|
1.Bolto, B.A., R. McNeill, and D.J.A.J.o.C. Weiss, Electronic conduction in polymers. III. Electronic properties of polypyrrole. 1963. 16(6): p. 1090-1103. 2.Shirakawa, H., et al., Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH) x. 1977(16): p. 578-580. 3.Groenendaal, L., et al., Electrochemistry of poly (3, 4‐alkylenedioxythiophene) derivatives. 2003. 15(11): p. 855-879. 4.Mumtaz, M., Synthesis of poly (3, 4-ethylenedioxythiohene), polyaniline and their metal-composite nano-objects by dispersion polymerization. 2009, Bordeaux 1. 5.Ouyang, J., et al., On the mechanism of conductivity enhancement in poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) film through solvent treatment. 2004. 45(25): p. 8443-8450. 6.Tehrani, P., et al., Evaluation of active materials designed for use in printable electrochromic polymer displays. 2006. 515(4): p. 2485-2492. 7.Groenendaal, L., et al., Poly (3, 4‐ethylenedioxythiophene) and its derivatives: past, present, and future. 2000. 12(7): p. 481-494. 8.Akoudad, S. and J.J.S.m. Roncali, Electrochemical synthesis of poly (3, 4-ethylenedioxythiophene) from a dimer precursor. 1998. 93(2): p. 111-114. 9.Nikolou, M. and G.G.J.T.C.R. Malliaras, Applications of poly (3, 4‐ethylenedioxythiophene) doped with poly (styrene sulfonic acid) transistors in chemical and biological sensors. 2008. 8(1): p. 13-22. 10.Zhou, C., et al., Electro-synthesis of novel nanostructured PEDOT films and their application as catalyst support. 2011. 6(1): p. 364. 11.Jonas, F., W. Krafft, and B. Muys. Poly (3, 4‐ethylenedioxythiophene): Conductive coatings, technical applications and properties. in Macromolecular Symposia. 1995. Wiley Online Library. 12.Kumar, A. and J.R.J.M. Reynolds, Soluble alkyl-substituted poly (ethylenedioxythiophenes) as electrochromic materials. 1996. 29(23): p. 7629-7630. 13.Duan, L., et al., Enzymatic‐catalyzed polymerization of water‐soluble electrically conductive polymer PEDOT: PSS. 2014. 25(8): p. 896-899. 14.Guimard, N.K., N. Gomez, and C.E.J.P.i.p.s. Schmidt, Conducting polymers in biomedical engineering. 2007. 32(8-9): p. 876-921. 15.Sotzing, G.A., et al., Poly [bis (pyrrol-2-yl) arylenes]: conducting polymers from low oxidation potential monomers based on pyrrole via electropolymerization. 1996. 29(5): p. 1679-1684. 16.Jonas, F. and J.J.S.M. Morrison, 3, 4-polyethylenedioxythiophene (PEDT): Conductive coatings technical applications and properties. 1997. 85(1-3): p. 1397-1398. 17.Mariani, F., et al., PEDOT: dye-based, flexible organic electrochemical transistor for highly sensitive pH monitoring. 2018. 10(26): p. 22474-22484. 18.White, H.S., G.P. Kittlesen, and M.S.J.J.o.t.A.C.S. Wrighton, Chemical derivatization of an array of three gold microelectrodes with polypyrrole: fabrication of a molecule-based transistor. 1984. 106(18): p. 5375-5377. 19.Veitch, N.C.J.P., Horseradish peroxidase: a modern view of a classic enzyme. 2004. 65(3): p. 249-259. 20.Haacke, G.J.J.o.A.P., New figure of merit for transparent conductors. 1976. 47(9): p. 4086-4089. 21.Somani, P.R., S.J.M.c. Radhakrishnan, and physics, Electrochromic materials and devices: present and future. 2003. 77(1): p. 117-133. 22.Doyle, W.A., et al., Two substrate interaction sites in lignin peroxidase revealed by site-directed mutagenesis. 1998. 37(43): p. 15097-15105. 23.Folkes, L.K. and L.P.J.F.l. Candeias, Interpretation of the reactivity of peroxidase compounds I and II with phenols by the Marcus equation. 1997. 412(2): p. 305-308. 24.Ruzgas, T., et al., Peroxidase-modified electrodes: fundamentals and application. 1996. 330(2-3): p. 123-138. 25.Barbusiński, K.J.C.-D.-E.-M., Henry John Horstman Fenton-short biography and brief history of Fenton reagent discovery. 2009. 14. 26.Kent, M.S., et al., Assay for lignin breakdown based on lignin films: insights into the Fenton reaction with insoluble lignin. 2015. 17(10): p. 4830-4845. 27.Gawande, M.B., et al., Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics. 2014. 47(4): p. 1338-1348. 28.Polshettiwar, V., M.N. Nadagouda, and R.S.J.A.J.o.C. Varma, Microwave-assisted chemistry: a rapid and sustainable route to synthesis of organics and nanomaterials. 2009. 62(1): p. 16-26. 29.Leadbeater, N.E. and H.M.J.T.J.o.o.c. Torenius, A study of the ionic liquid mediated microwave heating of organic solvents. 2002. 67(9): p. 3145-3148. 30.Hoogenboom, R. and U.S.J.M.R.C. Schubert, Microwave‐assisted polymer synthesis: recent developments in a rapidly expanding field of research. 2007. 28(4): p. 368-386. 31.Zhou, J., et al., The temperature-dependent microstructure of PEDOT/PSS films: insights from morphological, mechanical and electrical analyses. 2014. 2(46): p. 9903-9910. 32.Fan, B., X. Mei, and J.J.M. Ouyang, Significant conductivity enhancement of conductive poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) films by adding anionic surfactants into polymer solution. 2008. 41(16): p. 5971-5973. 33.Sukchol, K., et al., Effects of the addition of anionic surfactant during template polymerization of conducting polymers containing pedot with sulfonated poly (imide) and poly (styrene sulfonate) as templates for nano-thin film applications. 2013. 179: p. 10-17. 34.周光瑩, Establishing an optimum condition for the enzymatic synthesis of conductive PEDOT. 2014. 35.Vitoratos, E., et al., Thermal degradation mechanisms of PEDOT: PSS. 2009. 10(1): p. 61-66. 36.Friedel, B., et al., Effects of layer thickness and annealing of PEDOT: PSS layers in organic photodetectors. 2009. 42(17): p. 6741-6747. 37.黎世偉, Establishing a Two-Step procedure to improve the conductivity of the film made by enzymatically synthesized PEDOT:PSS. 2016.
|