跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/07 01:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林蔚青
研究生(外文):LIN, WEI-CHING
論文名稱:以超解析影像技術觀測端粒長度
論文名稱(外文):Observation of telomere lengths by super-resolution imaging technology
指導教授:張柏齡張柏齡引用關係
指導教授(外文):CHANG, PO-LING
口試委員:曾韋龍黃景帆林伯樵
口試委員(外文):TSENG, WEI-LUNGHUANG, JING-FANGLIN, PO-CHIAO
口試日期:2019-07-10
學位類別:碩士
校院名稱:東海大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:122
中文關鍵詞:端粒長度超解析螢光顯微鏡
外文關鍵詞:Telomere lengthSuper-resolution fluorescence microscopy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
端粒(telomere)是位於染色體末端由重複核酸序列組合而成的 結構,用於維持染色體的完整性,而端粒的長度會隨著細胞分裂或是 環境壓力而逐漸縮短,研究指出端粒長度的變化是導致人體衰老及癌 症產生的重要指針,因此端粒長度變化的測量是癌症預防的重要手段。 近年來報導了許多方法來測量端粒長度,例如末端限制性片段分析 (terminal restriction fragmentation,TRF),定量即時聚合酶連鎖反應 (quantitative real-time polymerase chain reaction,Q-PCR),定量螢光 原位雜合(quantitative fluorescence in situ hybridization,Q-FISH)及 流式細胞螢光原位雜合(flow cytometry and flow fluorescence in situ hybridization,Flow-FISH)等。這些方法都有各自的優點,但卻有一 個共通的弊病──無法測量線性化端粒DNA 的絕對長度,因此本實 驗發展利用超解析影像技術來觀測端粒的絕對長度。目前我們已經成 功將端粒DNA 線性沉積在疏水性玻片表面,透過端粒螢光標記探針 定位測量端粒絕對長度,同時我們也成功分離出單顆細胞DNA 並嘗 試將其完整的線性沉積在玻片上,希望未來能夠在單顆細胞的水平上 測量出細胞端粒長度。
Telomere is the structure composed by repeating nucleic acid sequences at the end of a chromosome, and which to maintain the integrity of the chromosome. The length of the telomere is gradually shortened when the cell divides or the environmental pressure. The study shows that the change of the telomere length is an important indicator of human aging and cancer. Therefore, the measurement of telomere length changes is crucial means of cancer prevention. In recent years, a lot of methods have been reported to measure the length of telomere, such as terminal restriction fragmentation (TRF), quantitative real-time polymerase chain reaction (QPCR), quantitative fluorescein Quantitative fluorescence in situ hybridization (Q-FISH) and flow cytometry and flow fluorescence in situ hybridization (Flow-FISH). All above the mentions, these methods have their own advantages, however, there is a common drawback—the absolute length of linearized telomere DNA cannot be measured. Hence, this experiment develops the techniques of super-resolution image to measure the absolute length of telomeres. We have successfully deposited telomere DNA on the surface of hydrophobic slides and measured the absolute length of telomeres through telomere fluorescent labeled probes at the present time. Simultaneously, we also achieved to isolate the DNA of a single cell and tried to completely deposit it on slides. It is hope that we can measure the telomere lengths at the level of single cell.
