跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/17 01:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:湯智翔
研究生(外文):TANG, ZHI-XIANG
論文名稱:高科技廢水中微米與次微米顆粒之凝聚作用與吸附特性分析
論文名稱(外文):Aggregation and Adsorption Characteristics of Micron-and Submicron-Sized Particles in High-Tech Wastewater
指導教授:宋孟浩
指導教授(外文):SUNG, MENG-HAU
口試委員:陳谷汎彭彥彬
口試委員(外文):CHEN, KU-FANPENG, YEN-PING
口試日期:2019-06-18
學位類別:碩士
校院名稱:東海大學
系所名稱:環境科學與工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:73
中文關鍵詞:奈米顆粒凝聚吸附
外文關鍵詞:NanoparticleAggregationAdsorptionIndiumGalliumMolybdenum
相關次數:
  • 被引用被引用:0
  • 點閱點閱:163
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
微米顆粒(Micronparticles)與次微米顆粒(Submicronparticles)常潛在於水體環境中,然而目前這些環境顆粒之特性仍一無所知,且受到各界關注。因此本研究主要分為兩大部分,分別為環境中奈米顆粒及實驗室配製之標準二氧化矽奈米顆粒溶液。環境顆粒是採集台中地區烏溪流域之放流水,並篩選出其中之微奈米顆粒後,進行凝聚與吸附特性之分析,並與標準顆粒之凝聚特性做比較。本研究方法是利用動態光散射儀(Dynamic Light Scattering, DLS)、總有機碳分析儀 (Total Organic Carbon Analyzer, TOC)與感應耦合電漿質譜儀 (Inductively Coupled Plasma-Mass Spectrometer, ICP-MS)進行環境水體中顆粒之凝聚作用及吸附特性分析。本研究之目的在於深入探討pH、離子強度與總有機碳等水質參數對微奈米顆粒之凝聚作用與吸附特性之影響。從吾人之研究結果得知,二氧化矽(SiO2)標準顆粒在水體中之凝聚作用可在4小時內完成,在添加離子強度時發現添加濃度越高造成顆粒的凝聚越旺盛,加入不同濃度的總有機碳時發現在30分鐘內完成凝聚,且上述之粒徑pH越靠近pHzpc時,皆可由初始之50 nm - 70 nm逐漸凝聚至1 ~ 2μm;奈米及次微奈米顆粒在河川水體環境中之凝聚行為,其凝聚作用會隨著時間、pH以及離子強度(或導電度)等而有顯著之變化。且批次吸附銦、鎵、鉬實驗之結果可看出,其pH控制於5時吸附濃度皆比其他pH好,猜測會有此結果是因為CTSP放流水奈米顆粒吸附尚未進入吸附飽和階段,因此三種汙染物皆能有良好吸附狀態。
Micronparticles and Submicronparticles are ubiquitious in aqueous environments. However, the characteristics of these environmental particles are still unknown. This study is mainly divided into two parts:the study of nanoparticles in the environment and the standard silicon dioxide nanoparticles prepared in the laboratory. The environmental particles are collected from the wastewater discharge from the Wu-Shi River Basin in the Taichung area. These micro-nano particles are screened out for analysis of the aggregation and adsorption characteristics, and then are compared with the aggregation characteristics of the standard particles. The experimental methods used include the dynamic light scattering (DLS), the total organic carbon analyzer (TOC) and the inductively coupled plasma mass spectrometer (ICP-MS). The purpose of this study is to investigate the effects of pH, ionic strength and TOC on aggregation of adsorption of nanoparticles. Based on the results, aggregation of silicon dioxide (SiO2) particles can be completed in 4 hours. The rate of aggregation increases as ionic strength & TOC increase. When the pH is close to pHzpc, particles can gradually aggregate from the initial size of 50 nm - 70 nm to 1~2 μm. The aggregation of nano and sub-micron particles in a river water environment has a strong dependence on time, pH, and ionic strength. Results of batch adsorption of indium, gallium, and molybdenum indicate that when the pH is controlled at 5, the adsorption is higher than at other pH values. It is speculated that the adsorption of nano-particles in the water has not yet reached the adsorption maximum. At this stage, the adsorption of all three contaminants are very effective.
