(3.236.82.241) 您好!臺灣時間:2021/04/13 04:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱佳俞
研究生(外文):CHIU, CHIA-YU
論文名稱:具多個三苯胺或N-苯基咔唑封端基的雙(三苯胺)所衍生的高度交聯聚芳香胺之電化學合成及其電致變色性質
論文名稱(外文):Electrochemical Synthesis and Electrochromic Properties of Highly Crosslinked Polyarylamines from Bis(triphenylamine)s with Multiple Triphenylamine or N-Phenylcarbazole End-Cappers
指導教授:蕭勝輝
指導教授(外文):HSIAO, SHENG-HUEI
口試委員:蕭勝輝劉貴生陳志堅龔宇睿
口試委員(外文):HSIAO, SHENG-HUEILIOU, GUEY-SHENGCHEN, JYH-CHIENKUNG, YU-RUEI
口試日期:2019-01-14
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:98
中文關鍵詞:三苯胺咔唑電聚合高度交聯聚芳香胺電致變色光譜電化學
外文關鍵詞:TriphenylamineCarbazoleElectrochemical polymerizationHighly crosslinked polyarylaminesElectrochromismSpectroelectrochemistry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:75
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
兩種新型的芳香族四胺化合物 N,N,N’,N’-tetra(4-aminophenyl)-m-phenylenediamine (TAPMPD) 和 N,N,N’,N’-tetra(4-aminophenyl)-p-phenylenediamine (TAPPPD) 係以二甲基亞碸為溶劑,碳酸鉀為鹼,分別藉由 m-phenylenediamine 和 p-phenylenediamine,與四倍當量的對氟硝基苯進行芳香親核取反應,隨後以聯胺-Pd/C催化還原四硝基中間產物而製得。以雙(三苯胺)為核心,其末端經由醯胺基連接四個三苯胺(TPA)或N-苯基咔唑(NPC)基團的四種可電聚合單體:MPD-(TPA)4、MPD-(NPC)4、PPD-(TPA)4 和PPD-(NPC)4,可經由TAPMPD或TAPPPD與四倍當量的單羧酸4-carboxytriphenylamine 或N-(4-carboxyphenyl)carbazole 縮合反應製備而成。這些單體因具有多個反應點,它們在含有電解質的溶液中,藉由電位在0.0 V與1.4 ~1.6 V之間重複循環伏安法掃描會在ITO電極表面上形成高度架橋的聚芳香胺薄膜。這些電聚合的高分子(特別是PPD系列)因為含有許多三芳香胺鏈段,因此會顯現多階段的氧化還原程序及陰極電致變色現象。當與MPD系列的電聚合物比較時,PPD系列的雙(三苯胺)核心會提供電聚合物薄膜較低的起始氧化電位、較清楚及分開較寬的頭兩個氧化峰以及較佳的電致變色效能。我們以這些電聚合薄膜為材料製成簡易的電致變色元件,評估其在電致變色領域應用的可能性。
Two novel aromatic tetraamines, namely N,N,N',N'-tetra(4-aminophenyl)-m-phenylenediamine (TAPMPD) and N,N,N’,N’-tetra(4-aminophenyl)-p-phenylenediamine (TAPPPD), were synthesized by aromatic substitution reactions of m-phenylenediamine and p-phenylenediamine, respectively, with four equivalent amounts of p-fluoronitrobenzene in the presence of potassium carbonate in dimethyl sulfoxide, followed by hydrazine Pd/C-catalyzed reduction. Four electro-polymerizable monomers featuring with bis(triphenylamine) as an interior core via amide groups linked to four terminal electroactive triphenylamine (TPA) or N-phenylcarbazole (NPC) units, coded as MPD-(TPA)4, MPD-(NPC)4, PPD-(TPA)4, and PPD-(NPC)4, were prepared by the condensation reaction from TAPMPD or TAPPPD with four equivalent amounts of 4-carboxytriphenylamine and N-(4-carboxyphenyl)carbazole, respectively. Since these monomers have multiple reactive sites, robust polymeric films of highly crosslinked polyarylamines could be easily deposited on the indium tin oxide (ITO)/glass surface by repetitive cyclic voltammetry scanning of the monomer solutions containing an electrolyte between 0.0 and 1.4─1.6 V. Due to the triarylamine-rich polymer matrix, the electropolymerized films (especially for the PPD series polymers) showed multi-staged redox processes and multi-colored anodic electrochromic behaviors. As compared to that of the MPD series polymers, the bis(triphenylamine) core of the PPD series counterparts provided a lower onset oxidation potential, a clearer and wider separation of the first two redox couples, and a better electrochromic performance. Single-layer electrochromic devices using the electrodeposited polymer films as active layers were fabricated and tested as the preliminary investigation for their electrochromic applications.
