|
[1] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, 陳皇鈞(譯)。陶瓷材料概論。曉園出版社,1988。 [2] D. M. Pozar, “Microwave engineering,” Third Edition, John Wiley & Sons, 2005. [3] D. Kajfez, A. W. Glisson, and J. James, “Computed modal field distributions forisolated dielectric resonators,” IEEE Trans. Microwave Theory Tech., Vol. 32, pp.1609–1616, 1984. [4] D. Kajfez, “Basic principle give understanding of dielectric waveguides and resonators,” Microwave System News., Vol. 13, pp. 152–161, 1983. [5] D. Kajfez and P. Guillon, “Dielectric resonators,” Artech House, 1989. [6] C. L. Huang and S. S. Liu, “Dielectric characteristics of the (1 - x) Mg2TiO4-xSrTiO3 ceramic system at microwave frequencies,” J. Alloys Compd., Vol. 471, No. 1-2, 5, pp. L9-L12, 2009. [7] C. L. Huang and J. Y. Chen, “Low-Loss Microwave Dielectrics Using Mg2(Ti1-xSnx)O4 (x=0.01~0.09) Solid Solution,” J. Am. Ceram. Soc., Vol. 92, No. 10, pp. 2237-2241, 2009. [8] C. L. Huang and S. S. Liu, “Low Loss Microwave Dielectrics in the (Mg1-xZnx)2TiO4 Ceramics,” J. Alloys Compd., Vol. 91, No. 10, pp. 3428-3430, 2008. [9] J. Y. Chen, “Dielectric properties and crystal structure of Mg2TiO4 ceramics substituting Mg2+ with Zn2+ and Co2+”, J. Alloys Compd., Vol. 513, 5, No. 1-2, 5, pp. 481-486, 2011. [10] C. L. Huang and J. Y. Chen, “Low-Loss Microwave Dielectric Ceramics Using (Mg1-xMnx)2TiO4 (x=0.02~0.1) Solid Solution,” J. Am. Ceram. Soc., Vol. 92, No. 3,pp. 675-678, 2009. [11] B. J. Li, S. Y. Wang, G. J. Hong, S. H. Lin and Y. B. Chen, “Effect of Mn2+ substitution on microwave dielectric properties of (Mg1−xMnx)2(Ti0.95Sn0.05)O4 ceramics,” J. Ceram. Soc. Jpn., Vol. 123, No. 11, pp. 1027-1031, 2015. [12] C. L. Huang and E. E. Ho, “Microwave Dielectric Properties of (Mg1-xNix)2TiO4 (x=0.02–0.1) Ceramics,” Int. J. Appl. Ceram. Tech., Vol. 7, No. s1, pp. E163-E169, 2010. [13] B. J. Li, S. Y. Wang, G. J. Hong, S. H. Lin and Y. B. Chen, “Effect of Mn2+ substitution on microwave dielectric properties of (Mg1−xMnx)2(Ti0.95Sn0.05)O4 ceramics,” J. Ceram. Soc. Jpn., Vol. 123, No. 11 pp. 1027-1031, 2015. [14] C. L. Huang and J. Y. Chen, “Low-Loss Microwave Dielectrics Using SrTiO3-Modified (Mg0.95Co0.05)2TiO4 Ceramics,” J. Alloys Compd., Vol. 485, No. 1-2, pp. 706-710, 2014. [15] B. J. Li, S. y. Wang and Y. B. Chen, “Dielectric properties and crystal structure of (Mg1−xCox)2(Ti0.95Sn0.05)O4 ceramics,” J. Mater. Sci. Eng., Vol. 4, No. 1, pp. 706-710, 2015. [16] S. J. Penn, “Effect of porosity and grain size on the microwave dielectric properties of sintered alumina,” J. Am. Ceram. Soc., Vol. 80, pp. 1885–1888, 1997. [17] J. J. Wang, C. L. Huang, and P. H. Li, “Microwave Dielectric Properties of (1-x)(Mg0.95Zn0.05)TiO3-xCa0.6La0.8/3TiO3 Ceramic System,” Jpn. J. Appl. Phys., Vol. 45,No. 8A, pp. 6352-6356, 2006. [18] C. L. Huang and C. E. Ho, “Microwave Dielectric Properties of (1-x) (Mg0.95Co0.05)TiO3-xCa0.6La0.8/3TiO3 Ceramics with V2O5 Addition,” Solid-State Electron., Vol. 50, No. 7-8, pp. 1349-1354, 2006. [19] C. L. Huang and C. E. Ho, “Microwave Dielectric Properties of (Mg1-xNix)2TiO4 (x=0.02–0.1) Ceramics,” Int. J. Adhes. Appl. Ceram. Tech., Vol. 7, No. 1, pp. E163-E169, 2010. [20] C. L. Huang and J. C. Chen, “LowLoss Microwave Dielectric Ceramics Using (Mg1−xMnx)2TiO4 (x=0.02–0.1) Solid Solution,” J. Am. Ceram. Soc., Vol. 92, No. 3, pp. 675-678, 2009. [21] C. L. Huang, S. H. Lin, S. S. Liu and Y. B.Chen, “x(Mg0.7Zn0.3)0.95Co0.05TiO3-(1−x) (La0.5Na0.5)TiO3 ceramic at microwave frequency with a near zero temperature coefficient of resonant requency,” J. Alloys Compd., Vol. 482, No. 2, pp. 541-544, 2010. [22] C. L. Huang and J. C. Chen, “Low Loss Microwave Dielectrics Using Mg2(Ti1−xSnx)O4 (x=0.01–0.09) Solid Solution,” J. Am. Ceram. Soc., Vol. 92, No. 3,pp. 2237-2241 (2009). [23] C. F. Tseng, C. H. Hsu, C.J. Huang, and C. H. Lai, “Influences of PressureConditions on Synthesis of Mg(Zr0.05Ti0.95)O3 Dielectric Ceramics,” Adv. Mater. Res.,Vol. 430-432, pp. 692-695, 2012. [24] 吳朗。電工材料。滄海書局,1998。 [25] 余樹楨。晶體之結構與性質。渤海堂文化事業有限公司,2009。 [26] R. A. Pucel, D. J. Masse, and C. E Hartwig, “Losses in microstrip,” IEEE. Trans.Microw. Theory Tech., Vol. MIT-16, pp. 342-350, 1968. [27] G. L. Matthaei, L. Young, and E. M. T. Jones, “Microwave filters impedance matching,” Networks, and coupling structures., McGraw-Hill, 1980. [28] V. Nalbandian, and W. Steenart, “Discontinuities in Symmetric StriPlines Due to Impedance Steps and Their Compensations,” IEEE Trans. Micro. Theory Tech., Vol. MTT-20, pp. 573-578, 1980. [29] G. L. Matthaei, L. Young, and E. M. T. Jones, “Microwave Filters Impedance-Matching Networks,” And Coupling Structures,” Norwood, Massachusetts: Artech House, pp. 149-155, 1980. [30] Q. J. He and C. J. Liu, Member, IEEE, “A Novel Low-Pass Filter With an Embedded Band-Stop Structure for Improved Stop-Band Characteristics,” IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 10, 2009.
|