跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/03/21 16:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭建承
研究生(外文):GUO, JIAN-CHENG
論文名稱:高品質因素尖晶石結構之介電材料研製及微波應用
論文名稱(外文):The Study, Fabrication, and Applications on Microwave of Spinel Dielectric Materials With High Quality Factor
指導教授:林士弘林士弘引用關係
指導教授(外文):LIN, SHIH-HUNG
口試委員:沈俊旭林士弘陳錡楓游瑞松
口試委員(外文):SHEN, CHUN-HSULIN, SHIH-HUNGCHEN, CHI-FENGYU, RUEI-SUNG
口試日期:2019-01-11
學位類別:碩士
校院名稱:東海大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:156
中文關鍵詞:微波介電陶瓷微波介電特性濾波器摻雜
外文關鍵詞:Microwave ceramicMicrowave dielectric CharacteristicsFilterDoping
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著無線通訊的發展,人們對於行動裝置的依賴程度越來越高,其中微波電路的效能及微縮扮演十分重要的角色,設計高穩定度且微小化的微波元件就顯得十分關鍵。因此,介電陶瓷材料是目前製作微波元件基板較佳的選擇,其高介電係數可以使電子元件縮小、高品質因素可以提高儲存電磁波之能量以及趨近於零的共振頻率溫度飄移係數,則是可以使微波元件在不同溫度下,均得以穩定操作。
本論文先討論微波介電陶瓷材料[(Mg0.6Zn0.4)]0.95Co0.05]2TiO4摻雜Sn之微波特性,從實驗結果顯示,[(Mg0.6Zn0.4)]0.95Co0.05]2(Ti0.95Sn0.05)O4燒結溫度為1325 ℃時有最好的介電特性(εr~15.4、Qൈf~280,000 GHz、τf~-35 ppm/℃),得到摻雜Sn後有更好之材料特性,因此我們將以此材料為主相做更進一步特性改善。我們以固態合成法製備[(Mg0.6Zn0.4)]0.95Co0.05]2(Ti0.95Sn0.05)O4粉末作為原始介電材料,混相微量的CaTiO3與Ca0.6La0.2667TiO3粉末以改善它的微波介電性能。可以由實驗結果得知,在比例為0.93{[(Mg0.6Zn0.4)]0.95Co0.05]2(Ti0.95Sn0.05)O4}-0.07CaTiO3 燒結溫度為
1350 ℃時有最好的介電特性(εr~19.93、Qൈf~50,000 GHz、τf~6 ppm/℃);0.8{[(Mg0.6Zn0.4)]0.95Co0.05]2(Ti0.95Sn0.05)O4}-0.2Ca0.6La0.2667TiO3燒結溫度為1300 ℃時有最好的介電特性(εr~23.95、Qൈf~57,000 GHz、τf~5 ppm/℃)。
最後為了驗證自製微波介電材料對微波元件特性的影響,以 FR4、Al2O3 、 0.93{[(Mg0.6Zn0.4)]0.95Co0.05]2(Ti0.95Sn0.05)O4}-0.07CaTiO3 與0.8{[(Mg0.6Zn0.4)]0.95Co0.05]2(Ti0.95Sn0.05)O4}-0.2Ca0.6La0.2667TiO3 自製基板,以 ADS 模擬步階阻抗低通濾波器,截止頻率為 1.8 GHz。可以發現 0.93{[(Mg0.6Zn0.4)]0.95Co0.05]2(Ti0.95Sn0.05)O4}-0.07CaTiO3 與0.8{[(Mg0.6Zn0.4)]0.95Co0.05]2(Ti0.95Sn0.05)O4}-0.2Ca0.6La0.2667TiO3 為其基板材料,皆能夠縮小濾波器面積,因此可以有效降低整體電路尺寸並擁有極佳之微波元件性能。
With the development of wireless communication, people were increasingly dependent on mobile devices. The performance and miniaturization of microwave circuits played an important role. Designing high-stability and miniaturized microwave components was very critical. Therefore, dielectric ceramic materials are currently the better choice for fabricating microwave component substrates. Size reduction of electronic components can be achieved with high dielectric constant, the high quality factor means better ability for storage of the electromagnetic waves energy, and near zero temperature coefficient of resonant frequency means that device could operate stably under wide range of temperature.
