHANG
口試委員:王國禎丁信智蔡曉雯郭明澤林其昌
口試委員(外文):WANG,GOU-JENDING,SIN-JHIHTSAI, SHIAO-WENKUO, MING-TSELIN, CHI-CHANG
口試日期:2018-11-09
學位類別:碩士
校院名稱:東海大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:193
中文關鍵詞:表面增顯拉曼散射增顯過濾薄膜金奈米粒子角膜潰瘍PCA分群資料庫
外文關鍵詞:Surface-enhanced Raman scatteringSERS FilterGold nanoparticlescorneal ulcerPCA database
相關次數:
  • 被引用被引用:3
  • 點閱點閱:121
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來人們在工作、日常生活、休閒娛樂上都大量使用3C電子產品,眼睛長期疲勞致使眼角膜的健康以及能抑制細菌滋長的淚液分泌狀況不佳。許多人又因為美觀與便利性而習慣地佩戴隱形眼鏡,反覆穿戴隱形眼鏡會使眼角膜磨損,如再加上隱形眼鏡的清潔方式不當,角膜便容易受到細菌的感染,延誤治療將導致急性角膜炎、角膜潰瘍、角膜穿孔,輕則視力下降,嚴重則導致失明。
傳統檢測方式主要為透過臨床問診推斷及病灶採樣的培養與分析,但其過程非常耗時。故此研究欲提供一種新的檢測方式,在臨床上能更快、更準確的分析感染的微生物種類,使醫生能提供病患更即時的治療。此篇欲利用拉曼光譜儀的快速檢測以及靈敏度高的特性,作為一種快速檢測臨床微生物指紋的工具。
本研究主要分為四個部分:
(1) 利用銀鏡反應在濾材上附著銀奈米粒子,使之成為具有拉曼增顯以及過濾濃縮效果的表面增顯拉曼散射過濾薄膜(SERS Filter),並探討其參數最佳化及過濾濃縮的效果。
(2) 利用SERS Filter來對多種標準菌種、臨床菌種以及不同編號的純菌進行拉曼檢測,以獲得多種菌種的拉曼指紋圖譜,並進一步利用主成份分析法(PCA)將獲得的指紋圖譜轉換成PCA分群圖,形成一種可以用來快速判斷菌種的分群資料庫。
(3) 針對低濃度樣本的檢測時,加入AuNPs可與待測物在三維空間有更多的接觸,給予更強的增顯訊號,於此部分首先探討AuNPs的型態變化對化學分子檢測的參數最佳化。
(4) 將AuNPs對細菌的檢測參數進行優化,並將兩種拉曼增顯基材結合,成為雙重增顯基材(AuNPs/ SERS Filter),透過對低濃度細菌樣本的過濾濃縮,使細菌與AuNPs大量累積於SERS Filter表面,使得低濃度樣本也能獲得清楚的指紋訊號。
此篇研究的雙重增顯基材其成本低且能快速製備,透過微生物指紋圖譜與PCA分析技術結合,可快速進行微生物菌種的判斷。在未來發展上,大量建立微生物指紋圖譜資料庫,便可利用於臨床醫學、環境汙染以及食安問題的第一線快速檢測。

In the recent years, number of ophthamology disorders and diseases are increased clinically which strong correlation to the usage of electronic 3C devices. Contact lenses, another important risk, provides not only eyepower correction ability but also acts as cosmetic products. However, contact lens wearing can cause a variety of problems ranging from mild to severe such as dry eyes, allergic eye disease, distortion of the cornea, blood vessels growing in the cornea due to a lack of oxygen, scratches or abrasions on the cornea, and cornea infection which can lead to blindness if the infection is severe.
The goal for this thesis was to prepare nano-scale metallic materias for rapid and high sensitivitybacteris Raman and surface enhanced Raman spectroscopy (SERS) ananlysis. The specific bacteria Raman and SERS fingerprints were further classified under principle components analysis (PCA) which performed bacteria groupping ability and can be applied for further clinical applications. This study included fourparts:
1. Preperation of silver nanoparticles decorated SERS Filter membranes were used for bacteria SERS fingerprint measurement and the filtration and concentration functions were also studied.
2. SERS measurement and analysis of clinical isolated bacteria were performed and compared with standard strans. PCA was performed for rapid classification and characterization of bacteria between strains and specises.
