跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/22 23:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐鄯殷
研究生(外文):HSU, SHAN-YIN
論文名稱:蛋殼鍛燒處理對水溶液中銅離子之吸附能力 及其最適化條件探討
論文名稱(外文):Optimum Condition and Adsorptability of CalcinedEggshell on Copper Ion in Aqueous Solution
指導教授:何若瑄何若瑄引用關係
指導教授(外文):HO, JOU-HSUAN
口試委員:周繼發徐詮亮
口試委員(外文):CHOW, CHI-FAHSU, CHUAN-LIANG
口試日期:2019-06-24
學位類別:碩士
校院名稱:東海大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:145
中文關鍵詞:蛋殼吸附劑銅離子鍛燒蛋殼反應曲面法
外文關鍵詞:EggshellAdsorbentCopper ionCalcined eggshellResponse surface methodology,
相關次數:
  • 被引用被引用:1
  • 點閱點閱:185
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
雞蛋產量在台灣地區相當可觀,廢棄蛋殼的處理方式多為未經任何處理直接掩埋,少部分經過磨碎、乾燥等加工處理後做為動物飼料添加物,使廢棄蛋殼失去副產物再利用的機會。然而,半導體、電鍍、電子工業與其他許多產業往往存在含高量重金屬的廢水產生問題。本研究旨在使用蛋殼副產物與蛋殼鍛燒處理,藉此吸附水溶液中的銅離子,先以一次因子探討反應時間、金屬濃度、吸附劑劑量、溫度與pH;再以反應曲面探討蛋殼副產物與蛋殼鍛燒處理之最適化條件。
一次因子實驗結果,在適當的處理下有最佳吸附率,反應時間24小時、金屬濃度25 mg/L、吸附劑劑量10 mg、溫度25℃,蛋殼與帶膜蛋殼在pH5的吸附率分別為95.2%與90.5%,蛋殼膜在pH5.9的吸附率為73.3%。另將蛋殼分別經700℃ 2, 3及4小時(CES1, CES2, CES3)及900℃ 2, 3及4小時(CES4, CES5, CES6)的鍛燒處理,CES1、CES2與CES3的吸附率皆為99.3%,CES4、CES5與CES6的吸附率皆為100%。反應曲面試驗結果,鍛燒蛋殼對於重金屬的吸附能力遠高未鍛燒組別,其最佳條件為900℃, 2小時鍛燒,吸附反應時間20分鐘後,吸附率可達99.3%。
試驗結果顯示,蛋殼、蛋殼膜、帶膜蛋殼與鍛燒蛋殼皆可應用於工業廢水中銅離子移除之技術。鍛燒蛋殼吸附銅離子能力較未鍛燒蛋殼佳且吸附快速,並在酸性工業廢水有良好中和性,於實際產學應用有便捷與實用性,未來將此技術用於皮蛋工廠之重金屬廢水處理。

The egg production is quite considerable in Taiwan. The disposal methods of discarded eggshell are mostly buried without treatment, and small parts are utilized as animal feed additives by grinding and drying, so that the by-product of eggshell is valueless from industrial perspective. The opportunity of eggshell by-product was due to lots of waste water in pollution of environment from semiconductors, electroplating, electronics industry and other industries. The purpose of this study was to use eggshell by-product and eggshell calcination to adsorb copper ions in aqueous solution. Firstly, the reaction time, metal concentration, and adsorbent dose, temperature and pH were discussed. Afterwards the reaction surface to explore the optimal conditions for eggshell by-product and eggshell calcination treatment.
The results of one-factor-at-a-time experiment showed that the optimal adsorption rate under the appropriate treatment, adsorbent dose, metal concentration, and temperature were 24 hours, 25 mg/L, 10 mg, and 25 ℃, respectively. In addition, the pH effect in adsorption rates of ES and ESWM were detected at pH 5 and pH 5.9, and 95.2%, 90.5%, and 73.3% were found. Further, eggshell after calcination was burned at 700 ° C for 2, 3, 4 hours (CES1, CES2, CES3) and 900 ° C for 2, 3, and 4 hours (CES4, CES5, CES6), the adsorption rate of CES1, CES2 and CES3 were 99.3%, CES4, CES5 and CES6 adsorption rate were 100%. The reaction surface experiment showed the best adsorption rate under proper treatment. The rate is up to 99.3% after 900 °C for 2 hours calcined and 20 minutes reaction time.