The microwave dielectric properties of the [(Mg0.6Zn0.4)]0.95Co0.05]2TiO4 doping with Sn was discussed in this thesis. The experimental results showed that [(Mg0.6Zn0.4)]0.95Co0.05]2(Ti0.95Sn0.05)O4 sintered at 1325 ℃ possessed the best dielectric properties. (εr~15.4, Qൈf~280,000 GHz and τf~-35 ppm/℃) We obtained the better dielectric properties after we doped originalmaterial with Sn. Therefore, we used this main phase material to make further improvement.[(Mg0.6Zn0.4)]0.95Co0.05]2(Ti0.95Sn0.05)O4 prepared by the solid state
synthesis and then mixed with the CaTiO3 and Ca0.6La0.2667TiO3 to improve its microwave dielectric properties. From the experimental results showed that 0.93{[(Mg0.6Zn0.4)]0.95Co0.05]2(Ti0.95Sn0.05)O4}-0.07 CaTiO3 sintered at 1350 ℃ possessed the best dielectric properties (εr~19.93, Q ൈ f~50,000 GHz and τf ~6 ppm/ ℃ ).
0.8{[(Mg0.6Zn0.4)]0.95Co0.05]2(Ti0.95Sn0.05)O4}-0.2Ca0.6La0.2667TiO3 sintered
at 1300 ℃ possessed the best dielectric properties(εr~23.95,Qൈf~57,000 GHz and τf ~5 ppm/℃).
Finally, in order to verify the effect of self-made microwave dielectric materials on the characteristics of microwave components. Step impedance low pass filter was simulated with ADS using following substrates FR4, Al2O3, 0.93{[(Mg0.6Zn0.4)]0.95Co0.05]2(Ti0.95Sn0.05)O4}-0.07CaTiO3, and 0.8 {[(Mg0.6Zn0.4)]0.95Co0.05]2(Ti0.95Sn0.05)O4}-0.2 Ca0.6La0.2667TiO3 self-made substrates. Filter size could be reduced using self-made substrates 0.93{[(Mg0.6Zn0.4)]0.95Co0.05]2(Ti0.95Sn0.05)O4} - 0.07 CaTiO3 and 0.8{[(Mg0.6Zn0.4)]0.95Co0.05]2(Ti0.95Sn0.05)O4}-0.2Ca0.6La0.2667TiO3.
Therefore, overall circuit size could effectively reduce with excellent
microwave component performance.

誌謝 I
摘要 II
Abstract IV
目錄 VII
圖目錄 XII
表目錄 XX
第一章 緒論 1
1-1 前言 1
1-2 研究目的 4
第二章 介電材料原理 5
2-1 陶瓷材料之微波介電特性 5
2-1-1 介電常數(permittivity:K、) 5
2-1-2 品質因數(Quality factor:Q) 10
2-1-3 共振頻率溫度飄移係數(Temperature coefficient of
resonant frequency:τf) 13
2-2 介電共振器(Dielectric resonator:DR)原理 14
2-3 結構分析 20
2-3-1 尖晶石結構 21
2-3-2 鈦鐵礦結構 22
2-3-3 鈣鈦礦結構 23
2-4 陶瓷材料之微波介電特性 26
2-4-1 燒結種類 26
2-4-2 材料燒結之擴散方式 28
2-4-3 材料燒結之擴散方式 30
2-5 微波介電材料的製程 32
2-5-1 粉末的配製 33
2-5-2 粉末的煆燒 33
2-5-3 加入有機黏劑後燒結 33
2-6 陶瓷材料之微波介電特性 34
2-6-1 密度量測 34
2-6-2 X-RAY 分析34
2-6-3 SEM 分析 35
2-6-4 介電特性量測與分析 35
2-6-5 共振頻率溫度飄移係數之量測 42
第三章 微帶線及濾波器原理 45
3-1 濾波器原理 43
3-1-1 濾波器的簡介 44
3-1-2 濾波器之種類及其頻率響應 46
3-2 微帶線原理 48
3-2-1 微帶傳輸線的簡介 48
3-2-2 微帶線的傳輸模態 49
3-2-3 微帶線各項參數公式計算及考量 50
3-2-4 微帶線的損失 53
3-2-5 微帶線的不連續效應 55
3-3 微帶線諧振器種類 59
3-3-1 λ/4 短路微帶線共振器與λ/2 開路微帶線共振器 59
3-4 四分之一波長的阻抗轉換器與開路殘段(open stub) 62
第四章 實驗結果和討論 64
4-1 [(Mg0.6Zn0.4)]0.95Co0.05]2(Ti1-xSnx)O4之微波介電特性 65
4-1-1 [(Mg0.6Zn0.4)]0.95Co0.05]2(Ti1-xSnx)O4之 XRD 分析結果 65
4-1-2 [(Mg0.6Zn0.4)]0.95Co0.05]2(Ti1-xSnx)O4 SEM 與 EDX 分析 66
4-1-3 [(Mg0.6Zn0.4)]0.95Co0.05]2(Ti1-xSnx)O4之視密度分析結果 75