3. Gold nanoparticles (AuNPs) was synthsized for direct contect with target bacteria in three dimention. Chemical analyte was performed to stufy signal enhancement ability of nanoparticles prior to bacteria measurement. Size and morphology of particles were discussed.
4. Double enhancement were performed by intergration of metallic nanoparticles (AuNPs) and SERS substrate. Low concentration samples were be tested for understand the concentration ability of prepared SERS Filter.
This thesis presented a rapid, high sensitive and specificity tool based on double enhancement SERS technique for low concentration bacteria SERS measurement by combination of AuNPs and SERS Filter. PCA analysis results showed clinical isolated bacteria from keratitis specements can be classified succefully under strains level. The method reported here not only for clinical microorganism screening, but also can be applied for environments and food safety monitoing.

第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
第二章 文獻回顧 3
2.1 眼角膜的臨床感染問題 3
2.2 常見的細菌檢測方式與比較 3
2.2.1 聚合酶連鎖反應(Polymerase chain reaction, PCR) 3
2.2.2 酵素連結免疫吸附法(Enzyme-linked immunosorbent assay, ELISA) 4
2.2.3 質譜儀(Mass spectrometer) 4
2.2.4 共軛焦顯微鏡(Confocal microscope) 4
2.2.5 紅外光光譜與拉曼光譜原理比較 5
2.3 拉曼光譜歷史與原理 8
2.4 表面增顯拉曼光譜 10
2.4.1 歷史與沿革 10
2.4.2 表面增顯拉曼散射效應原理 11
2.5 拉曼增顯基材 13
2.5.1 基材表面奈米技術表面增強拉曼活性基板(SERS activated substrate) 13
2.5.2 膠體奈米粒子技術 14
2.6 相近SERS平台比較 15
2.7 拉曼光譜於生醫檢測上的應用 17
2.7.1 拉曼光譜在細胞上的檢測與應用 17
2.7.2 拉曼光譜在細菌上的檢測與應用 19
2.8 研究架構 21
第三章 研究設備與藥品與實驗方法 22
3.1 研究設備 22
3.1.1 掃描式電子顯微鏡(SEM) 22
3.1.2 全自動數位穿透式電子顯微鏡(TEM) 22
3.1.3 拉曼光譜儀 23
3.1.4 微量酵素免疫分析儀(ELISA) 23
3.2 實驗藥品與材料 24
3.2.1 銀鏡反應 24
3.2.2 聚乳酸電紡絲纖維薄膜(PLA e-spun) 25
3.2.3 金奈米粒子 25
3.2.4 Ellman試劑(5,5'-Dithiobis-(2-nitrobenzoic acid), DTNB) 26
3.2.5 細菌培養 26
3.2.6 實驗檢測之細菌 27
3.3 實驗方法 28
3.3.1 銀鏡反應 28
3.3.2 溶膠凝膠法 29
3.3.3 拉曼光譜的儀器操作與實驗數據處理 30
3.3.4 細菌樣本的處理與檢測 33
3.3.5 主成份分析法(Principal components analysis, PCA) 33
第四章 結果與討論 34
4.1 增顯過濾薄膜(SERS Filter) 34
4.1.1 基材性質比較 34
4.1.2 拉曼光譜對基材檢測的訊號穩定度測試 37
4.1.3 三種原始基材的拉曼訊號比較 39
4.1.4 銀鏡過濾薄膜 40
4.1.5 三種原始基材經過銀鏡反應後的拉曼圖譜 48
4.1.6 化學分子探針的拉曼訊號 52
4.1.7 三種增顯薄膜對DTNB的增顯效果比較 54
4.1.8 SERS Filter對DTNB濃度梯度的檢測極限測試 61
4.1.9 SERS Filter對DTNB的過濾濃縮效果探討 63
4.1.10 SERS Filter結論 65
4.2 SERS Filter對細菌的檢測 66
4.2.1 拉曼光譜檢測金黃色葡萄球菌(S. aureus)的文獻探討 66
4.2.2 S. aureus初步檢測 68
4.2.3 細菌表面培養液訊號測試 69
4.2.4 多次離心清洗細菌表層的培養液測試 71
4.2.5 菌在基材上的表面特徵 74
4.2.6 細菌檢測條件尋找 78
4.2.7 四種標準菌株的SERS圖譜比較 84
4.2.8 不同銀鏡反應時間的SERS Filter對細菌檢測效果測試 85
4.2.9 標準菌株Raman與PCA比較 87
4.2.10 降低細菌濃度在SERS檢測極限測試 91
4.2.11 鏡頭倍率增加對細菌檢測結果的影響 94
4.2.12 臨床菌株與標準菌株的拉曼圖譜及PCA比較 97
4.2.13 SERS Filter對細菌檢測的結論 105
4.3 金奈米粒子(AuNPs) 106
4.3.1 金奈米星粒子參數最佳化 107
4.3.2 金奈米星對DTNB濃度梯度的檢測極限測試 124
4.3.3 AuNSs結論 126