摘要 I
Abstract II
總目錄 IV
表目錄 VII
圖目錄 VIII
第一章 前言 1
1-1研究動機 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 奈米顆粒之介紹 3
(一) 特性與應用 3
(二) 凝聚與分散作用 8
2-2銦、鎵、鉬等稀有金屬之介紹 11
(一) 銦(Indium, In) 15
(二) 鎵(Gallium, Ga) 16
(三) 鉬(Molybdenum, Mo)17
2-3 吸附 18
(一) 吸附特性 18
(二)影響吸附速率之因素 19
(三)吸附等溫曲線及模式 20
第三章 研究方法與設備 22
3-1 研究架構 22
3-2 放流水採樣點分布 24
3-3 研究儀器設備 27
(一) 動態光散射儀 (Dynamic Light Scattering, DLS) 27
(二) 感應耦合電漿質譜儀 (Inductively Coupled Plasma - Mass) 28
(三) 總有機碳分析儀 (Total Organic Carbon, TOC) 28
3-4 過濾 29
(一) 中空纖維膜(Hollow Fiber Membrane) 29
(二) 精密型數位式定量蠕動幫浦(Digital Peristaltic Pump) 30
(三) 環境奈米顆粒與環境水體中TOC分離 31
3-5研究材料配製 32
(一) 奈米顆粒配製 32
(二) 緩衝溶液與離子強度控制 32
(三) 銦、鎵、鉬檢量線配製 36
3-6 凝聚實驗 37
(一) 放流水現場水質分析與實驗前處理 38
(二) 標準顆粒於不同水質參數下之凝聚實驗 38
(三) 環境奈米顆粒於不同水質參數下之凝聚實驗 39
3-7 吸附實驗 40
(一) 吸附動力學實驗 40
(二) 等溫平衡吸附實驗 41
第四章 結果與討論 43
4-1 放流水水質檢測參數 43
(一) 水質檢測參數 43
(二)各樣區奈米顆粒(< 100 nm)之濃度分析 44
4-2 凝聚實驗 45
(一) 標準顆粒 45
(二) 環境奈米顆粒 50
4-3 吸附實驗 58
(一) 銦、鎵、鉬之檢量線 58
(二) 批次吸附銦、鎵、鉬實驗 59
(三) 吸附等溫線實驗 61
第五章 結論與建議 65
5-1結論 65
5-2 建議 66
參考文獻 67
相關詞彙中英對照 70
1. Organization for Economic Co-operation and Development,http://www.oecd.org/ ,Browsed on 2017/09/21.
2. Jahan, K., R. Ordóñez, R. Ramachandran, S. Balzer, M. Stern. (2008) Modeling Biodegradation of Nonylphenol. Water Air Soil Pollut: Focus. 8:395-404.
3. Grazyna, B. P. , Jerzy, G. , Pawel, L. U. (2009) Nanoparticles:Their potential toxicity, waste and environmental management. Waste Management 29:2587-2595.
4. Pérez, S., P. Eichhorn, D. Barceló. (2007) Structural Characterization of Photodegradation Products of Enalapril and Its Metabolite Enalaprilat Obtained under Simulated Environmental Conditions by Hybrid Quadrupole-Linear Ion Trap-MS and Quadrupole-Time-of-Flight-MS. Analytical Chemistry. 79:8293-8300.
5. Hernández, F., Ó . J. Pozo, J. V. Sancho, F. J. López, J. M. Marín, M. Ibáñez. (2005) Strategies for quantification and confirmation of multi-class polar pesticides and transformation products in water by LC–MS2 using triple quadrupole and hybrid quadrupole time-of-flight analyzers. TrAC Trends in Analytical Chemistry. 24:596-612.