目錄
中文摘要 ...................................................................................................................................................I
Abstract ................................................................................................................................................... II
圖目錄 ..................................................................................................................................................... V
第一章 單分子螢光顯微鏡之簡介 ........................................................................................................ 1
1.1 緒論 ............................................................................................................................................... 1
1.2 螢光物理原理 ............................................................................................................................... 3
1.3 雷射掃描共軛焦顯微鏡 ............................................................................................................... 6
1.4 全內反射式螢光顯微鏡 ............................................................................................................... 8
1.5 超解析螢光顯微鏡 ..................................................................................................................... 12
1.5.1 受激放射耗乏顯微鏡技術 .................................................................................................. 12
1.5.2 單分子定位顯微鏡 .............................................................................................................. 18
1.5.2.1 光啟動定位顯微鏡 ...................................................................................................... 20
1.5.2.2 隨機光學重建顯微鏡 .................................................................................................. 23
1.5.2.3 直接隨機光學重建顯微術 .......................................................................................... 27
第二章 端粒之簡介 .............................................................................................................................. 33
2.1 端粒的發現 ................................................................................................................................. 33
2.2 人類端粒結構與功能 ................................................................................................................. 34
2.3 人類端粒結合蛋白 ..................................................................................................................... 37
2.3.1 TRF1 和TRF2 之功能 ........................................................................................................ 38
2.3.2 TIN2 之功能 ........................................................................................................................ 39
2.3.3 TPP1 和POT1 之功能 ........................................................................................................ 40
2.3.4 Rap1 之功能 ........................................................................................................................ 41
2.4 端粒長度維持機制 ..................................................................................................................... 42
2.4.1 端粒酶介導延長機制 ......................................................................................................... 42
2.4.2 端粒替代延長機制 ............................................................................................................. 43
2.5 端粒長度與衰老、癌症之關係.................................................................................................. 43
2.6 端粒長度檢測方法 ..................................................................................................................... 44
2.6.1 末端限制性片段分析 .......................................................................................................... 44
2.6.2 聚合酶連鎖反應法 .............................................................................................................. 46
2.6.3 定量螢光原位雜合 .............................................................................................................. 47
2.6.4 流式細胞螢光原位雜合 ...................................................................................................... 48
第三章 以超解析影像技術觀測端粒長度 .......................................................................................... 50
3.1 研究動機 ..................................................................................................................................... 50
3.2 實驗材料與方法 ......................................................................................................................... 50
3.2.1 實驗試藥 ............................................................................................................................. 50
3.2.2 螢光顯微鏡系統架構 .......................................................................................................... 52
3.2.3 實驗方法 ............................................................................................................................. 57
3.2.3.1 玻片製備 ...................................................................................................................... 57
3.2.3.2 細胞培養 ...................................................................................................................... 58
3.2.3.3 中期細胞染色體製備 .................................................................................................. 58
3.2.3.4 Genomic DNA 萃取 ..................................................................................................... 59
3.2.3.5 液珠蒸發線性沉積DNA ........................................................................................... 60
3.2.3.6 液珠平移線性沉積DNA ........................................................................................... 60
3.2.3.7 以螢光原位雜合法定位染色體端粒 ......................................................................... 60
3.2.3.8 以螢光原位雜合法定位端粒DNA ............................................................................ 62
3.2.3.9 以微米毛細管提取單顆細胞DNA ............................................................................ 64
3.2.3.10 破壞細胞之細胞膜與細胞核膜 ................................................................................ 65
3.2.3.11 以微米毛細管分離單顆細胞 .................................................................................... 65
3.3 結果與討論 ................................................................................................................................. 66