4.4 AuNSs對細菌檢測參數的優化以及雙重增顯基材對細菌的過濾濃縮效果 127
4.4.1 AuNSs對細菌增顯效果的測試 128
4.4.2 雙重增顯基材(AuNPs/ SERS Filter)對細菌過濾濃縮的初步測試 139
4.4.3 不同體積比的AuNPs與細菌在SERS Filter上過濾濃縮的增顯效果測試 143
4.4.4 SERS Filter與AuNPs/ SERS Filter對三種細菌進行過濾濃縮的效果比較 146
4.4.5 過濾濃縮效果比較 153
4.4.6 過濾濃縮結論 154
第五章 總結與未來展望 155
5.1 總結 155
5.2 未來展望 156
參考文獻 157
附件 166
1. Rayleigh, L. X. On the electromagnetic theory of light. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 12 (1881) 81-101.
2. Gram, H. C. Ueber die isolirte Firbung der. Schizomyceten iu Schnitt-und Trockenpriparaten. Fortschritte der Medizin, 2 (1884) 185-189.
3. Raman, C. V. et al. A New Type of Secondary Radiation. Nature, 121 (1928) 501-502.
4. Tempus, P. Purine bases in meat extracts, yeast extracts and protein hydrolysates. Mitteilungen aus dem Gebiete der Lebensmittel-untersuchung un Hygiene = Travaux de chimie alimentaire et d'hygiene, 47 (1956) 351-368.
5. Gohlke, R. S. Time-of-Flight Mass Spectrometry and Gas-Liquid Partition Chromatography. Analytical Chemistry, 31 (1959) 535-541.
6. Johnson, R. C. Concepts and models of inorganic chemistry (Douglas, Bodie E.; McDaniel, Darl H.). Journal of Chemical Education, 43 (1966) A160.
7. Engvall, E. et al. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry, 8 (1971) 871-874.
8. Kleppe, K. et al. Studies on polynucleotides. Journal of Molecular Biology, 56 (1971) 341-361.
9. Fleischmann, M. et al. Raman-Spectra of Pyridine Adsorbed at a Silver Electrode. Chemical Physics Letters, 26 (1974) 163-166.
10. Chien, A. et al. Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. Journal of bacteriology, 127 (1976) 1550-1557.
11. Albrecht, M. G. et al. Anomalously Intense Raman-Spectra of Pyridine at a Silver Electrode. Journal of the American Chemical Society, 99 (1977) 5215-5217.
12. Jeanmaire, D. L. et al. Surface raman spectroelectrochemistry. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 84 (1977) 1-20.
13. Tauster, S. J. et al. Strong Metal-Support Interactions - Group-8 Noble-Metals Supported on Tio2. Journal of the American Chemical Society, 100 (1978) 170-175.
14. Creighton, J. A. et al. Plasma Resonance Enhancement of Raman-Scattering by Pyridine Adsorbed on Silver or Gold Sol Particles of Size Comparable to the Excitation Wavelength. Journal of the Chemical Society-Faraday Transactions Ii, 75 (1979) 790-798.
15. Billmann, J. et al. Enhanced Raman Effect from Cyanide Adsorbed on a Silver Electrode. Surface Science, 92 (1980) 153-173.
16. Kerker, M. et al. Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata. Applied optics, 19 (1980) 4159-4174.
17. Tauster, S. J. et al. Strong interactions in supported-metal catalysts. Science (New York, N.Y.), 211 (1981) 1121-1125.