The results showed that eggshells, eggshell membranes, eggshell with membrane and calcined eggshells can apply in the removal of copper ions from industrial wastewater. The adsorption capacity of the calcined eggshell is better than non- calcined-eggshell and has good neutrality in the acidic industrial wastewater. Therefore, it is convenient and practical for practical production and application. In the future, this technology will be applied to the treatment of heavy metal wastewater in preserved egg factories.

摘要 4
壹、前言 8
貳、文獻回顧 10
一、銅汙染 10
二、蛋的結構 13
三、蛋殼 16
四、蛋殼膜 20
五、鍛燒蛋殼 22
六、吸附劑 26
七、常見的吸附劑 27
八、反應曲面法 32
參、材料與方法 36
一、實驗架構 36
二、實驗材料 39
三、實驗藥品 39
四、儀器設備 39
五、樣品製備 40
六、吸附銅離子 41
(一)硫酸銅標準曲線 41
(二)反應時間試驗 41
(三)金屬濃度試驗 42
(四)吸附劑劑量試驗 42
(五)溫度試驗 43
(六)pH試驗 43
七、反應曲面之實驗設計 44
八、統計分析 44
肆、結果討論 45
一、反應時間 45
二、金屬濃度 47
三、吸附劑劑量 49
四、溫度 50
五、pH 50
六、不同溫度鍛燒之蛋殼 58
七、反應曲面法之最適化條件 80
(一)蛋殼 80
(二)蛋殼膜 93
(三)帶膜蛋殼 105
(四)鍛燒蛋殼 117
伍、結論 129
陸、參考文獻 131

郭思吟。2008。蛋殼廢棄物吸附水溶液中重金屬之能力。東海大學畜產與生物科技學系。台中。台灣。
王慧雯。2012。蛋殼與蛋殼膜對水溶液中鎳與銀之吸附能力。東海大學畜產與生物科技學系。台中。台灣。
張凱婷。2014。廢棄蛋殼與鍛燒蛋殼對水溶液中銀與鎳之吸附能力。東海大學系產與生物科技學系。台中。台灣。
郭盈吟。2014。微波輔助萃取北蟲草機能性成分之最適化條件。東海大學食品科學系碩士論文。台中。台灣。
呂仲雯。2018。金頂側耳麥角硫因微波及超音波輔助萃取最適化條件探討及抗氧化性質與純化。東海大學食品科學系碩士論文。台中。台灣。
張 勝 善。 1986 。 蛋 品 加 工 學。 華 香 園 出 版 社 。
行政院農業委員會。2017。畜產品生產量值統計。https://agrstat.coa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx
經濟部工業局。2017。歷年營運中工廠家數。https://www.moeaidb.gov.tw/RDownLoad/DownLoad.jsp

環保署。2017。廢汙水產生量與排放量。http://statis91.epa.gov.tw/epa/stmain.jsp?sys=210&kind=21&type=1&funid=11042&rdm=iil77hIN
環保署。2019。全國環境水質監測資訊網。https://wq.epa.gov.tw/Code/Business/Statutory.aspx
環保署。2017。全國環境水質監測資訊網。https://wq.epa.gov.tw/Code/Business/Statutory.aspx?Tabs=3
環保署。2016。全國環境水質監測資訊網。https://wq.epa.gov.tw/Code/Business/Statutory.aspx
Ahmad, M., Adel, R. A. U., Lee, S. S., Kim, S. C., & Joo, J. H. (2012). Eggshell and coral wastes as low cost sorbents for the removal of Pd2+,Cd2+ and Cu2+ from aqueous solutions. Journal of Industrial and Engineering Chemistry 18,198-204.
Ahmad, R., Kumar, R., & Haseeb, S. (2012). Adsorption of Cu2+ from aqueous solution onto iron oxide coated eggshell powder: Evaluation of equilibrium,isotherms,kinetics,and regeneration capacity. Arabian Journal of Chemistry 5,353-359.
Anantha, R. K., & Kota, S. (2018). Bio-composites for the sorption of copper from aqueous solution: A comparative study. Groundwater for Sustainable Development 7,265-276.
