跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2025/01/16 18:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林奕辰
研究生(外文):LIN,YI-CHEN
論文名稱:探討酵素催化合成之PEDOT:PSS的溶解性改質及降解方法的建立
論文名稱(外文):Modifying the solubility of enzymatically synthesized PEDOT:PSS and establishing it’s degradation method
指導教授:顧野松
指導教授(外文):GU,YE-SONG
口試委員:林慶峰林育儒
口試委員(外文):LIN,CING-FONGLIN, YU-JU
口試日期:2019-07-18
學位類別:碩士
校院名稱:東海大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:74
中文關鍵詞:導電高分子 降解反應
外文關鍵詞:PEDOT:PSSdegradation method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
聚3,4-乙烯二氧噻吩:聚苯乙烯磺酸(PEDOT:PSS)發展至今已在許多電子產品中看見,應用層面相當廣,主要是因為優秀的光學性質及相對穩定的製程,使其在商業的應用上相對其他導電高分子來的廣泛。現有製造導電高分子的方式相當多種,但常需要在極端pH環境下並使用強氧化劑來進行反應,製程過程對環境的影響難以完全避免,因此本研究利用酵素辣根過氧化酶來催化合成PEDOT:PSS。利用酵素聚合反應相對緩和的反應過程避免對環境的危害,也藉由酵素作為催化劑使反應能夠持續,使合成效果更好。
本研究討論面向相當廣,研究改變製程方式,以微波消化器給與能量代替以往使用恆溫水槽作為加熱方式成功縮短合成PEDOT:PSS反應所需的時間,並研究有無酵素在不同加熱方式的結果;使用熱處理的方式來改變PEDOT:PSS薄膜的性質使其不溶於水中;利用旋轉塗佈方式塗佈導電高分子薄膜,利用SDS溶劑及熱處理的方式來改變薄膜性質,期望能提升其導電度;利用過氧化氫來進行降解PEDOT:PSS的氧化反應,並添加FeCl2來催化過氧氫根自由基的產生,達到快速降解PEDOT:PSS導電高分子的目的,並建立降解的方法。

To date,Poly 3,4-ethylenedioxythiophene: polystyrene sulfonic acid (PEDOT:PSS) has been developed in many electronic products, and its application level is quite wide, mainly due to excellent optical properties and stable and relatively stable processes. It is widely used in commercial applications relative to other conductive polymers. There are many ways to manufacture conductive polymers, but it is often use some strong oxidant in an extreme pH environment to react. It is difficult to avoid the environmental impact from the process. To avoid this, in this study uses the enzyme horseradish peroxidase to catalyze the synthesis of PEDOT:PSS, using the relatively mild reaction process of the enzyme polymerization to avoid environmental damage, and also uses the enzyme as a catalyst to control the reaction wide, so that the synthesis process is much better. This study is quite wide. In order to shorten the time for synthesize PEDOT:PSS, we chang the heating methods, using Microwave Digestion System instead of the traditional water bath as a heating source and to evaluate results of the presence or absence of enzymes in different heating methods; The research use the method of heat treatment to change the properties of PEDOT:PSS film to make it insoluble in water. The conductive polymer film is coated by spin coating method, and the properties of the film are changed by SDS solvent and heat treatment. We use hydrogen peroxide to degrade the oxidation reaction of PEDOT:PSS, and add FeCl2 to catalyze the generation of peroxygen radicals. It is expected to rapidly degrade PEDOT:PSS conductive polymer.
摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 IX
第1章 緒論1
1.1. 導電高分子簡介1
1.1.1. 導電高分子導電原理2
1.1.2. 導電高分子參雜3
1.1.3. 導電高分子應用4
1.1.4. 導電高分子PEDOT5
1.1.4.1.簡介5
1.1.4.2.導電高分子PEDOT合成6
1.1.4.3.PEDOT:PSS應用8
1.2. 酵素簡介11
1.2.1. 辣根過氧化酶11
1.2.2. 辣根過氧化酶結構12
1.2.3. 辣根過氧化酶催化反應機制13
1.3. 降解有機污染物15
第2章 研究目的17
2.1. 微波消化合成PEDOT:PSS實驗17
2.2. 利用熱處理方式使PEDOT:PSS不溶於水實驗18
2.3. PEDOT:PSS 薄膜塗佈實驗19
2.4. PEDOT:PSS降解實驗19
第3章 實驗設備與藥物耗材20
3.1. 實驗藥品20
3.2. 實驗儀器21
3.2.1. 場發射掃描式電子顯微鏡(SEM)21
3.2.2. FTIR21
3.2.3. 密閉式微波消化器(CEM MARS 6 Microwave Digestion System)21
第4章 微波消化合成PEDOT:PSS實驗22
4.1. 實驗藥品22
4.2. 實驗方法23
4.2.1. 藥品配製24
4.2.2. 實驗步驟27
4.3. 分析與結果討論29
4.3.1. 微波消化反應器對合成效果影響29
4.3.2. 有無添加HRP在微波消化反應器的合成效果31
第5章 提升PEDOT:PSS薄膜水不溶性33
5.1. 實驗藥品33
5.2. 實驗方法34
5.3. 實驗結果37
5.3.1. PEDOT:PSS薄膜不同熱處理方式結果37
5.3.2. 不溶於水PEDOT:PSS分析38
第6章 PEDOT:PSS 薄膜塗佈實驗46
6.1. 實驗藥品46
6.2. 藥品製備47
6.3. 實驗方法47
6.3.1. 藥品配製47
6.3.2. 實驗步驟48
6.4. 實驗結果50
6.4.2. Dopping with SDS51
6.4.3. 四點探針分析52
第7章 PEDOT:PSS降解實驗55
7.1. 實驗藥品55
7.2. 實驗方法55
7.3. 實驗步驟56
7.3.1. 利用H2O2降解PEDOT:PSS56
7.3.2. 利用Fe2+催化 H2O2降解PEDOT:PSS57
7.4 實驗結果59
7.4.1 H2O2對降解PEDOT:PSS的影響59
7.4.2 不同濃度H2O2對降解PEDOT:PSS的影響60
7.4.4 Fe2+對H2O2降解PEDOT:PSS的影響62
時間對H2O2與Fe2+降解PEDOT:PSS的影響64
7.4.5 Fe2+濃度對H2O2降解PEDOT:PSS的影響65
第8章 實驗總結與未來展望67
第9章 未來展望68
第10章 參考文獻69
致謝 73


1.Bolto, B.A., R. McNeill, and D.J.A.J.o.C. Weiss, Electronic conduction in polymers. III. Electronic properties of polypyrrole. 1963. 16(6): p. 1090-1103.
2.Shirakawa, H., et al., Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH) x. 1977(16): p. 578-580.
3.Groenendaal, L., et al., Electrochemistry of poly (3, 4‐alkylenedioxythiophene) derivatives. 2003. 15(11): p. 855-879.
4.Mumtaz, M., Synthesis of poly (3, 4-ethylenedioxythiohene), polyaniline and their metal-composite nano-objects by dispersion polymerization. 2009, Bordeaux 1.
5.Ouyang, J., et al., On the mechanism of conductivity enhancement in poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) film through solvent treatment. 2004. 45(25): p. 8443-8450.
6.Tehrani, P., et al., Evaluation of active materials designed for use in printable electrochromic polymer displays. 2006. 515(4): p. 2485-2492.
7.Groenendaal, L., et al., Poly (3, 4‐ethylenedioxythiophene) and its derivatives: past, present, and future. 2000. 12(7): p. 481-494.
8.Akoudad, S. and J.J.S.m. Roncali, Electrochemical synthesis of poly (3, 4-ethylenedioxythiophene) from a dimer precursor. 1998. 93(2): p. 111-114.
9.Nikolou, M. and G.G.J.T.C.R. Malliaras, Applications of poly (3, 4‐ethylenedioxythiophene) doped with poly (styrene sulfonic acid) transistors in chemical and biological sensors. 2008. 8(1): p. 13-22.
10.Zhou, C., et al., Electro-synthesis of novel nanostructured PEDOT films and their application as catalyst support. 2011. 6(1): p. 364.
11.Jonas, F., W. Krafft, and B. Muys. Poly (3, 4‐ethylenedioxythiophene): Conductive coatings, technical applications and properties. in Macromolecular Symposia. 1995. Wiley Online Library.
12.Kumar, A. and J.R.J.M. Reynolds, Soluble alkyl-substituted poly (ethylenedioxythiophenes) as electrochromic materials. 1996. 29(23): p. 7629-7630.
13.Duan, L., et al., Enzymatic‐catalyzed polymerization of water‐soluble electrically conductive polymer PEDOT: PSS. 2014. 25(8): p. 896-899.