18. Lee, C.-r. D. C. M. Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols '. (1982)
19. Riddles, P. W. et al. Reassessment of Ellman's reagent. Methods in Enzymology, 91 (1983) 49-60.
20. Blum, J. B. et al. Sol-gel-derived PbTiO3. Journal of Materials Science, 20 (1985) 4479-4483.
21. Holden, B. A. et al. Effects of long-term extended contact lens wear on the human cornea. Investigative Ophthalmology & Visual Science, 26 (1985) 1489-1501.
22. Saiki, R. K. et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science (New York, N.Y.), 230 (1985) 1350-1354.
23. Goodman, D. S. Theory and Practice of Scanning Optical Microscopy. J. Opt. Soc. Am. A, 4 (1987) 551-552.
24. Wannagat, U. Holleman-Wiberg: Lehrbuch der Anorganischen Chemie. Begründet von A. F. Holleman, fortgesetzt von E. Wiberg. 91.–100. verbesserte und stark erweiterte Auflage von N. Wiberg. Walter de Gruyter, Berlin 1985. XXI, 1451 S., geb. DM 120.00. – ISBN 3-11-007511-3. Angewandte Chemie, 99 (1987) 604-605.
25. Wiley, J. H. et al. Band Assignments in the Raman-Spectra of Celluloses. Carbohydrate Research, 160 (1987) 113-129.
26. Saiki, R. K. et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science (New York, N.Y.), 239 (1988) 487-491.
27. Bratsch, S. G. Standard Electrode-Potentials and Temperature Coefficients in Water at 298.15-K. J. Phys. Chem. Ref. Data, 18 (1989) 1-21.
28. Fukai, K. et al. Preparation and properties of uniform fine perovskite powders by hydrothermal synthesis. Ceramics International, 16 (1990) 285-290.
29. Heuer, J. P. Advanced scanning electron microscopy and X-ray microanalysis by D.E. Newbury, D.C. Joy, P. Echlin, C.E. Fiori, and J.I. Goldstein Plenum Press, New York (1986) ISBN 0-036-42140-2; 454 pages. Scanning, 14 (1992) 365-365.
30. Seal, D. et al. Role of Coagulase-negative Staphylococci in Chronic Blepharitis. Microbial Ecology in Health and Disease, 5 (1992) 69-75.
31. Fievet, F. et al. Controlled nucleation and growth of micrometre-size copper particles prepared by the polyol process. Journal of Materials Chemistry, 3 (1993) 627-632.
32. Gohlke, R. S. et al. Early gas chromatography/mass spectrometry. J Am Soc Mass Spectrom, 4 (1993) 367-371.
33. Lee, A. S. L. et al. Surface-enhanced Raman spectra using silver-coated paper substrates. Journal of Raman Spectroscopy, 25 (1994) 209-214.
34. Claydon, M. A. et al. The rapid identification of intact microorganisms using mass spectrometry. Nature Biotechnology, 14 (1996) 1584.
35. Liang, E. J. et al. Chemical Effect of SERS with Near-Infrared Excitation. Journal of Raman Spectroscopy, 27 (1996) 879-885.
36. Jennings, G. K. et al. Self-assembled n-alkanethiolate monolayers on underpotentially deposited adlayers of silver and copper on gold. Journal of the American Chemical Society, 119 (1997) 5208-5214.
37. Kneipp, K. et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Physical Review Letters, 78 (1997) 1667-1670.
38. Nie, S. et al. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science (New York, N.Y.), 275 (1997) 1102-1106.
39. Sheppard, C. et al. Confocal Laser Scanning Microscopy. (1997)
40. Campion, A. et al. Surface-enhanced Raman scattering. Chemical Society Reviews, 27 (1998) 241-250.
41. Sr, E. et al. Direct observation of size-dependent optical enhancement in single metal nanoparticles. Journal of the American Chemical Society, 120 (1998) 8009-8010.
42. Belgrader, P. et al. PCR Detection of Bacteria in Seven Minutes. Science (New York, N.Y.), 284 (1999) 449-450.
43. Berchmans, S. et al. Formation of a nickel hydroxide monolayer on Au through a self-assembled monolayer of 5,5′-dithiobis(2-nitrobenzoic acid): voltammetric, SERS and XPS investigations of the modified electrodes. Journal of Electroanalytical Chemistry, 468 (1999) 170-179.
44. Demirev, P. A. et al. Microorganism Identification by Mass Spectrometry and Protein Database Searches. Analytical Chemistry, 71 (1999) 2732-2738.