Animesh, A., & Puneet, K. G. (2014). Removal of Cu & Fe from aqueous solution by using eggshell powder as low cost adsorbent. Advances in Applied Science Research 5(2),75-79.
Anirudhan, T. S., & Sreekumari, S. S. (2011) Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons. Journal of Environmental Sciences 23(12), 1989-1998.
Arami, M., Limaee, N. Y., Mahmoodi, N. M., & Tabrizi, N. S. (2005). Removal of dyes from colored textiles wastewater by orange peel adsorbent: Equilibrium and kinetic studies. Journal of Colloid and Interface Science 288, 371-376.
Balázˇ, M. (2014) Eggshell membrane biomaterial as a platform for applications in materials science. Acta Biomaterialia 10, 3827–3843.
Balázˇ, M., Ficeriova, J., & Briancin, j. (2016). Influence of milling on the adsorption ability of eggshell waste. Chemosphere 146, 458-471.
Barakat, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4(4), 361-377.
Bharti , A., Sharma, Dr. AK., Sharma, & Dr. S. (2017). Removal of copper from aqueous solution by using low cost adsorbent: A review. International Journal of Advanced Science and Research. 2(5),90-92
Bjerregaard, P., Andersen, C. B. I., & Andersen, A. O. (2015). Ecotoxicology of Metals—Sources, Transport, and Effects on the Ecosystem. Handbook on the Toxicology of Metals 4E. 425-455.
Cervera, L., Arnal, C. M., & Guardia, M. D. L. (2003). Removal of heavy metals by using adsorption on alumina or chitosan. Anal Bioanal Chem. 375, 820-825.
Carol, T., Tsung, N., & Horvitz, H. R. (1983). Egg-laying defective mutants of the nematode caenorhabditis elegans. Genetics 104, 619-647.
Carvalho, J., Ribeiro, A., Graça, A., Araújo, j., Vilarinho, J., & Castro, F. (2011). Adsorption process onto an innovative eggshell-derived low –cost adsorbent in simulated effluent and real industrial effluents. wastes: solutions, treatments and opportunities.
Chandrasekaran, S., Ramanathan, S., & Basak, T. (2013). Microwave food processing-A review. Food Research International 52, 243-261.
Chattoraj, S., Mondal, N. K., Das, B., Roy, P., & Sadhukhan, B. (2014). Carbaryl removal from aqueous solution by Lemna major biomass using response surface methodology and artificial neural network. Journal of Environmental Chemical Engineering. 2,1920-1928.
Chen, L. H., Li, X. Y., Rooke, J. C., Zhang, Y. H., Yang, X. Y., Tang, Y., Xiao, F. S., & Su, B. L. (2012). Hierarchically structured zeolites: synthesis, mass transport properties and applications. Journal of Materials Chemistry. 22,17381
Chiu, W. Z., & Wei, H. W. (2011) Optimization of the thermal conditions for processing hatchery waste eggs as meal for feed. Department of Animal Science and Technology. 90, 1080-1087.
Cho, H., Oh, D., & Kim, K. (2005). A study on removal characteristics of heavy metals from aqueous solution by fly ash. J Hazard Mater, 127(1-3), 187-195.
Cho, Y. B., & Seo, G. (2010). High activity of acid-treated quail eggshell catalysts in the transesterification of palm oil with methanol. Bioresour Technol, 101(22), 8515-8519.
Correia, L. M., Saboya, R. M. A., Campelo, N. S., Cecilia, J. A., Castellón, E. R., & Jr, C. L. C. (2014). Characterization of calcium oxide catalysts from natural sources and their application in the transesterification of sunflower oil. Bioresource Technology. 151, 207-213.
Cutillas-Barreiro, L., Ansias-Manso, L., Fernandez-Calvi~no, D., Arias-Estevez, M., Novoa-Mu~noz, J. C., Fernandez-Sanjurjo, M. J., Alvarez-Rodríguez, E., & Nú~nez-Delgado, A. (2014). Pine bark as bio-adsorbent for Cd, Cu, Ni, Pb and Zn: Batch-type and stirred flow chamber experiments. Journal of Environmental Management. 144, 258-264.
