|
1.Ibrahim Khan, K.S., Idrees Khan, Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 2017. 2.Rehana, D., A.K. Haleel, and A.K. Rahiman, Hydroxy, carboxylic and amino acid functionalized superparamagnetic iron oxide nanoparticles: Synthesis, characterization and in vitro anti-cancer studies. Journal of Chemical Sciences, 2015. 127(7): p. 1155-1166. 3.Sperling, R.A. and W.J. Parak, Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 2010. 368(1915): p. 1333-1383. 4.Yu, M.K., J. Park, and S. Jon, Targeting Strategies for Multifunctional Nanoparticles in Cancer Imaging and Therapy. Theranostics, 2012. 2(1): p. 3-44. 5.Bartczak, D. and A.G. Kanaras, Preparation of Peptide-Functionalized Gold Nanoparticles Using One Pot EDC/Sulfo-NHS Coupling. Langmuir, 2011. 27(16): p. 10119-10123. 6.Avvakumova, S., et al., Biotechnological approaches toward nanoparticle biofunctionalization. Trends in Biotechnology, 2014. 32(1): p. 11-20. 7.Conde, J., et al., Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Frontiers in Chemistry, 2014. 2. 8.Kurdekar, A.D., et al., Fluorescent silver nanoparticle based highly sensitive immunoassay for early detection of HIV infection. Rsc Advances, 2017. 7(32): p. 19863-19877. 9.Chailyan, A., P. Marcatili, and A. Tramontano, The association of heavy and light chain variable domains in antibodies: implications for antigen specificity. Febs Journal, 2011. 278(16): p. 2858-2866. 10.Mahan, A.E., et al., A method for high-throughput, sensitive analysis of IgG Fc and Fab glycosylation by capillary electrophoresis. Journal of Immunological Methods, 2015. 417: p. 34-44. 11.Sela-Culang, I., V. Kunik, and Y. Ofran, The structural basis of antibody-antigen recognition. Frontiers in Immunology, 2013. 4. 12.Sakamoto, S., et al., Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. J Nat Med, 2018. 72(1): p. 32-42. 13.Abuknesha, R.A., et al., Labeling of biotin antibodies with horseradish peroxidase using cyanuric chloride. Nat Protoc, 2009. 4(4): p. 452-60. 14.Abuknesha, R.A., et al., Efficient labelling of antibodies with horseradish peroxidase using cyanuric chloride. Journal of Immunological Methods, 2005. 306(1-2): p. 211-217. 15.Nayak, S., et al., Point-of-Care Diagnostics: Recent Developments in a Connected Age. Analytical Chemistry, 2017. 89(1): p. 102-123. 16.Xu, J., et al., Family-Based Big Medical-Level Data Acquisition System. Ieee Transactions on Industrial Informatics, 2019. 15(4): p. 2321-2329. 17.Xiaohua Huang, M.A.E.-S., Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. Journal of Advanced Research, 2010. 1(1): p. 13-28. 18.Akbarzadeh, A., M. Samiei, and S. Davaran, Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Research Letters, 2012. 7: p. 1-13. 19.Banerjee, R. and A. Jaiswal, Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases. Analyst, 2018. 143(9): p. 1970-1996. 20.Zhao, L.J., et al., Sensitive detection of protein biomarkers using silver nanoparticles enhanced immunofluorescence assay. Theranostics, 2017. 7(4): p. 876-883. 21.Draz, M.S. and H. Shafiee, Applications of gold nanoparticles in virus detection. Theranostics, 2018. 8(7): p. 1985-2017. 22.Wahajuddin and S. Arora, Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. International Journal of Nanomedicine, 2012. 7: p. 3445-3471. 23.Singamaneni, S., et al., Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications. Journal of Materials Chemistry, 2011. 21(42): p. 16819-16845. 24.Schladt, T.D., et al., Synthesis and bio-functionalization of magnetic nanoparticles for medical diagnosis and treatment. Dalton Transactions, 2011. 40(24): p. 6315-6343. 25.Du, P.F., et al., A Competitive Bio-Barcode Amplification Immunoassay for Small Molecules Based on Nanoparticles. Scientific Reports, 2016. 6. 26.Golberg, A., et al., Cloud-Enabled Microscopy and Droplet Microfluidic Platform for Specific Detection of Escherichia coli in Water. Plos One, 2014. 9(1). 27.Wang, S.F., et al., Electrochemical immunoassay of carcinoembryonic antigen based on a lead sulfide nanoparticle label. Nanotechnology, 2008. 19(43). 28.Shukla, S., et al., Detection of Cronobacter sakazakii in powdered infant formula using an immunoliposome-based immunomagnetic concentration and separation assay. Scientific Reports, 2016. 6. 29.Kim, E.Y., et al., Detection of HIV-1 p24 Gag in plasma by a nanoparticle-based bio-barcode-amplification method. Nanomedicine, 2008. 3(3): p. 293-303. 30.Almstatter, I., et al., Characterization of Magnetic Viral Complexes for Targeted Delivery in Oncology. Theranostics, 2015. 5(7): p. 667-685. 31.Koudelka, K.J., et al., Virus-Based Nanoparticles as Versatile Nanomachines. Annual Review of Virology, Vol 2, 2015. 2: p. 379-401. 32.Lee, A.H.F., et al., Preparation of iron oxide silica particles for Zika viral RNA extraction. Heliyon, 2018. 4(3): p. e00572. 33.Tang, L. and J.J. Cheng, Nonporous silica nanoparticles for nanomedicine application. Nano Today, 2013. 