45. Anderson, M. S. Locally enhanced Raman spectroscopy with an atomic force microscope. Applied Physics Letters, 76 (2000) 3130-3132.
46. Bockris, J. O. M., Reddy, Amulya K.N., Gamboa-Aldeco, Maria E. Modern Electrochemistry 2A. (2000)
47. Hanlon, E. B. et al. Prospects for in vivo Raman spectroscopy. Physics in medicine and biology, 45 (2000) R1-59.
48. Stockle, R. M. et al. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chemical Physics Letters, 318 (2000) 131-136.
49. Xu, H. et al. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 62 (2000) 4318-4324.
50. Dorkenoo, K. D. et al. Vibrational and librational frequency coupling in stimulated scattering spectra of liquid water. Optics Communications, 202 (2002) 113-122.
51. Itoh, S. et al. New rapid enzyme-linked immunosorbent assay to detect antibodies against bacterial surface antigens using filtration plates. Biological & pharmaceutical bulletin, 25 (2002) 986-990.
52. Liesegang, T. J. Physiologic Changes of the Cornea with Contact Lens Wear. Eye & Contact Lens, 28 (2002) 12-27.
53. Yamamoto, Y. PCR in Diagnosis of Infection: Detection of Bacteria in Cerebrospinal Fluids. Clinical and Diagnostic Laboratory Immunology, 9 (2002) 508-514.
54. Grubisha, D. S. et al. Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Anal Chem, 75 (2003) 5936-5943.
55. Constantino, C. J. et al. Phase transition in poly(vinylidene fluoride) investigated with micro-Raman spectroscopy. Applied spectroscopy, 59 (2005) 275-279.
56. Edwards, H. G. M. Modern Raman spectroscopy—a practical approach. Ewen Smith and Geoffrey Dent. John Wiley and Sons Ltd, Chichester, 2005. Pp. 210. ISBN 0 471 49668 5 (cloth, hb); 0 471 49794 0 (pbk). Journal of Raman Spectroscopy, 36 (2005) 835-835.
57. Moskovits, M. Surface-enhanced Raman spectroscopy: a brief retrospective. Journal of Raman Spectroscopy, 36 (2005) 485-496.
58. Premasiri, W. R. et al. Characterization of the Surface Enhanced Raman Scattering (SERS) of Bacteria. The Journal of Physical Chemistry B, 109 (2005) 312-320.
59. Baia, M. et al. Surface-enhanced Raman scattering efficiency of truncated tetrahedral Ag nanoparticle arrays mediated by electromagnetic couplings. Applied Physics Letters, 88 (2006) 143121.
60. Bharathi, M. J. et al. Microbiological diagnosis of infective keratitis: comparative evaluation of direct microscopy and culture results. The British journal of ophthalmology, 90 (2006) 1271-1276.
61. Escoriza, M. F. et al. Studying bacterial metabolic states using Raman spectroscopy. Applied spectroscopy, 60 (2006) 971-976.
62. Jarvis, R. M. et al. Surface-enhanced Raman scattering for the rapid discrimination of bacteria. Faraday discussions, 132 (2006) 281-292; discussion 309-219.
63. Harvey RA, C. P., Fisher BD. Lippincott’s Illustrated Reviews: Microbiology. 2 ed, (2007)
64. Le Ru, E. C. et al. Surface Enhanced Raman Scattering Enhancement Factors:  A Comprehensive Study. The Journal of Physical Chemistry C, 111 (2007) 13794-13803.
65. Li-Ling Lin, Y.-T. T., Yi-Zhih Tsai. Assessing the Effect of Pseudomonas Fluorescens on Saturated Hydraulic Conductivity with Turbidity Method Journal of Soil and Water Conservation, 39 (2007) 123-131.
66. Auer, B. M. et al. IR and Raman spectra of liquid water: Theory and interpretation. The Journal of Chemical Physics, 128 (2008) 224511.
67. Green, M. et al. Risk factors and causative organisms in microbial keratitis. Cornea, 27 (2008) 22-27.
68. Ji, Y. et al. Analysis of Raman and infrared spectra of poly(vinylidene fluoride) irradiated by KrF excimer laser. Spectrochim Acta A Mol Biomol Spectrosc, 70 (2008) 297-300.