Dutta, S. K.., & Subrahmanyam, A. V. (1969). Hall Effect, Magnetic Resistivity, and Magnetic Susceptibility of Nickel and Nickel-Copper Alloys. Physical review. 177(3), 1133-1138.
Dahiya, S., Tripathi, R. M., & Hegde, A. G. (2008). Biosorption of heavy metals and radionuclide from aqueous solutions by pre-treated arca shell biomass. J Hazard Mater, 150(2), 376-386.
De Angelis, G., Medeghini, L., Conte, A. M., & Mignardi, M. (2017). Recycling of eggshell waste into low-cost adsorbent for Ni removal from wastewater. Journal of Cleaner Production. 164, 1497-1506.
Djemmoe, L. G., Njanja, T. E., Deussi, M. C. N., & Tonle, K. I. (2016). Assessment of copper(II) biosorption from aqueous solution by agricultural and industrial residues. Comptes Rendus Chimie. 1-9.
Dong, D., Wu, Y., Zhang, X., Yao, J., Huang, Y., Li, D., & Li, C. Z. (2010). Eggshell membrane-templated synthesis of highly crystalline perovskite ceramics for solid oxide fuel cells. Journal of Materials Chemistry.
Ekinci, E., Budinova, T., Yardim, F., Petrov, N., Razvigorova, M., & Minkova, V. (2002). Removal of mercury ion from aqueous solution by activated carbons obtained from biomass and coals. Fuel Processing Technology. 77-78,437-443.
Eletta, O. A. A., Ajayi, O. A., Ogunleye, O. O., & Akpan, I. C. (2016). Adsorption of cyanide from aqueous solution using calcinated eggshells: Equilibrium and optimisation studies. Journal of Environmental Chemical Engineering, 4(1), 1367-1375.
El-Kafrawy, A. F., El-Saeed, S. M., Farag, R. K., El-Saied, H. A. A., & Abdel-Raouf, M. E. S. (2017). Adsorbents based on natural polymers for removal of some heavy metals from aqueous solution. Egyptian Journal of Petroleum. 26, 23-32.
Feng, S., Cheng, S., Yuan, Z., Leitch, & M., Xu, C. (2013). Valorization of bark for chemicals and materials: A review. Renewable and Sustainable Energy Reviews. 26, 560-578.
Freitas, O., Delerue-Matos, C., & Boaventura, R. (2009). Optimization of Cu(II) biosorption onto Ascophyllum nodosum by factorial design methodology. Journal of Hazardous Materials. 167, 449-454.
Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. J Environ Manage, 92(3), 407-418.
Gamby, j., Taberna, P. L., Simon, P., Fauvarque, J. F., & Chesneau, M. (2001). Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. Journal of Power Sources. 101, 109-116.
Gatica, J. M., & Vidal, H. (2010). Non-cordierite clay-based structured materials for environmental applications. J Hazard Mater, 181(1-3), 9-18.
Gautam, R. K., Mudhoo, A., Lofrano, G., & Chattopadhyaya, M. C. (2014). Biomass-derived biosorbents for metal ions sequestration: Adsorbent modification and activation methods and adsorbent regeneration. Journal of Environmental Chemical Engineering. 2, 239-259.
Gholam, H. F., Behnam, H., Mojtaba, K., & Ali, S. (2013). Using Eggshell Membrane as Nerve Guide Channels in Peripheral Nerve Regeneration. Iranian Journal of Basic Medical Sciences.
Guo, X., Zhang, S., & Shan, X. Q. (2008). Adsorption of metal ions on lignin. J Hazard Mater, 151(1), 134-142.
Guru, P. S., & Dash, S. (2014). Sorption on eggshell waste—A review on ultrastructure, biomineralization and other applications. Advances in Colloid and Interface Science. 209,49-67.
Harikishore Kumar Reddy, D., Vijayaraghavan, K., Kim, J. A., & Yun, Y. S. (2017). Valorisation of post-sorption materials: Opportunities, strategies, and challenges. Advances in Colloid and Interface Science. 242,35-58.
Ho, J. H., Yeh, Y. N., Wang, H. W., Khoo, S. K., Chen, Y. H., & Chow, C. F. (2014). Removal of Nickel and Silver Ions Using Eggshells with Membrane, Eggshell Membrane, and Eggshells. Food Science and Technology Research, 20(2), 337-343.