6. Nowack, B. and Bucheli, T. D. (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution 150:5-22.
7. Ke, P. C., R. Qiao. (2007) Carbon nanomaterials in biological systems. Journal of Physics: Condensed Matter. 19:373101.
8. Wang, Z. Y., J. Zhao, F. M. Li, D. M. Gao, B. S. Xing. (2009) Adsorption and inhibition of acetylcholinesterase by different nanoparticles. Chemosphere. 77:67-73.
9. Lin, D., X. Tian, F. Wu, B. Xing. (2010) Fate and Transport of Engineered Nanomaterials in the Environment. Journal of Environmental Quality. 39:1896-1908.
10. Hyung, H., J.D. Fortner, J.B. Hughes, J.H. Kim. (2007) Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environmental Science & Technology. 41:179-184.
11. Terashima, M., S. Nagao. (2007) Solubilization of C60 fullerene in water by aquatic humic substances. Chemistry Letters. 36:302-303.
12. Lin, D. H., B.S. Xing. (2008) Tannic acid adsorption and its role for stabilizing carbon nanotube suspensions. Environmental Science & Technology. 42:5917-5923.
13. Xie, B., Z. H. Xu, W. H. Guo, Q. L. Li. (2008) Impact of natural organic matter on the physicochemical properties of aqueous C60 nanoparticles. Environmental Science & Technology. 42:2853-2859.
14. Chen, K. L. and Elimelech, M. (2008) Interaction of Fullerene (C60) Nanoparticles with Humic Acid and Alginate Coated Silica Surfaces:Measurements, Mechanisms, and Environmental Implications. Environ. Sci. Technol. 42, 20:7607-7614.
15. Chen, K. L. (2008) Aggregation and Deposition of Nanoparticles in Aquatic Environments. ProQuest Dissertations Publishing. 3317076.
16. 友和貿易有限公司,銦安全資料表,2017。
17. 友和貿易有限公司,鎵安全資料表,2017。
18. 友和貿易有限公司,鉬安全資料表,2017。
19. Phelan, P.J., Maltigod, S.V. (1984) Adsorption of molybdate anion)MoO42-bysodium-saturated kaolinite. Clays Clay Miner. 32:45-48.
20. Central Taiwan Science Park,https://search.ctsp.gov.tw/cgi-bin/search/query.cgi,Browsed on 2019/06/13.
21. National Environmental Health Research Center,http://nehrc.nhri.org.tw/toxic/toxfaq_detail_en.php?id=200,Browsed on 2017/09/22
22. Wood, Scott A., Samson, Iain M. (2006) The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geology Reviews 28:57-102.
23. Moskalyk, R. R. (2003) Gallium:the backbone of the electronics industry. Minerals Engineering. 16 (10):921-929.
24. 沈威政,2012,以離子交換樹脂吸附鉬(VI)離子之研究,國立高雄應用科技大學化學工程與材料工程系,碩士論文。
25. 鄭長庭,2014,以吸附劑法去除廢鉛蓄電池硫酸液中金屬離子之可行性評估,國立高雄第一科技大學環境與安全衛生工程系,碩士論文。
26. 卓秋姈,2012,奈米零價鐵與活性碳去除水中重金屬與雙酚A 之研究,朝陽科技大學環境工程與管理系,碩士論文。
27. Muhammad Sultan, Takahiko Miyazaki, Shigeru Koyama. (2018) Optimization of adsorption isotherm types for desiccant air-conditioning applications. Renewable Energy 121:441- 450.
28. Siao, F. Y., Lu, J. F., Wang, J. S., Stephen Inbaraj, B., Chen, B. H. (2009) In Vitro Binding of Heavy Metals by an Edible Biopolymer Poly(γ-glutamic acid). J. Agric. Food Chem. 57:777-784
29. 曹家齊,2016,奈米顆粒在水體環境中之特性分析-以烏溪為例,東海大學環境科學與工程學系,碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