4-1-4 [(Mg0.6Zn0.4)]0.95Co0.05]2(Ti1-xSnx)O4之介電特性分析 76
4-2 x{[(Mg0.6Zn0.4)]0.95Co0.05]2(Ti0.95Sn0.05)O4}-(1-x)CaTiO3 之微波介
電特性 80
4-2-1 x{[(Mg0.6Zn0.4)]0.95Co0.05]2(Ti0.95Sn0.05)O4}-(1-x)CaTiO3 之 XRD
分析結果 81
4-2-2 x{[(Mg0.6Zn0.4)]0.95Co0.05]2(Ti0.95Sn0.05)O4}-(1-x)CaTiO3 SEM
與 EDX 分析 83
4-2-3 x{[(Mg0.6Zn0.4)]0.95Co0.05]2(Ti0.95Sn0.05)O4}-(1-x)CaTiO3之視
密度分析結果 90
4-2-4 x{[(Mg0.6Zn0.4)]0.95Co0.05]2(Ti0.95Sn0.05)O4}-(1-x)CaTiO3之介
電特性分析 91
4-3 x{[(Mg0.6Zn0.4)]0.95Co0.05]2(Ti0.95Sn0.05)O4}-(1-x)Ca0.6La0.2667TiO3
95
4-3-1
x{[(Mg0.6Zn0.4)]0.95Co0.05]2(Ti0.95Sn0.05)O4}-(1-x)Ca0.6La0.2667TiO3之
XRD 分析結果 96
4-3-2
x{[(Mg0.6Zn0.4)]0.95Co0.05]2(Ti0.95Sn0.05)O4}-(1-x)Ca0.6La0.2667TiO3
SEM 與 EDX 分析 99
4-3-3
x{[(Mg0.6Zn0.4)]0.95Co0.05]2(Ti0.95Sn0.05)O4}-(1-x)Ca0.6La0.2667TiO3之
視密度分析結果 106
4-3-4
x{[(Mg0.6Zn0.4)]0.95Co0.05]2(Ti0.95Sn0.05)O4}-(1-x)Ca0.6La0.2667TiO3之
介電特性分析 108
4-4 材料特性整理 112
4-5 低通濾波器設計與模擬 116
4-5-1 濾波器模擬與探討 119
第五章 結論 127
參考文獻 129
[1] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, 陳皇鈞(譯)。陶瓷材料概論。曉園出版社,1988。
[2] D. M. Pozar, “Microwave engineering,” Third Edition, John Wiley & Sons, 2005.
[3] D. Kajfez, A. W. Glisson, and J. James, “Computed modal field distributions forisolated dielectric resonators,” IEEE Trans. Microwave Theory Tech., Vol. 32, pp.1609–1616, 1984.
[4] D. Kajfez, “Basic principle give understanding of dielectric waveguides and resonators,” Microwave System News., Vol. 13, pp. 152–161, 1983.
[5] D. Kajfez and P. Guillon, “Dielectric resonators,” Artech House, 1989.
[6] C. L. Huang and S. S. Liu, “Dielectric characteristics of the (1 - x)
Mg2TiO4-xSrTiO3 ceramic system at microwave frequencies,” J. Alloys Compd., Vol. 471, No. 1-2, 5, pp. L9-L12, 2009.
[7] C. L. Huang and J. Y. Chen, “Low-Loss Microwave Dielectrics Using
Mg2(Ti1-xSnx)O4 (x=0.01~0.09) Solid Solution,” J. Am. Ceram. Soc., Vol. 92, No. 10, pp. 2237-2241, 2009.
[8] C. L. Huang and S. S. Liu, “Low Loss Microwave Dielectrics in the
(Mg1-xZnx)2TiO4 Ceramics,” J. Alloys Compd., Vol. 91, No. 10, pp. 3428-3430, 2008.
[9] J. Y. Chen, “Dielectric properties and crystal structure of Mg2TiO4 ceramics substituting Mg2+ with Zn2+ and Co2+”, J. Alloys Compd., Vol. 513, 5, No. 1-2, 5, pp. 481-486, 2011.
[10] C. L. Huang and J. Y. Chen, “Low-Loss Microwave Dielectric Ceramics Using (Mg1-xMnx)2TiO4 (x=0.02~0.1) Solid Solution,” J. Am. Ceram. Soc., Vol. 92, No. 3,pp. 675-678, 2009.
[11] B. J. Li, S. Y. Wang, G. J. Hong, S. H. Lin and Y. B. Chen, “Effect of Mn2+ substitution on microwave dielectric properties of (Mg1−xMnx)2(Ti0.95Sn0.05)O4 ceramics,” J. Ceram. Soc. Jpn., Vol. 123, No. 11, pp. 1027-1031, 2015.
[12] C. L. Huang and E. E. Ho, “Microwave Dielectric Properties of (Mg1-xNix)2TiO4 (x=0.02–0.1) Ceramics,” Int. J. Appl. Ceram. Tech., Vol. 7, No. s1, pp. E163-E169, 2010.