69. STEVEN, L. B. et al. A PORTABLE RAMAN SYSTEM FOR THE IDENTIFICATION OF FOODBORNE PATHOGENIC BACTERIA. Journal of Rapid Methods & Automation in Microbiology, 16 (2008) 238-255.
70. Stiles, P. L. et al. Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem (Palo Alto Calif), 1 (2008) 601-626.
71. Vijayaraghavan, K. et al. Bacterial biosorbents and biosorption. Biotechnology advances, 26 (2008) 266-291.
72. Wang, T. J. et al. Changes of the ocular refraction among freshmen in National Taiwan University between 1988 and 2005. Eye, 23 (2008) 1168.
73. Cao, H. et al. Fragmentation of Isomeric Intrastrand Crosslink Lesions of DNA in an Ion-Trap Mass Spectrometer. Journal of the American Society for Mass Spectrometry, 20 (2009) 611-617.
74. Crossley, K. B. et al. Staphylococci in Human Disease: Second Edition. (2009).
75. Järvinen, A.-K. et al. Rapid identification of bacterial pathogens using a PCR- and microarray-based assay. BMC Microbiology, 9 (2009) 161-161.
76. Kokoskova, B. et al. Enzyme-linked immunosorbent assay for the detection and identification of plant pathogenic bacteria (in particular for Erwinia amylovora and Clavibacter michiganensis subsp. sepedonicus). Methods in molecular biology (Clifton, N.J.), 508 (2009) 75-87.
77. Liu, T. T. et al. A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall. PloS one, 4 (2009) e5470.
78. Strutt, J. W. XV. On the light from the sky, its polarization and colour. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 41 (2009) 107-120.
79. Ying-Yi, L. et al. in 2009 IEEE 3rd International Conference on Nano/Molecular Medicine and Engineering. 150-153.
80. Chen, T. et al. Hotspot-induced transformation of surface-enhanced Raman scattering fingerprints. ACS Nano, 4 (2010) 3087-3094.
81. Fang, J. et al. Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy. Nano Lett, 10 (2010) 5006-5013.
82. Loh, K. Y. et al. Contact Lens Related Corneal Ulcer. Malaysian Family Physician : the Official Journal of the Academy of Family Physicians of Malaysia, 5 (2010) 6-8.
83. Rule Wigginton, K. et al. Gold-coated polycarbonate membrane filter for pathogen concentration and SERS-based detection. Analyst, 135 (2010) 1320-1326.
84. 溫秉丞. 利用表面增強拉曼散射技術偵測並且診斷細菌性腦膜炎之致病菌. 陽明大學,碩士論文 (2010)
85. 廖佩涵. 合成貴金屬奈米粒子-中孔洞氧化矽複合材料之合成與SERS應用. 成功大學,碩士論文 (2010)
86. 鄭宜肪. 介電泳式微流體晶片與其應用於生物微粒與分子之操控與檢測. 成功大學,博士論文 (2010)
87. Barghouthi, S. A. A Universal Method for the Identification of Bacteria Based on General PCR Primers. Indian Journal of Microbiology, 51 (2011) 430-444.
88. Cheng, M.-L. et al. Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution. Analytica chimica acta, 708 (2011) 89-96.
89. Joanne M. Willey, L. S., Chris Woolverton. Prescott's Microbiology. (2011)
90. Lee, C. H. et al. Highly Sensitive Surface Enhanced Raman Scattering Substrates Based on Filter Paper Loaded with Plasmonic Nanostructures. Analytical Chemistry, 83 (2011) 8953-8958.
91. Liu, T.-Y. et al. Functionalized arrays of Raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood. Nature Communications, 2 (2011) 538.
92. Ungureanu, C. et al. Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics. Nano Lett, 11 (2011) 1887-1894.
93. 呂品萱. 多維式銀奈米材修飾表面增強拉曼散射活性基材之製備與性質探討. 中興大學,碩士論文 (2011)
94. 郭明澤. 以淚液拉曼光譜及寡核苷酸DNA陣列晶片評估感染性角膜炎. 成功大學,博士論文 (2011)
95. Cheng, L.-C. et al. Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent. Journal of Materials Chemistry, 22 (2012) 2244-2253.