14.Guimard, N.K., N. Gomez, and C.E.J.P.i.p.s. Schmidt, Conducting polymers in biomedical engineering. 2007. 32(8-9): p. 876-921.
15.Sotzing, G.A., et al., Poly [bis (pyrrol-2-yl) arylenes]: conducting polymers from low oxidation potential monomers based on pyrrole via electropolymerization. 1996. 29(5): p. 1679-1684.
16.Jonas, F. and J.J.S.M. Morrison, 3, 4-polyethylenedioxythiophene (PEDT): Conductive coatings technical applications and properties. 1997. 85(1-3): p. 1397-1398.
17.Mariani, F., et al., PEDOT: dye-based, flexible organic electrochemical transistor for highly sensitive pH monitoring. 2018. 10(26): p. 22474-22484.
18.White, H.S., G.P. Kittlesen, and M.S.J.J.o.t.A.C.S. Wrighton, Chemical derivatization of an array of three gold microelectrodes with polypyrrole: fabrication of a molecule-based transistor. 1984. 106(18): p. 5375-5377.
19.Veitch, N.C.J.P., Horseradish peroxidase: a modern view of a classic enzyme. 2004. 65(3): p. 249-259.
20.Haacke, G.J.J.o.A.P., New figure of merit for transparent conductors. 1976. 47(9): p. 4086-4089.
21.Somani, P.R., S.J.M.c. Radhakrishnan, and physics, Electrochromic materials and devices: present and future. 2003. 77(1): p. 117-133.
22.Doyle, W.A., et al., Two substrate interaction sites in lignin peroxidase revealed by site-directed mutagenesis. 1998. 37(43): p. 15097-15105.
23.Folkes, L.K. and L.P.J.F.l. Candeias, Interpretation of the reactivity of peroxidase compounds I and II with phenols by the Marcus equation. 1997. 412(2): p. 305-308.
24.Ruzgas, T., et al., Peroxidase-modified electrodes: fundamentals and application. 1996. 330(2-3): p. 123-138.
25.Barbusiński, K.J.C.-D.-E.-M., Henry John Horstman Fenton-short biography and brief history of Fenton reagent discovery. 2009. 14.
26.Kent, M.S., et al., Assay for lignin breakdown based on lignin films: insights into the Fenton reaction with insoluble lignin. 2015. 17(10): p. 4830-4845.
27.Gawande, M.B., et al., Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics. 2014. 47(4): p. 1338-1348.
28.Polshettiwar, V., M.N. Nadagouda, and R.S.J.A.J.o.C. Varma, Microwave-assisted chemistry: a rapid and sustainable route to synthesis of organics and nanomaterials. 2009. 62(1): p. 16-26.
29.Leadbeater, N.E. and H.M.J.T.J.o.o.c. Torenius, A study of the ionic liquid mediated microwave heating of organic solvents. 2002. 67(9): p. 3145-3148.
30.Hoogenboom, R. and U.S.J.M.R.C. Schubert, Microwave‐assisted polymer synthesis: recent developments in a rapidly expanding field of research. 2007. 28(4): p. 368-386.
31.Zhou, J., et al., The temperature-dependent microstructure of PEDOT/PSS films: insights from morphological, mechanical and electrical analyses. 2014. 2(46): p. 9903-9910.
32.Fan, B., X. Mei, and J.J.M. Ouyang, Significant conductivity enhancement of conductive poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) films by adding anionic surfactants into polymer solution. 2008. 41(16): p. 5971-5973.
33.Sukchol, K., et al., Effects of the addition of anionic surfactant during template polymerization of conducting polymers containing pedot with sulfonated poly (imide) and poly (styrene sulfonate) as templates for nano-thin film applications. 2013. 179: p. 10-17.
34.周光瑩, Establishing an optimum condition for the enzymatic synthesis of conductive PEDOT. 2014.
35.Vitoratos, E., et al., Thermal degradation mechanisms of PEDOT: PSS. 2009. 10(1): p. 61-66.
36.Friedel, B., et al., Effects of layer thickness and annealing of PEDOT: PSS layers in organic photodetectors. 2009. 42(17): p. 6741-6747.
37.黎世偉, Establishing a Two-Step procedure to improve the conductivity of the film made by enzymatically synthesized PEDOT:PSS. 2016.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top