[13] B. J. Li, S. Y. Wang, G. J. Hong, S. H. Lin and Y. B. Chen, “Effect of Mn2+ substitution on microwave dielectric properties of (Mg1−xMnx)2(Ti0.95Sn0.05)O4 ceramics,” J. Ceram. Soc. Jpn., Vol. 123, No. 11 pp. 1027-1031, 2015.
[14] C. L. Huang and J. Y. Chen, “Low-Loss Microwave Dielectrics Using
SrTiO3-Modified (Mg0.95Co0.05)2TiO4 Ceramics,” J. Alloys Compd., Vol. 485, No. 1-2, pp. 706-710, 2014.
[15] B. J. Li, S. y. Wang and Y. B. Chen, “Dielectric properties and crystal structure of (Mg1−xCox)2(Ti0.95Sn0.05)O4 ceramics,” J. Mater. Sci. Eng., Vol. 4, No. 1, pp. 706-710, 2015.
[16] S. J. Penn, “Effect of porosity and grain size on the microwave dielectric properties of sintered alumina,” J. Am. Ceram. Soc., Vol. 80, pp. 1885–1888, 1997.
[17] J. J. Wang, C. L. Huang, and P. H. Li, “Microwave Dielectric Properties of (1-x)(Mg0.95Zn0.05)TiO3-xCa0.6La0.8/3TiO3 Ceramic System,” Jpn. J. Appl. Phys., Vol. 45,No. 8A, pp. 6352-6356, 2006.
[18] C. L. Huang and C. E. Ho, “Microwave Dielectric Properties of (1-x)
(Mg0.95Co0.05)TiO3-xCa0.6La0.8/3TiO3 Ceramics with V2O5 Addition,” Solid-State Electron., Vol. 50, No. 7-8, pp. 1349-1354, 2006.
[19] C. L. Huang and C. E. Ho, “Microwave Dielectric Properties of (Mg1-xNix)2TiO4 (x=0.02–0.1) Ceramics,” Int. J. Adhes. Appl. Ceram. Tech., Vol. 7, No. 1, pp. E163-E169, 2010.
[20] C. L. Huang and J. C. Chen, “Low­Loss Microwave Dielectric Ceramics Using (Mg1−xMnx)2TiO4 (x=0.02–0.1) Solid Solution,” J. Am. Ceram. Soc., Vol. 92, No. 3, pp. 675-678, 2009.
[21] C. L. Huang, S. H. Lin, S. S. Liu and Y. B.Chen, “x(Mg0.7Zn0.3)0.95Co0.05TiO3-(1−x) (La0.5Na0.5)TiO3 ceramic at microwave frequency with a near zero temperature coefficient of resonant requency,” J. Alloys Compd., Vol. 482, No. 2, pp. 541-544, 2010.
[22] C. L. Huang and J. C. Chen, “Low ­ Loss Microwave Dielectrics Using
Mg2(Ti1−xSnx)O4 (x=0.01–0.09) Solid Solution,” J. Am. Ceram. Soc., Vol. 92, No. 3,pp. 2237-2241 (2009).
[23] C. F. Tseng, C. H. Hsu, C.J. Huang, and C. H. Lai, “Influences of PressureConditions on Synthesis of Mg(Zr0.05Ti0.95)O3 Dielectric Ceramics,” Adv. Mater. Res.,Vol. 430-432, pp. 692-695, 2012.
[24] 吳朗。電工材料。滄海書局,1998。
[25] 余樹楨。晶體之結構與性質。渤海堂文化事業有限公司,2009。
[26] R. A. Pucel, D. J. Masse, and C. E Hartwig, “Losses in microstrip,” IEEE. Trans.Microw. Theory Tech., Vol. MIT-16, pp. 342-350, 1968.
[27] G. L. Matthaei, L. Young, and E. M. T. Jones, “Microwave filters impedance matching,” Networks, and coupling structures., McGraw-Hill, 1980.
[28] V. Nalbandian, and W. Steenart, “Discontinuities in Symmetric StriPlines Due to Impedance Steps and Their Compensations,” IEEE Trans. Micro. Theory Tech., Vol. MTT-20, pp. 573-578, 1980.
[29] G. L. Matthaei, L. Young, and E. M. T. Jones, “Microwave Filters
Impedance-Matching Networks,” And Coupling Structures,” Norwood,
Massachusetts: Artech House, pp. 149-155, 1980.
[30] Q. J. He and C. J. Liu, Member, IEEE, “A Novel Low-Pass Filter With an Embedded Band-Stop Structure for Improved Stop-Band Characteristics,” IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 10, 2009.
電子全文 電子全文(網際網路公開日期:20240214)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top