Hsieh, S., Chou, H. H., Hsieh, C. W., Wu, D. C., Kuo, C. H., & Lin, F. H. (2013). Hydrogen peroxide treatment of eggshell membrane to control porosity. Food Chemistry. 141, 2117-2121.
Jeon, C. (2011). Removal of copper ion using rice hulls. Journal of Industrial and Engineering Chemistry. 17, 517-520.
Jianwei, W. H., Chen, J., Berti, W. R., & Cunningham, S. D. (1997). Phytoremediation of Lead-Contaminated Soils: Role of Synthetic Chelates in Lead Phytoextraction. Environmental Biotechnology. 31, 800-805.
Yang, M. J., Yang, X. E., & Römheld, R. (2002).Growth and nutrient composition of elsholtzia splendens nakai under copper toxicity. Journal of Plant Nutrition. 25(7), 1359-1375.
Köse, T. E., & Kıvanç, B. (2011). Adsorption of phosphate from aqueous solutions using calcined waste eggshell. Chemical Engineering Journal, 178, 34-39.
Kalmykova, Y., Str¨omvall, A. M., & Steenari, B. M. (2008). Adsorption of Cd, Cu, Ni, Pb and Zn on Sphagnum peat from solutions with low metal concentrations. Journal of Hazardous Materials. 152,885-891.
Karimifard, S., & Moghaddam, M. R. A. (2018). Application of response surface methodology in physicochemical removal of dyes fromwastewater: A critical review. Science of the Total Environment. 640-641, 772-797.
Kwon, T. N., & Jeon, C. (2012). Selective adsorption for indium(III) from industrial wastewater using chemically modified sawdust. Journal of Chemistry Engineering 29(12), 1730-1734.
Kyozo, S., Yoshitaka, F., & Yoshiaki, U. (1994). A New Biomaterial, Hen Egg Shell Membrane, to Eliminate Heavy Metal ion from Their Dilute Waste Solution. Applied Biochemistry and Biotechnology. 45-46, 871-879.
Laca, A., Laca, A., & Díaz, M. (2017). Eggshell waste as catalyst: A review. Journal of Environmental Management. 197, 351-359.
Li, J., Ng, D. H. L., Ma, R., Zuo, M., & Song, P. (2017). Eggshell membrane-derived MgFe2O4 for pharmaceutical antibiotics removal and recovery from water.
Martin-Dupont, M., Gloaguen, V., Granet, R., & Guilloton, M. (2011). Heavy metal adsorption by crude coniferous barks: a modelling study. Journal of Environmental Science and Health. 37(6), 1063-1073.
Maruyama, T., Terashima, Y., Takeda, S., Okazaki, F., & Goto, F. (2014). Selective adsorption and recovery of precious metal ions using protein-rich biomass as efficient adsorbents. Process Biochemistry. 49, 850-857.
Mayes, S. D., Calhoun, S. L., Aggarwal, R., Baker, C., Mathapati, S., Molitoris, S., & Mayes, R. D. (2013). Unusual fears in children with autism. Research in Autism Spectrum Disorders. 7, 151-158.
Mezenner, N. Y., & Bensmaili, A. (2009). Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste. Journal of Chemical Engineering. 147, 87-96.
Mittal, A., Teotia, M., Soni, R. K., & Mittal, J. (2016). Applications of egg shell and egg shell membrane as adsorbents: Areview. Journal of Molecular Liquids. 223, 376-387.
Mor, S., Chhoden, K., & Ravindra, K. (2016). Application of agro-waste rice husk ash for the removal of phosphate from the wastewater. Journal of Cleaner Production. 129, 673-680.
Navajas, A., Issariyakul, T., Arzamendi, G., Gandía, L. M., & Dalai, A. K. (2013). Development of eggshell derived catalyst for transesterification of used cooking oil for biodiesel production. Asia-Pacific Journal of Chemical Engineering, 8(5), 742-748.
Niju, S., Meera, K. M., Begum, S., & Anantharaman, N. (2014). Modification of egg shell and its application in biodiesel production. Journal of Saudi Chemical Society. 18, 702-706.
Oliveira, D. A., Benelli, P., & Amante, E. R. (2013). A literature review on adding value to solid residues: egg shells. Journal of Cleaner Production, 46, 42-47.