CONTENTS
摘要 i
ABSTRACT iii
ACKNOWLEDGEMENTS v
CONTENTS vi
LIST OF SCHEMES viii
LIST OF TABLES viii
LIST OF FIGURES ix
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 EXPERIMENTAL 4
2.1 Monomer Synthesis for Chapter 3 4
2.1.1 Materials 4
2.1.2 N,N,N’,N’-tetra(4-nitrophenyl)-m-phenylenediamine [TNPMPD] 5
2.1.3 N,N,N’,N’-tetra(4-aminophenyl)-m-phenylenediamine [TAPMPD] 6
2.1.4 N,N,N’,N’-tetra[4-(4-diphenylaminobenzamido)phenyl]-m-phenylenediamine [MPD-(TPA)4] 7
2.1.5 N,N,N’,N’-tetra[4-(4-carbazol-9-ylbenzamido)phenyl]-m-phenylenediamine [MPD-(NPC)4] 8
2.1.6 Synthesis of Model Compound 9
2.2 Monomer Synthesis for Chapter 4 10
2.2.1 Materials 10
2.2.2 N,N,N’,N’-tetra(4-nitrophenyl)-p-phenylenediamine [TNPPPD] 11
2.2.3 N,N,N’,N’-tetra(4-aminophenyl)-p-phenylenediamine [TAPPPD] 12
2.2.4 N,N,N’,N’-tetra[4-(4-diphenylaminobenzamido)phenyl]-p-phenylenediamine [PPD-(TPA)4] 13
2.2.5 N,N,N’,N’-tetra[4-(4-carbazol-9-ylbenzamido)phenyl]-p-phenylenediamine [PPD-(NPC)4] 14
2.2.6 Synthesis of Model Compound 15
2.3 Instrumentation 16
2.4 Electrochemical Polymerization 17
2.5 Fabrication of Electrochromic Devices 17
CHAPTER 3 Electrochemical Synthesis of Electrochromic Polymeric Films from m-Phenylenediamine Derivatives 18
3.1 Monomer Synthesis 18
3.2 Electrochemical and Spectroelectrochemical Properties of Model Compound 26
3.3 Electrochemical Polymerization of Monomers 29
3.4 Optical Properties 36
3.5 Redox Response of Polymers 37
3.6 Spectroelectrochemical Properties of Polymers 41
3.7 Electrochromic Switching 45
3.8 Electrochromic Devices 48
CHAPTER 4 Electrochemical Synthesis of Electrochromic Polymeric Films from p-Phenylenediamine Derivatives 50
4.1 Monomer Synthesis 50
4.2 Electrochemical and Spectroelectrochemical Properties of Model Compound 58
4.3 Electrochemical Polymerization of Monomers 62
4.4 Optical Properties 70
4.5 Redox Response of Polymers 71
4.6 Spectroelectrochemical Properties of Polymers 77
4.7 Electrochromic Switching 82
4.8 Electrochromic Devices 89
CHAPTER 5 CONCLUSIONS 91
REFERENCES 92
REFERENCES

1.(a) D. R. Rosseinsky, R. J. Montimer, Electrochromic systems and the prospects for devices. Adv. Mater., 2001, 13, 783–793. (b) P. M. S. Monk, R. J. Mortimer, D. R. Rosseinsky, Electrochromism and Electrochromic Devices. Cambridge University Press, Cambridge, UK, 2007. (c) R. J. Mortimer, D. R. Rosseinsky, P. M. S. Monk, Electrochromic Materials and Devices. Weinheim: Wiley-VCH, Germany, 2015.
2.(a) R. J. Mortimer, A. L. Dyer, J. R. Reynolds, Electrochromic organic and polymeric materials for display applications. Displays, 2006, 27, 2−18. (b) P. M. Beaujuge, S. Ellinger, J. R. Reynolds, The donor-acceptor approach allows a black-to-transmissive switching polymeric electrochrome. Nat. Mater., 2008, 7, 795−799.
