跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2025/01/25 18:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許廷睿
研究生(外文):SYU,TING-RUEI
論文名稱:影響消費者對行動支付系統使用意圖之研究
論文名稱(外文):Influential factors on consumers' usage intention of mobile payment system
指導教授:吳金山吳金山引用關係
指導教授(外文):WU, CHIN-SHAN
口試委員:鄭菲菲吳金山張榮庭
口試委員(外文):CHENG, FEI-FEIWU, CHIN-SHANCHANG, JUNG-TING
口試日期:2019-07-16
學位類別:碩士
校院名稱:東海大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:65
中文關鍵詞:行動支付IS持續使用模式創新抗拒理論
外文關鍵詞:Mobile PaymentIS Continuance Intention ModelInnovation Resistance Theory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:309
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:1
近年來資訊科技蓬勃發展,人們在生活周邊講求便利性,從原本現金交易到現今的行動支付交易方式。政府與業者也不時啟動推廣活動,但終究成效不彰。因此,找出影響消費者採用行動支付系統之意圖,是重要的議題。本研究納入創新抗拒理論、期望確認理論,進行探討使用者期望使用行動支付以及使用行動支付之意願。
本研究對象為有使用過行動支付之使用者,透過網際網路進行問卷發放,共回收586份有效問卷,以統計軟體進行分析,其結果顯示,期望使用行動支付、行動支付易用性與有用性會正向影響行動支付滿意度,行動支付滿意度會負向影響創新抗拒阻礙,行動支付滿意度會正向影響行動支付之使用意願以及創新抗拒阻礙會負向影響行動支付之使用意願。

In recent years, information technology has flourished, and people have sought convenience in their lives, from the original cash transaction to the current mobile payment transaction method. Governments and operators have started promotion activities from time to time, but in the end they have not achieved much.
This study is for users who have used mobile payment, and distributed questionnaires through the Internet. A total of 586 valid questionnaires were collected and analyzed by statistical software. The results showed that it is expected to use action payment, action payment ease of use and useful. Sexuality will positively affect the satisfaction of action payment, and the satisfaction of action payment will negatively affect the resistance of innovation. The satisfaction of action payment will positively affect the willingness to use the action payment and the willingness of the innovation to resist the willingness to negatively affect the action payment.

目次
論文摘要 I
目次 III
圖次 V
表次 VI
第一章 緒論1
第一節 研究背景與動機1
第二節 研究目的 2
第三節 研究對象與範圍2
第四節 研究流程 2
第二章 文獻探討 4
第一節 行動支付 4
第二節 科技接受模型20
第三節 IS持續使用模式25
第四節 創新抗拒理論27
第三章 研究方法 31
第一節 研究架構 31
第二節 研究假說 32
第三節 衡量問項與操作型定義34
第四節 問卷設計與問卷對象41
第五節 資料分析與方法41
第四章 分析資料與結果44
第一節 描述樣本敘述性統計44
第二節 信度與效度分析50
第三節 區別效度 53
第四節 結構方程模型分析與假說驗證55
第五章 結論與建議57
第一節 結論57
第二節 研究建議 59
第三節 研究限制 59
參考文獻 60


參考文獻
中文部分
1.T客邦(2015),行動支付大補帖,一次就讓你看懂,科技新報,http://technews.tw/2015/05/06/nfc-smart-phone/,2019/02/02。
2.Wendy(2017),分享次數一次看懂行動支付:什麼是遠端支付、近端支付?國內有哪些方案?,T客邦,https://www.techbang.com/posts/23218-a-read-operation-pay-basic-concepts-solutions-graphic-all-set-pchome231-touch-the-future-author-zhang-yajun,2019/03/03。
3.小丰子(2016),淺談HCE、TSM、Apple Pay行動支付,電腦王阿達,https://www.kocpc.com.tw/archives/122272,2019/02/03。
4.吳亞馨、朱素玥、方文昌(2008年01月),網路購物信任與科技接受模式之實證研究,資訊管理學報,第十五卷,第一期,第123-152頁。
5.金融監督管理委員會,金融科技發展策略白皮書,線上資料,金融監督管理委員會,https://www.fsc.gov.tw/ch/home.jsp?id=517&parentpath=0,7,478,2019/01/17。
6.翁世吉、田育任(2014),〈「行動商務」支付應用發展趨勢〉,《財金資訊季刊》,第七十八期,線上資料,財金資訊股份有限公司,www.fisc.com.tw,2019/01/17。
7.資策會(2018),【行動支付大調查一】近四成手機用戶曾使用行動支付 LINE Pay、Apple Pay認知度最高,資策會產業情報研究所,https://mic.iii.org.tw/IndustryObservations_PressRelease02.aspx?sqno=486,2019/02/02。