Park, H. J., Jeong, S. W., Yang, J. K., Kim, B. G., & Lee, S. M. (2007). Removal of heavy metals using waste eggshell. Journal of Environmental Sciences. 19, 1436-1441.
Pettinato, M., Chakraborty, S., Arafat, H. A., & Calabro', V. (2015). Eggshell: A green adsorbent for heavy metal removal in an MBR system. Ecotoxicology and Environmental Safety. 121, 57-62.
Plattes, M., Bertrand, A., Schmitt, B., Sinner, J., Verstraeten, F., & Welfring, J. (2007). Removal of tungsten oxyanions from industrial wastewater by precipitation, coagulation and flocculation processes. Journal of Hazardous Materials. 148, 613-615.
Polat, H., & Erdogan, D. (2007). Heavy metal removal from waste waters by ion flotation. Journal of Hazardous Materials. 148, 267-273.
Prabakaran, K., & Rajeswari, S. (2009). Spectroscopic investigations on the synthesis of nano-hydroxyapatite from calcined eggshell by hydrothermal method using cationic surfactant as template. Spectrochim Acta A Mol Biomol Spectrosc, 74(5), 1127-1134.
Quina, M. J., Soares, M. A. R., & Quinta-Ferreira, R. (2017). Applications of industrial eggshell as a valuable anthropogenic resource. Resources, Conservation and Recycling. 123, 176-186.
Stott, R., Jenkins, T., Bahgat, M., & Shalaby, I. (1999). Capacity of constructed wetlands to remove parasite eggs from wastewaters in egypt. Waf. ScI Tech. 40(3), 117-123.
Somashekar, D., & Joseph, R. (1996). Chitosanases-properties and application:A review. Bioresource Technology. 55, 35-45.
Simons, P. C. M. (1971). Ultrastructure of the hen eggshell and its physiological interpretation. Centre for Agricultural Publishing and Documentation Wageningen.
Sardella, F., Gimenez, M., Navas, C., Morandi, C., Deiana, C., & Sapag, K. (2015). Conversion of viticultural industry wastes into activated carbons for removal of lead and cadmium. Journal of Environmental Chemical Engineering. 3, 253-260.
Shaheen, S. M., Eissa, F. I., Ghanem, K. M., Gamal El-Din, H. M., & Al Anany, F. S. (2013). Heavy metals removal from aqueous solutions and wastewaters by using various byproducts. Journal of Environmental Management. 128, 514-521.
Sharma, Y. C., Singh, B., & Korstad, J. (2010). Application of an Efficient Nonconventional Heterogeneous Catalyst for Biodiesel Synthesis from Pongamia pinnata Oil. American Chemical Society.
Shin-ichi, I., Kyozo, S., Keizo, A., & Makoto, I. (2002). Uptake and recovery of gold ions from electroplating wastes using eggshell membrane. Bioresource Technology. 81, 201-206.
Sudha Rani, K., Srinivas, B., Gouru Naidu, K., & Ramesh, K. V. (2018). Removal of copper by adsorption on treated laterite. Proceedings. 5,463-469.
Sun, Y., Yang, G., & Zhang, L. (2018). Hybrid adsorbent prepared from renewable lignin and waste egg shell for SO2 removal: Characterization and process optimization. Ecological Engineering. 115, 139-148.
Susan, E. B., Trudy, J. O., Bricka, R. M., & Adrian, D. D. (1999). A review of potentially low-cost sorbents for heavy metals. Wat. Res. 33(11), 2469-2479.
Tangboriboon, N., Wongkasemjit, S., Kunanuruksapong, R., & Sirivat, A. (2010). An Innovative Synthesis of Calcium Zeolite Type A Catalysts from Eggshells via the Sol–Gel Process. Journal of Inorganic and Organometallic Polymers and Materials, 21(1), 50-60.
Tony, C. Y., & Robert, R. Z. (1984). Absorption of Metals by Natural Polymers Generated from Seafood Processing Wastes. Ind. Eng. Chem. 23, 168-172.
Tovar-Gómez, R., Rivera-Ramírez, D. A., Hernández-Montoya, D., Bonilla-Petriciolet, A., Durán-Valle, C. J., & Montes-Morán, M.A. (2012). Synergic adsorption in the simultaneous removal of acid blue 25 and heavy metals from water using a Ca(PO3)2-modified carbon. Journal of Hazardous Materials. 199-200, 290-300.