3.3.1 以螢光原位雜合法定位染色體端粒 .................................................................................. 66
3.3.2 比較不同表面修飾玻片影響DNA 線性沉積 ................................................................... 69
3.3.3 比較不同沉積方法影響DNA 線性沉積 ........................................................................... 70
3.3.4 以液珠平移沉積不同濃度λDNA ...................................................................................... 75
3.3.5 以螢光原位雜合法定位端粒DNA .................................................................................... 78
3.3.6 以微米毛細管提取單顆細胞DNA .................................................................................... 84
3.3.7 破壞細胞之細胞膜與細胞核膜 .......................................................................................... 84
3.3.8 以微米毛細管分離單顆細胞 .............................................................................................. 86
3.3.9 單顆細胞DNA 萃取 ........................................................................................................... 89
3.3.10 單顆細胞DNA 片段化 ..................................................................................................... 91
3.3.10.1 高溫剪切法 ................................................................................................................ 92
3.3.10.2 超音波剪切法 ............................................................................................................ 92
3.3.10.3 金屬離子催化剪切法 ................................................................................................ 96
3.3.10.4 限制性內切酶消化法 .............................................................................................. 104
3.4 結論與未來展望 ....................................................................................................................... 107
3.5 參考文獻 ................................................................................................................................... 108

圖目錄
圖1-1 Jablonski 模型 ................................................................................. 5
圖1-2 共軛焦顯微鏡裝置示意圖 ............................................................ 7
圖1-3 螢光顯微鏡照射系統示意圖 ........................................................ 9
圖1-4 光在不同介質之折射與全反射示意圖 ...................................... 10
圖1-5 物質與電磁波相互作用之能階變化示意圖 .............................. 13
圖1-6 受激放射耗乏顯微鏡運作原理示意圖 ...................................... 17
圖1-7 光啟動定位顯微鏡運作原理示意圖 .......................................... 22
圖1-8 Cy5 螢光分子之光轉化示意圖 ................................................ 25
圖1-9 隨機光學重建顯微運作原理示意圖 .......................................... 26
圖1-10 dSTORM 螢光分子光轉換機制 ................................................ 30
圖2-1 端粒結構示意圖 .......................................................................... 35
圖3-1 螢光顯微鏡系統裝置圖 .............................................................. 53
圖3-2 100X 物鏡下之微米尺 ................................................................ 55
圖3-3 100X 物鏡下之λDNA ................................................................. 56
圖3-4 以螢光原位雜合法定位染色體端粒實驗流程圖 ...................... 61
圖3-5 以螢光原位雜合法定位端粒DNA 實驗流程圖 ....................... 63
圖3-6 以螢光原位雜合法定位染色體端粒 .......................................... 67
圖3-7 比較不同表面修飾玻片影響DNA 線性沉積 ........................... 71
圖3-8 以液珠蒸發沉積法拉伸DNA .................................................... 73
圖3-9 於不同表面修飾玻片上觀察液珠接觸角 .................................. 74
圖3-10 以液珠平移法沉積λDNA ........................................................ 76
圖3-11 以液珠平移法沉積不同濃度λDNA ........................................ 77
圖3-12 比較DNA 樣品於EDC 固定前後與Blocking 前後之差異 .. 79
圖3-13 以傳統螢光顯微鏡系統觀測不同長度之端粒DNA .............. 82
圖3-14 比較傳統顯微鏡端粒DNA 影像與dSTORM 超解析端粒DNA
影像之差異 ............................................................................................... 83
圖3-15 嘗試以微米毛細管吸取單顆細胞DNA .................................. 85
圖3-16 破壞細胞之細胞膜與細胞核膜 ................................................ 87
圖3-17 以內徑為50μm 之微米毛細管分離單顆細胞 ......................... 88
圖3-18 單顆細胞DNA 萃取 ................................................................. 90
圖3-19 95℃加熱30 分鐘片段化DNA ................................................. 93
圖3-20 95℃加熱1 小時片段化DNA ................................................... 94
圖3-21 95℃加熱2 小時片段化DNA ................................................... 95
VII
圖3-22 超音波剪切法片段化DNA ...................................................... 97
圖3-23 以1 mM 銅離子催化切割DNA ............................................... 99
圖3-24 以5 mM 銅離子催化切割DNA ............................................. 100
圖3-25 三聯吡啶氯化釕六水合物之吸收圖 ...................................... 101
圖3-26 以1 mM 三聯吡啶釕(II)催化切割DNA ............................... 102
圖3-27 以5 mM 三聯吡啶釕(II)催化切割DNA ............................... 103
圖3-28 以限制性內切酶消化單顆細胞DNA 之TIRF 螢光顯微鏡影像
圖 ............................................................................................................. 106
參考文獻
1. Boettiger, A. N.; Bintu, B.; Moffitt, J. R.; Wang, S.; Beliveau, B. J.; Fudenberg,
G.; Imakaev, M.; Mirny, L. A.; Wu, C. T.; Zhuang, X., Super-resolution imaging
reveals distinct chromatin folding for different epigenetic states. Nature 2016, 529
(7586), 418-22.
2. Wang, W.; Li, G. W.; Chen, C.; Xie, X. S.; Zhuang, X., Chromosome
organization by a nucleoid-associated protein in live bacteria. Science 2011, 333
(6048), 1445-9.
3. Jablonski, A., Efficiency of anti-Stokes fluorescence in dyes. Nature 1933, 131
(3319), 839.
4. Nwaneshiudu, A.; Kuschal, C.; Sakamoto, F. H.; Anderson, R. R.;
Schwarzenberger, K.; Young, R. C., Introduction to confocal microscopy. Journal of
Investigative Dermatology 2012, 132 (12), 1-5.
5. Webb, D. J.; Brown, C. M., Epi-fluorescence microscopy. In Cell Imaging
Techniques, Springer: 2012; pp 29-59.
6. Lin, Y.-Z.; Ou, D.-L.; Chang, H.-Y.; Lin, W.-Y.; Hsu, C.; Chang, P.-L.,
Simultaneous visualization of the subfemtomolar expression of microRNA and
microRNA target gene using HILO microscopy. Chemical Science 2017, 8 (9), 6670-
6678.
7. Fish, K. N., Total internal reflection fluorescence (TIRF) microscopy. Current
protocols in cytometry 2009, 50 (1), 12.18. 1-12.18. 13.
8. Schneckenburger, H., Total internal reflection fluorescence microscopy:
technical innovations and novel applications. Current opinion in biotechnology 2005,
16 (1), 13-18.
9. Hell, S. W., Toward fluorescence nanoscopy. Nat Biotechnol 2003, 21 (11),
1347-55.