96. Hanaor, D. A. H. et al. Single and mixed phase TiO2 powders prepared by excess hydrolysis of titanium alkoxide. Advances in Applied Ceramics, 111 (2012) 149-158.
97. Lichtinger, A. et al. Shifting trends in bacterial keratitis in Toronto: an 11-year review. Ophthalmology, 119 (2012) 1785-1790.
98. Ngo, Y. H. et al. Gold Nanoparticle–Paper as a Three-Dimensional Surface Enhanced Raman Scattering Substrate. Langmuir, 28 (2012) 8782-8790.
99. S.S.R., C. Raman Spectroscopy for Nanomaterials Characterization. (2012)
100. Tseng, S.-C. et al. Eco-Friendly Plasmonic Sensors: Using the Photothermal Effect to Prepare Metal Nanoparticle-Containing Test Papers for Highly Sensitive Colorimetric Detection. Analytical Chemistry, 84 (2012) 5140-5145.
101. Yu, W. W. et al. A simple filter-based approach to surface enhanced Raman spectroscopy for trace chemical detection. Analyst, 137 (2012) 1168-1173.
102. Zhang, R. et al. Highly efficient SERS test strips. Chemical Communications, 48 (2012) 5913-5915.
103. Cheng, I. F. et al. Rapid (<5 min) identification of pathogen in human blood by electrokinetic concentration and surface-enhanced Raman spectroscopy. Sci Rep, 3 (2013) 2365.
104. Dingle, T. C. et al. Maldi-tof mass spectrometry for microorganism identification. Clinics in laboratory medicine, 33 (2013) 589-609.
105. Krásný, L. et al. Identification of bacteria using mass spectrometry techniques. International Journal of Mass Spectrometry, 353 (2013) 67-79.
106. Liu, Y. et al. Surface hydrophobicity of microparticles modulates adjuvanticity. Journal of Materials Chemistry B, 1 (2013) 3888-3896.
107. Meng, Y. et al. Silver nanoparticles decorated filter paper via self-sacrificing reduction for membrane extraction surface-enhanced Raman spectroscopy detection. Analyst, 138 (2013) 2090-2095.
108. Ngo, Y. H. et al. Effect of cationic polyacrylamides on the aggregation and SERS performance of gold nanoparticles-treated paper. Journal of Colloid and Interface Science, 392 (2013) 237-246.
109. Qu, L.-L. et al. Fabrication of bimetallic microfluidic surface-enhanced Raman scattering sensors on paper by screen printing. Analytica chimica acta, 792 (2013) 86-92.
110. Xu, C.-M. et al. Data Acquisition Strategy for Mass Spectrometers Applied to Bottom-up-Based Protein Identification. Chinese Journal of Analytical Chemistry, 41 (2013) 1120-1128.
111. Yu, W. W. et al. Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection. Analyst, 138 (2013) 1020-1025.
112. Agnihotri, S. et al. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Advances, 4 (2014) 3974-3983.
113. Betz, J. F. et al. Simple SERS substrates: powerful, portable, and full of potential. Physical Chemistry Chemical Physics, 16 (2014) 2224-2239.
114. Deng, Y.-L. et al. Black silicon SERS substrate: Effect of surface morphology on SERS detection and application of single algal cell analysis. Biosensors and Bioelectronics, 53 (2014) 37-42.
115. Gupta, K. K. et al. 5-Florouracil-loaded poly(lactic acid)-poly(caprolactone) hybrid scaffold: potential chemotherapeutic implant. Journal of biomedical materials research. Part A, 102 (2014) 2600-2612.
116. Law, J. W.-F. et al. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Frontiers in Microbiology, 5 (2014) 770.
117. Lee, S. et al. Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging. Biosensors & bioelectronics, 51 (2014) 238-243.
118. Lin, C. C. et al. A filter-like AuNPs@MS SERS substrate for Staphylococcus aureus detection. Biosensors & bioelectronics, 53 (2014) 519-527.
119. Sallum, L. F. et al. Determination of acetylsalicylic acid in commercial tablets by SERS using silver nanoparticle-coated filter paper. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 133 (2014) 107-111.
120. Szymborski, T. et al. Electrospun polymer mat as a SERS platform for the immobilization and detection of bacteria from fluids. Analyst, 139 (2014) 5061-5064.