Tsai, W. T., Hsien, K. J., Hsu, H. C., Lin, C. M., Lin, K. Y., & Chiu, C. H. (2008). Utilization of ground eggshell waste as an adsorbent for the removal of dyes from aqueous solution. Bioresource Technology. 99, 1623-1629.
Tsai, W. T., Yang, J. M., Lai, C. W., Cheng, Y. H., Lin, C. C., & Yeh, C. W. (2006). Characterization and adsorption properties of eggshells and eggshell membrane. Bioresour Technol, 97(3), 488-493.
Tshizanga, N., Aransiola, E. F., & Oyekola, O. (2017). Optimisation of biodiesel production from waste vegetable oil and eggshell ash. south african journal of chemical engineering. 23, 145-156.
Vadehra, D. V., Hasiak, R. J.. & Baker, R. C. (1970). IPID composition of egg exteriors of chicken (gallus gallus). Comp. Biochem. Physiol. 37, 429-435.
Veli, S., & Aly¨uz, B. (2007). Adsorption of copper and zinc from aqueous solutions by using natural clay. Journal of Hazardous Materials. 149, 226-233.
Vieira, M. G. A., Almeida Neto, A. F. D., Silva, M. G. C. D., Carneiro, C. N., & Melo Filho, A. A. (2014). Adsorption of lead and copper ions from aqueous effluents on rice husk ash in a dynamic system. Brazilian Journal of Chemical Engineering. 31(2), 519-529.
Vijayaraghavan, K., Palanivelu, K., & Velan, M. (2006). Biosorption of copper(II) and cobalt(II) from aqueous solutions by crab shell particles. Bioresource Technology. 97, 1411-1419.
Witek-Krowiak, A., Podstawczyk, D., Chojnacka, K., & Sadowski, Z. (2014). Biosorption of malachite green by eggshells: Mechanism identification and process optimization. Bioresource Technology. 160, 161-165.
Wei, Z., Xu, C., & Li, B. (2009). Application of waste eggshell as low-cost solid catalyst for biodiesel production. Bioresour Technology Research, 100(11), 2883-2885.
Wu, Q., Chen, J., Clark, M., & Yu, Y. (2014). Adsorption of copper to different biogenic oyster shell structures. Applied Surface Science.
Yasushi, T., & Hironori, A. (1990). Removal of coexisting Pb2+,Cu2+and Cd2+ ions from water by addition of hydroxyapatite powder. Journal of chemical engineering of japan. 23(1), 75-80
Yeni, F., Odaci, D., & Timur, S. (2008). Use of Eggshell Membrane as an Immobilization Platform in Microbial Sensing. 2744-2758.
Yi, F., Guo, Z. X., Zhang, L. X., Yu, J., & Li, Q. (2004). Soluble eggshell membrane protein: preparation, characterization and biocompatibility. Biomaterials. 25, 4591-4599.
Zhang, T., Tu, Z., Lu, G., Duan, X., Yi, Y., Guo, C., & Dang, Z. (2017). Removal of heavy metals from acid mine drainage using chicken eggshells in column mode. Journal of Environmental Management. 188, 1-8.
Zhang, T., Zhou1, L. P., Guo, X. Q., Cai, L. X., & Sun, Q. F. (2017). Adaptive self-assembly and induced-fit transformations of anion-binding metal-organic macrocycles. Nature communications.
Zheng, W., Li, X. M., Yang, Q., Zeng, G. M., Shen, X. X., Zhang, Y., & Liu, J. J. (2007). Adsorption of Cd(II) and Cu(II) from aqueous solution by carbonate hydroxylapatite derived from eggshell waste. J Hazard Mater, 147(1-2), 534-539.
Zhu, L. P., Wang, J. P., Ding, X. M., Bai, S. P., Zeng, Q. F., Su, Z. W., Xuan, Y., & Zhang, K. Y. (2018). Effects of dietary rapeseed meal on laying performance, egg quality, apparent metabolic energy, and nutrient digestibility in laying hens. Livestock Science. 214, 265-271.

電子全文 電子全文(網際網路公開日期:20240803)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top