3.(a) R. Baetens, B. P. Jelle, A. Gustavsen, Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Sol. Energy Mater. Sol. Cells, 2010, 94, 87−105. (b) C. G. Granqvist, Electrochromics for smart windows: Oxide-based thin films and devices. Thin Solid Films, 2014, 564, 1−38.
4.www.gentex.com
5.(a) S. Beaupre, A. C. Breton, J. Dumas, M. Leclerc, Multicolored electrochromic cells base on poly(2,7-carbazole) derivatives for adaptive camouflage. Chem. Mater., 2009, 21, 1504−1513. (b) H. Yu, S. Shao, L. Yan, H. Meng, Y. He, C. Yao, P. Xu, X. Zhang, W. Hu, W. Huang, Side-chain engineering of green color electrochromic polymer materials: toward adaptive camouflage application. J. Mater. Chem. C, 2016, 4, 2269−2273.
6.N. Kobayashi, S. Miura, M. Nishimura, H. Urano, Organic electrochromism for a new color electronic paper. Sol. Energy Mater. Sol. Cells, 2008, 92, 136−139.
7.(a) C. Ma, M. Taya, C. Xu, Smart sunglasses based on electrochromic polymers. Polym. Eng. Sci., 2008, 48, 2224−2228. (b) A. M. Osterholm, D. E. Shen, J. A. Kerszulis, R. H. Bulloch, M. Kuepfert, A. L. Dyer, J. R. Reynolds, Four shades of brown: Tuning of electrochromic polymer blends toward high-contrast eyewear. ACS Appl. Mater. Interfaces, 2015, 7, 1413−1421.
8.(a) R. J. Mortimer, Electrochromic materials. Annu. Rev. Mater. Res., 2011, 41, 241−268. (b) D. T. Gillapie, R. C. Tenent, A. C. Dillon, Metal-oxide films for electrochromic applications: present technology and future directions. J. Mater. Chem., 2010, 20, 9585−9592. (c) F. S. Han, M. Higuchi, D. G. Kurth, Metallo-supramolecular polymers based on functionalized bis-terpyridines as novel electrochromic materials. Adv. Mater., 2007, 19, 3928−3931. (d) M. Higuchi, Electrochromic organic-metallic hybrid polymers: fundamentals and device applications. Polym. J., 2009, 41, 511−520. (e) Z.-J. Li, J.-Y. Shao, Y.-W. Zhong, Near-infrared and two-wavelength electrochromism based on nanocrystalline TiO2 films functionalized with Ruthenium-amine conjugated complexes. Inorg. Chem., 2017, 56, 8538−8546.
9.(a) P. M. Beaujuge, J. R. Reynolds, Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev., 2010, 110, 268−320. (b) P. M. Beaujuge, C. M. Amb, J. R. Reynolds, Spectral engineering in π-conjugated polymers with intramolecular donor-acceptor interactions. Acc. Chem. Res., 2010, 43, 1396−1407. (c) A. Patra, M. Bendikov, Polyselenophenes. J. Mater. Chem., 2010, 20, 422−433. (d) G. Gunbas, L. Toppare, Electrochromic conjugated polyheterocycles and derivatives—highlights from the last decade towards realization of long lived aspirations. Chem. Commun., 2012, 48, 1083−1101. (e) L. Beverina, G. A. Pagani, M. Sassi, Multichromophoric electrochromic polymers: color tuning of conjugated polymers through the side chain functionalization approach. Chem. Commun., 2014, 50, 5413−5430. (f) B. H. Bulloch, J. A. Kerszulis, A. L. Dyer, J. R. Reynolds, An electrochromic painter’s palette: Coloring mixing via solution co-processing. ACS Appl. Mater. Interfaces, 2015, 7, 1406−1412. (g) W. T. Neo, Q. Ye, S.-J. Chua, J. Xu, Conjugated polymer-based electrochromics: materials, device fabrication and application prospects. J. Mater. Chem. C, 2016, 4, 7364−7376. (h) X. Lv, W. Li, M. Ouyang, Y. Zhang, D. S. Wright, C. Zhang, J. Mater. Chem. C, 2017, 5, 12−28.