8.資策會(2019),【行動支付大調查】消費者愛好排名變動本土業者成長幅度最大,資策會產業情報研究所,https://mic.iii.org.tw/IndustryObservations_PressRelease02.aspx?sqno=504,2019/02/01。
9.資策會(2019),行動支付用戶 26歲至35歲成長幅度最大,資策會產業情報研究所,https://mic.iii.org.tw/IndustryObservations_PressRelease02.aspx?sqno=519,2019/08/09。
10.維基百科(2019),QR碼,https://zh.wikipedia.org/wiki/QR%E7%A2%BC,2019/03/03。
11.劉胖胖(2014),圖解NFC行動支付與相關生態系 並比較TSM、HCE間的差異,手機王,https://www.sogi.com.tw/articles/%E5%9C%96%E8%A7%A3NFC%E8%A1%8C%E5%8B%95%E6%94%AF%E4%BB%98%E8%88%87%E7%9B%B8%E9%97%9C%E7%94%9F%E6%85%8B%E7%B3%BB_%E4%B8%A6%E6%AF%94%E8%BC%83TSM_HCE%E9%96%93%E7%9A%84%E5%B7%AE%E7%95%B0/6235614,2019/02/02。
12.雙寶娘(2016),在中國,身無分文的行動支付極為方便,卻影響了孩子的金錢觀,天下雜誌,https://crossing.cw.com.tw/blogTopic.action?id=656&nid=6620,2019/08/09。
英文部分
1.Ajzen, I. (1985). From intentions to actions: A theory of planned behavior, New York: Springer.
2.Ajzen, I. (1991). The theory of planned behavior, Organizational behavior and human decision processes, 50(2), 179-211.
3.Ajzen, I. (2002). Constructing a TPB questionnaire: Conceptual and methodological considerations.
4.Alryalat, M. A. A., Rana, N. P., & Dwivedi, Y. K. (2015). Citizen's adoption of an E-Government system: Validating the extended theory of reasoned action (TRA), International Journal of Electronic Government Research, 11(4), 1-23.
5.Anderson, R. E., & Srinivasan, S. S. (2003). E-satisfaction and e-loyalty: A contingency framework, Psychology & Marketing, 20(2), 123-138.
6.Bhattacherjee, A. (2001). Understanding information systems continuance: an expectation-confirmation model, MIS quarterly, 25(3)351-370.
7.Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests Psychometrika, 16(3),297-334.
8.Davidow, M. (2000). The Bottom Line Impact of Organizational Responses to Customer Complaints, Journal of Hospitality & Tourism Research, 24(4), 473-490.
9.Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology, MIS quarterly, 13(3), 319-340.
10.Devaraj, S., Fan, M., & Kohli, R. (2002). Antecedents of B2C Channel Satisfaction and Preference: Validating e-Commerce Metrics, Information Systems Research, 13(3), 316-333.
11.Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research, MA:Addison-Wesley.
12.Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in online shopping: an integrated model, MIS quarterly, 27(1), 51-90.
13.Heidenreich, S., & Handrich, M. (2015). What about passive innovation resistance? Investigating adoption‐related behavior from a resistance perspective, Journal of Product Innovation Management, 32(6), 878-903.
14.Karahanna, E., Straub, D. W., & Chervany, N. L. (1999). Information technology adoption across time: a cross-sectional comparison of pre-adoption and post-adoption beliefs, MIS quarterly, 23(2), 183-213.
15.Krishna Moorthy, Ching Suet Ling, Yeong Weng Fatt, Chan Mun Yee, Elaine Chong Ket Yin, Kwa Sin Yee and Lee Kok Wei (2017). Barriers of mobile commerce adoption intention: perceptions of generation X in Malaysia, Journal of theoretical and applied electronic commerce research, 12(2), 37-53.
16.Laukkanen, T. (2016). Consumer adoption versus rejection decisions in seemingly similar service innovations: The case of the Internet and mobile banking, Journal of Business Research, 69(7), 2432-2439.