10. Hell, S. W., Far-field optical nanoscopy. Science 2007, 316 (5828), 1153-8.
11. Minoshima, M.; Kikuchi, K., Photostable and photoswitching fluorescent dyes
for super-resolution imaging. J Biol Inorg Chem 2017, 22 (5), 639-652.
12. Betzig, E., Proposed method for molecular optical imaging. Optics letters 1995,
20 (3), 237-239.
13. Shimomura, O.; Johnson, F. H.; Saiga, Y., Extraction, purification and properties
of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea.
Journal of cellular and comparative physiology 1962, 59 (3), 223-239.
14. Rust, M. J.; Bates, M.; Zhuang, X., Sub-diffraction-limit imaging by stochastic
optical reconstruction microscopy (STORM). Nature methods 2006, 3 (10), 793.
15. Bates, M.; Blosser, T. R.; Zhuang, X., Short-range spectroscopic ruler based on a
109
single-molecule optical switch. Physical review letters 2005, 94 (10), 108101.
16. Heilemann, M.; Van De Linde, S.; Schüttpelz, M.; Kasper, R.; Seefeldt, B.;
Mukherjee, A.; Tinnefeld, P.; Sauer, M., Subdiffraction‐resolution fluorescence
imaging with conventional fluorescent probes. Angewandte Chemie International
Edition 2008, 47 (33), 6172-6176.
17. Heilemann, M.; van de Linde, S.; Mukherjee, A.; Sauer, M., Super‐resolution
imaging with small organic fluorophores. Angewandte Chemie International Edition
2009, 48 (37), 6903-6908.
18. Fölling, J.; Bossi, M.; Bock, H.; Medda, R.; Wurm, C. A.; Hein, B.; Jakobs, S.;
Eggeling, C.; Hell, S. W., Fluorescence nanoscopy by ground-state depletion and
single-molecule return. Nature methods 2008, 5 (11), 943.
19. Steinhauer, C.; Forthmann, C.; Vogelsang, J.; Tinnefeld, P., Superresolution
microscopy on the basis of engineered dark states. Journal of the American Chemical
Society 2008, 130 (50), 16840-16841.
20. Vogelsang, J.; Cordes, T.; Forthmann, C.; Steinhauer, C.; Tinnefeld, P.,
Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching
and superresolution microscopy. Proceedings of the National Academy of Sciences
2009, 106 (20), 8107-8112.
21. Blackburn, E. H.; Gall, J. G., A tandemly repeated sequence at the termini of the
extrachromosomal ribosomal RNA genes in Tetrahymena. Journal of molecular
biology 1978, 120 (1), 33-53.
22. Szostak, J. W.; Blackburn, E. H., Cloning yeast telomeres on linear plasmid
vectors. Cell 1982, 29 (1), 245-255.
23. Palm, W.; de Lange, T., How shelterin protects mammalian telomeres. Annual
review of genetics 2008, 42, 301-334.
24. Samassekou, O.; Gadji, M.; Drouin, R.; Yan, J., Sizing the ends: normal length of
human telomeres. Annals of Anatomy-Anatomischer Anzeiger 2010, 192 (5), 284-291.
25. Watson, J. D., Origin of concatemeric T7DNA. Nature New Biology 1972, 239
(94), 197-201.
26. Soohoo, C. Y.; Shi, R.; Lee, T. H.; Huang, P.; Lu, K. P.; Zhou, X. Z., Telomerase
inhibitor PinX1 provides a link between TRF1 and telomerase to prevent telomere
elongation. Journal of Biological Chemistry 2011, 286 (5), 3894-3906.
27. Stansel, R. M.; de Lange, T.; Griffith, J. D., T‐loop assembly in vitro involves
binding of TRF2 near the 3′ telomeric overhang. The EMBO journal 2001, 20 (19),
5532-5540.
28. Kim, S.-h.; Beausejour, C.; Davalos, A. R.; Kaminker, P.; Heo, S.-J.; Campisi, J.,
TIN2 mediates functions of TRF2 at human telomeres. Journal of Biological
Chemistry 2004, 279 (42), 43799-43804.
110
29. Frank, A. K.; Tran, D. C.; Qu, R. W.; Stohr, B. A.; Segal, D. J.; Xu, L., The
shelterin TIN2 subunit mediates recruitment of telomerase to telomeres. PLoS
genetics 2015, 11 (7), e1005410.