121. Wu, X. et al. Culture-free diagnostics of Pseudomonas aeruginosa infection by silver nanorod array based SERS from clinical sputum samples. Nanomedicine: Nanotechnology, Biology and Medicine, 10 (2014) 1863-1870.
122. Xu, M.-F. et al. Study on Differences of Milk Proteins by Liquid Chromatography-Mass Spectrometer. Chinese Journal of Analytical Chemistry, 42 (2014) 501-506.
123. Gong, T. et al. Highly sensitive SERS detection and quantification of sialic acid on single cell using photonic-crystal fiber with gold nanoparticles. Biosensors & bioelectronics, 64 (2015) 227-233.
124. Guo, Z. B. et al. New anhydrous proton exchange membranes for high-temperature fuel cells based on PVDF-PVP blended polymers. Journal of Materials Chemistry A, 3 (2015) 148-155.
125. Hasi, W.-L.-J. et al. Chloride ion-assisted self-assembly of silver nanoparticles on filter paper as SERS substrate. Applied Physics A, 118 (2015) 799-807.
126. He, S. et al. Optimizing gold nanostars as a colloid- based surface-enhanced Raman scattering (SERS) substrate. Vol. 17 (2015).
127. Singhal, N. et al. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Frontiers in Microbiology, 6 (2015) 791.
128. Zhang, H. et al. Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Biosensors and Bioelectronics, 74 (2015) 872-877.
129. Zhou, H. et al. The interconversion between gold nanostars and gold nanodendrites controlled via temperature and the concentration of sodium dodecyl sulfonate. Journal of Molecular Liquids, 208 (2015) 27-33.
130. Cope JR, C. S., Srinivasan K, et al. . Contact Lens–Related Corneal Infections — United States, 2005–2015. . MMWR Morb Mortal Wkly Rep 65 (2016) 817–820.
131. Cui, J. et al. SERS nanoprobes for the monitoring of endogenous nitric oxide in living cells. Biosensors & bioelectronics, 85 (2016) 324-330.
132. Jolliffe, I. T. et al. Principal component analysis: a review and recent developments. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 374 (2016) 20150202.
133. Kotanen, C. N. et al. Surface enhanced Raman scattering spectroscopy for detection and identification of microbial pathogens isolated from human serum. Sensing and Bio-Sensing Research, 8 (2016) 20-26.
134. Shi, M. et al. SERS assay of telomerase activity at single-cell level and colon cancer tissues via quadratic signal amplification. Biosensors & bioelectronics, 77 (2016) 673-680.
135. Wang, C. et al. Silver nanotriangles-loaded filter paper for ultrasensitive SERS detection application benefited by interspacing of sharp edges. Sensors and Actuators B: Chemical, 231 (2016) 357-364.
136. Yao, C. et al. A nontargeted screening method for covalent DNA adducts and DNA modification selectivity using liquid chromatography-tandem mass spectrometry. Talanta, 159 (2016) 93-102.
137. Zhu, L. et al. Development of a double-antibody sandwich ELISA for rapid detection of Bacillus Cereus in food. Scientific Reports, 6 (2016) 16092.
138. Lin, C.-C. et al. High efficiency SERS detection of clinical microorganism by AgNPs-decorated filter membrane and pattern recognition techniques. Sensors and Actuators B: Chemical, 241 (2017) 513-521.
139. Mosier-Boss, P. A. Review on SERS of Bacteria. Biosensors, 7 (2017) 51.
140. Witkowska, E. et al. Polymer mat prepared via Forcespinning as a SERS platform for immobilization and detection of bacteria from blood plasma. Materials science & engineering. C, Materials for biological applications, 71 (2017) 345-350.
141. Gao, S. et al. Mapping bacteria on filter membranes, an innovative SERS approach. Journal of Microbiological Methods, 147 (2018) 69-75.
142. Ogundare, S. A. et al. Nanocrystalline cellulose as reducing- and stabilizing agent in the synthesis of silver nanoparticles: Application as a surface-enhanced Raman scattering (SERS) substrate. Surfaces and Interfaces, 13 (2018) 1-10.
143. Wang, C. et al. Combined use of vancomycin-modified Ag-coated magnetic nanoparticles and secondary enhanced nanoparticles for rapid surface-enhanced Raman scattering detection of bacteria. International journal of nanomedicine, 13 (2018) 1159-1178.

電子全文 電子全文(網際網路公開日期:20240122)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