17.Laukkanen, T., Sinkkonen, S., Kivijärvi, M., & Laukkanen, P. (2007). Innovation resistance among mature consumers, Journal of consumer marketing, 24(7), 419-427.
18.Lian, J.-W., Liu, H.-M., & Liu, I.-L. (2012). Applying innovation resistance theory to understand user acceptance of online shopping: The moderating effect of different product types, Computer Technology and Application, 3(2),188-193.
19.Lin, C.-P., Tsai, Y. H., & Chiu, C.-K. (2009). Modeling customer loyalty from an integrative perspective of self-determination theory and expectation–confirmation theory, Journal of Business and Psychology, 24(3), 315-326.
20.Lu, Y., Yang, S., Chau, P. Y., & Cao, Y. (2011). Dynamics between the trust transfer process and intention to use mobile payment services: A cross-environment perspective, Information & Management, 48(8), 393-403.
21.Mathieson, K. (1991a). Predicting User Intentions: Comparing the Technology Acceptance Model with the Theory of Planned Behavior, Information Systems Research, 2(3),173-191.
22.Mathieson, K. (1991b). Predicting User Intentions: Comparing the Technology Acceptance Model with the Theory of Planned Behavior, Information Systems Research, 2(3), 173-191.
23.Moore, G. C., & Benbasat, I. (1991). Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation, Information Systems Research, 2(3), 192-222.
24.Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions, Journal of marketing research, 17(4), 460-469.
25.Park, Y., & Chen, J. V. (2007). Acceptance and adoption of the innovative use of smartphone, Industrial Management & Data Systems, 107(9), 1349-1365.
26.Plouffe, C. R., Hulland, J. S., & Vandenbosch, M. (2001). Research Report: Richness Versus Parsimony in Modeling Technology Adoption Decisions—Understanding Merchant Adoption of a Smart Card-Based Payment System, Information Systems Research, 12(2), 208-222.
27.Ram, S. (1989). Successful innovation using strategies to reduce consumer resistance An empirical test, Journal of Product Innovation Management, 6(1), 20-34.
28.Ram, S., & Sheth, J. N. (1989). Consumer resistance to innovations: the marketing problem and its solutions, Journal of consumer marketing, 6(2), 5-14.
29.Rammile, N., & Nel, J. (2012). Understanding resistance to cell phone banking adoption through the application of the technology acceptance model (TAM), African Journal of Business Management, 6(1), 86-97.
30.Rezaei-Moghaddam, K., & Salehi, S. (2010). Agricultural specialists’ intention toward precision agriculture technologies: Integrating innovation characteristics to technology acceptance model, African Journal of Agricultural Research, 5(11), 1191-1199.
31.Rogers, E. M. (2003). Elements of diffusion. Diffusion of innovations (3rd edition),USA:The Free Press.
32.Schierz, P. G., Schilke, O., & Wirtz, B. W. (2010). Understanding consumer acceptance of mobile payment services: An empirical analysis, Electronic commerce research and applications, 9(3), 209-216.
33.Seong DoChoa and Dae RyunChang (2008), Salesperson's innovation resistance and job satisfaction in intra-organizational diffusion of sales force automation technologies: The case of South Korea, Industrial Marketing Management, 37(7), 841-847.
34.Sheth, J. N., & Stellner, W. H. (1981). Psychology of innovation resistance: The less developed concept (LDC) in diffusion research: College of Commerce and Business Administration, University of Illinois at Urbana-Champaign Urbana-Champaign, IL.
35.Szmigin, I., & Foxall, G. (1998). Three forms of innovation resistance: the case of retail payment methods, Technovation, 18(6-7), 459-468.
36.Taylor, S., & Todd, P. A. (1995). Understanding Information Technology Usage: A Test of Competing Models, Information Systems Research, 6(2), 144-176.
37.Tu, C.-C., Fang, K., & Lin, C.-Y. (2012). Perceived Ease of Use, Trust, and Satisfaction as Determinants of Loyalty in e-Auction Marketplace, Journal Of Computers, 7(3), 645-652.
38.Van Slyke, C., Lou, H., & Day, J. (2002). The impact of perceived innovation characteristics on intention to use groupware, Information Resources Management Journal, 15(1), 1-12.
39.Venkatesh, V. (2000). Determinants of Perceived Ease of Use: Integrating Control, Intrinsic Motivation, and Emotion into the Technology Acceptance Model, Information Systems Research, 11(4), 342-365.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top