30. Takai, K. K.; Kibe, T.; Donigian, J. R.; Frescas, D.; De Lange, T., Telomere
protection by TPP1/POT1 requires tethering to TIN2. Molecular cell 2011, 44 (4),
647-659.
31. Wang, F.; Podell, E. R.; Zaug, A. J.; Yang, Y.; Baciu, P.; Cech, T. R.; Lei, M., The
POT1–TPP1 telomere complex is a telomerase processivity factor. Nature 2007, 445
(7127), 506.
32. Baumann, P.; Price, C., Pot1 and telomere maintenance. FEBS letters 2010, 584
(17), 3779-3784.
33. O'Connor, M. S.; Safari, A.; Liu, D.; Qin, J.; Songyang, Z., The human Rap1
protein complex and modulation of telomere length. Journal of Biological Chemistry
2004, 279 (27), 28585-28591.
34. Mason, M.; Schuller, A.; Skordalakes, E., Telomerase structure function. Current
opinion in structural biology 2011, 21 (1), 92-100.
35. Dilley, R. L.; Verma, P.; Cho, N. W.; Winters, H. D.; Wondisford, A. R.;
Greenberg, R. A., Break-induced telomere synthesis underlies alternative telomere
maintenance. Nature 2016, 539 (7627), 54.
36. Zglinicki, T. v.; Martin-Ruiz, C., Telomeres as biomarkers for ageing and agerelated
diseases. Current molecular medicine 2005, 5 (2), 197-203.
37. Hezel, A. F.; Bardeesy, N.; Maser, R. S., Telomere induced senescence: end game
signaling. Current molecular medicine 2005, 5 (2), 145-152.
38. Shay, J. W.; Wright, W. E. In Role of telomeres and telomerase in cancer,
Seminars in cancer biology, Elsevier: 2011; pp 349-353.
39. Shay, J. W.; Zou, Y.; Hiyama, E.; Wright, W. E., Telomerase and cancer. Human
molecular genetics 2001, 10 (7), 677-685.
40. Kimura, M.; Stone, R. C.; Hunt, S. C.; Skurnick, J.; Lu, X.; Cao, X.; Harley, C.
B.; Aviv, A., Measurement of telomere length by the Southern blot analysis of
terminal restriction fragment lengths. Nature protocols 2010, 5 (9), 1596.
41. Cawthon, R. M., Telomere measurement by quantitative PCR. Nucleic acids
research 2002, 30 (10), e47-e47.
42. Cawthon, R. M., Telomere length measurement by a novel monochrome
multiplex quantitative PCR method. Nucleic acids research 2009, 37 (3), e21-e21.
43. O'Callaghan, N. J.; Fenech, M., A quantitative PCR method for measuring
absolute telomere length. Biological procedures online 2011, 13 (1), 3.
44. Slijepcevic, P., Telomere length measurement by Q-FISH. In Chromosome
painting, Springer: 2001; pp 17-22.
111
45. Poon, S. S.; Lansdorp, P. M., Quantitative fluorescence in situ hybridization (QFISH).
Current protocols in cell biology 2001, 12 (1), 18.4. 1-18.4. 21.
46. Baerlocher, G. M.; Vulto, I.; De Jong, G.; Lansdorp, P. M., Flow cytometry and
FISH to measure the average length of telomeres (flow FISH). Nature protocols 2006,
1 (5), 2365.
47. Deen, J.; Sempels, W.; De Dier, R.; Vermant, J.; Dedecker, P.; Hofkens, J.; Neely,
R. K., Combing of genomic DNA from droplets containing picograms of material.
ACS Nano 2015, 9 (1), 809-16.
48. Gross, A.; Schoendube, J.; Zimmermann, S.; Steeb, M.; Zengerle, R.; Koltay, P.,
Technologies for single-cell isolation. International journal of molecular sciences
2015, 16 (8), 16897-16919.
49. Kang, Q.; Parkin, B.; Giraldez, M. D.; Tewari, M., Mutant DNA quantification
by digital PCR can be confounded by heating during DNA fragmentation.
BioTechniques 2016, 60 (4), 175-185.
50. Chiou, S.-H., DNA-and protein-scission activities of ascorbate in the presence of
copper ion and a copper-peptide complex. The Journal of Biochemistry 1983, 94 (4),
1259-1267.
51. Sun, Y.; Joyce, L. E.; Dickson, N. M.; Turro, C., Efficient DNA photocleavage
by [Ru (bpy) 2 (dppn)] 2+ with visible light. Chemical Communications 2010, 46
(14), 2426-2428.
電子全文 電子全文(網際網路公開日期:20240815)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top