8(3): p. 290-312. 34.Bitar, A., et al., Silica-based nanoparticles for biomedical applications. Drug Discovery Today, 2012. 17(19-20): p. 1147-1154. 35.Ab Rahman, I. and V. Padavettan, Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nanocomposites-A Review. Journal of Nanomaterials, 2012. 36.Kim, J.W., L.U. Kim, and C.K. Kim, Size control of silica nanoparticles and their surface treatment for fabrication of dental nanocomposites. Biomacromolecules, 2007. 8(1): p. 215-222. 37.Bouchoucha, M., et al., Antibody-conjugated mesoporous silica nanoparticles for brain microvessel endothelial cell targeting. Journal of Materials Chemistry B, 2017. 5(37): p. 7721-7735. 38.Narayan, R., et al., Mesoporous Silica Nanoparticles: A Comprehensive Review on Synthesis and Recent Advances. Pharmaceutics, 2018. 10(3). 39.Wu, Y.Y., et al., A novel ratiometric fluorescent immunoassay for human alpha-fetoprotein based on carbon nanodot-doped silica nanoparticles and FITC. Analytical Methods, 2016. 8(27): p. 5398-5406. 40.Qu, W., et al., Folic acid-conjugated mesoporous silica nanoparticles for enhanced therapeutic efficacy of topotecan in retina cancers. International Journal of Nanomedicine, 2018. 13: p. 4379-4389. 41.Wohlfahrt, G., et al., The chemical mechanism of action of glucose oxidase from Aspergillus niger. Molecular and Cellular Biochemistry, 2004. 260(1-2): p. 69-83. 42.Leskovac, V., et al., Glucose oxidase from Aspergillus niger: the mechanism of action with molecular oxygen, quinones, and one-electron acceptors. International Journal of Biochemistry & Cell Biology, 2005. 37(4): p. 731-750. 43.Meyer, M., et al., Aspects of the mechanism of catalysis of glucose oxidase: A docking, molecular mechanics and quantum chemical study. Journal of Computer-Aided Molecular Design, 1998. 12(5): p. 425-440. 44.Bankar, S.B., et al., Glucose oxidase - An overview. Biotechnology Advances, 2009. 27(4): p. 489-501. 45.Hecht, H.J., et al., Crystal-Structure of Glucose-Oxidase from Aspergillus-Niger Refined at 2 .3 Angstrom Resolution. Journal of Molecular Biology, 1993. 229(1): p. 153-172. 46.Wohlfahrt, G., et al., 1.8 and 1.9 angstrom resolution structures of the Penicillium amagasakiense and Aspergillus niger glucose oxidases as a basis for modelling substrate complexes. Acta Crystallographica Section D-Biological Crystallography, 1999. 55: p. 969-977. 47.Zhai, H., et al., Colorimetric and Ratiometric Fluorescence Dual-Mode Sensing of Glucose Based on Carbon Quantum Dots and Potential UV/Fluorescence of o-Diaminobenzene. Sensors, 2019. 19(3). 48.Bohm, A., et al., Covalent Attachment of Enzymes to Paper Fibers for Paper-Based Analytical Devices. Frontiers in Chemistry, 2018. 6. 49.Lee, S.R., et al., Development of a disposable glucose biosensor using electroless-plated Au/Ni/copper low electrical resistance electrodes. Biosensors & Bioelectronics, 2008. 24(3): p. 410-414. 50.La Belle, J.T., et al., Self-monitoring of tear glucose: the development of a tear based glucose sensor as an alternative to self-monitoring of blood glucose. Chemical Communications, 2016. 52(59): p. 9197-9204. 51.Su, D., et al., Magnetic bead-based mimic enzyme-chromogenic substrate and silica nanoparticles signal amplification system for avian influenza A (H7N9) optical immunoassay. Rsc Advances, 2017. 7(67): p. 41989-41999. 52.Nam, J.M., K.J. Jang, and J.T. Groves, Detection of proteins using a colorimetric bio-barcode assay. Nature Protocols, 2007. 2(6): p. 1438-1444. 53.Luo, Y.H., W.C. Dou, and G.Y. Zhao, Rapid electrochemical quantification of Salmonella Pullorum and Salmonella Gallinarum based on glucose oxidase and antibody-modified silica nanoparticles. Analytical and Bioanalytical Chemistry, 2017. 409(17): p. 4139-4147. 54.Liu, L., et al., Nanomaterials-Based Colorimetric Immunoassays. Nanomaterials, 2019. 9(3). 55.Gao, Z.Q., et al., Magnetic Bead-Based Reverse Colorimetric Immunoassay Strategy for Sensing Biomolecules. Analytical Chemistry, 2013. 85(14): p. 6945-6952. 56.Jia, C.P., et al., Nano-ELISA for highly sensitive protein detection. Biosensors & Bioelectronics, 2009. 24(9): p. 2836-2841. 57.Frampton, J.P., et al., Aqueous two-phase system patterning of detection antibody solutions for cross-reaction-free multiplex ELISA. Scientific Reports, 2014. 4. 58.Lahiri, J., et al., A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: A surface plasmon resonance study. Analytical Chemistry, 1999. 71(4): p. 777-790. 59.Medda, L., M. Monduzzi, and A. Salis, The molecular motion of bovine serum albumin under physiological conditions is ion specific. Chemical Communications, 2015. 51(30): p. 6663-6666. 60.Tonigold, M., et al., Pre-adsorption of antibodies enables targeting of nanocarriers despite a biomolecular corona. Nature Nanotechnology, 2018. 13(9): p. 862-+. 61.Puertas, S., et al., Designing novel nano-immunoassays: antibody orientation versus sensitivity. Journal of Physics D-Applied Physics, 2010. 43(47).
|