10.(a) M. Thelakkat, Star-shaped, dendrimeric and polymeric triarylamines as photoconductors and hole transport materials for electro-optical applications. Macromol. Mater. Eng., 2002, 287, 442−461. (b) Y. Shirota, Photo- and electroactive amorphous molecular materials—molecular design, syntheses, reactions, properties, and applications. J. Mater. Chem., 2005, 15, 75–93. (c) Y. Shirota, H. Kageyama, Charge carrier transporting molecular materials and their applications in devices. Chem. Rev., 2007, 107, 953–1010. (d) Z. Ning, H. Tian, Triarylamine: a promising core unit for efficient photovoltaic materials. Chem. Commun., 2009, 5483–5495. (e) A. Iwan, D. Sek, Polymers with triphenylamine units: photonic and electroactive materials. Prog. Polym. Sci., 2011, 36, 1277–1325. (f) M. Liang, J. Chen, Arylamine organic dyes for dye-sensitized solar cells. Chem. Soc. Rev., 2013, 42, 3453–3488.
11.(a) H.-J. Yen, G.-S. Liou, Solution-processable triarylamine-based electroactive high performance polymers for anodically electrochromic applications. Polym. Chem., 2012, 3, 255–264. (b) H.-J. Yen, G.-S. Liou, Recent advances in triphenylamine-based electrochromic derivatives and polymers. Polym. Chem., 2018, 9, 3001–3018.
12.(a) E. T. Seo, R. F. Nelson, J. M. Fritsch, L. S. Marcoux, D. W. Leedy, R. N. Adams, Anodic oxidation pathways of aromatic amines. Electrochemical and electron paramagnetic resonance studies. J. Am. Chem. Soc., 1966, 88, 3498–3503. (b) R. F. Nelson, R. N. Adams, Anodic oxidation pathways of substituted triphenylamines. II. Quantitative studies of benzidine formation. J. Am. Chem. Soc., 1968, 90, 3925–3930. (c) S. C. Creason, J. Wheeler, R. F. Nelson, Electrochemical and spectroscopic studies of cation radicals. I. Coupling rates of 4-substituted triphenylaminium ions. J. Org. Chem., 1972, 37, 4440–4446.
13.(a) J. F. Ambrose, R. F. Nelson, Anodic oxidation pathways of carbazoles I. Carbazole and N-substituted derivatives. J. Electrochem. Soc.: Electrochem. Sci., 1968, 115, 1159–1164. (b) J. F. Ambrose, L. L. Carpenter, R. F. Nelson, Electrochemical and spectroscopic properties of cation radicals III. Reaction pathways of carbazolium radical ions. J. Electrochem. Soc.: Electrochem. Sci. Technol., 1975, 122, 876–894.
14.(a) M.-k. Leung, M.-Y. Chou, Y. O. Su, C. L. Ching, H.-L. Chen, C. F. Yang, C.-C. Yang, C.-C. Lin, H.-T. Chen, Diphenylamino group as an effective handle to conjugated donor-acceptor polymers through electropolymerization. Org. Lett., 2003, 5, 839–842. (b) J. Natera, L. Otero, L. Sereno, F. Fungo, N. S. Wang, Y.-M. Tsai, T.-Y. Hwu, K.-T. Wong, A novel electrochromic polymer synthesized through electropolymerization of a new donor-acceptor bipolar system. Macromolecules, 2007, 40, 4456–4463. (c) C.-C. Chiang, H.-C. Chen, C.-s. Lee, M.-k. Leung, K.-R. Lin, K.-H. Hsieh, Electrochemical deposition of bis(N,N’-diphenylaminoaryl) substituted ferrocenes, and their application as a hole-injection layer on polymeric light-emitting diodes. Chem. Mater., 2008, 20, 540–552. (d) J. Natera, L. Otero, F. D’Eramo, L. Sereno, F. Fungo, N.-S. Wang, Y.-M. Tsai, K.-T. Wong, Synthesis and properties of a novel cross-linked electroactive polymer formed from a bipolar starburst monomer. Macromolecules, 2009, 42, 626–635. (e) M. I. Mangione, R. A. Spanevello, A. Rumbero, D. Heredia, G. Marzari, L. Fernandez, L. Otero, F. Fungo, Electrogenerated conductive polymers from triphenylamine end-capped dendrimers. Macromolecules, 2013, 46, 4754–4763. (f) S.-H. Hsiao, J.-W. Lin, Facile preparation of electrochromic poly(amine-imide) films from diimide compounds with terminal triphenylamino groups via electrochemical oxidative coupling reactions. Polym. Chem., 2014, 5, 6770−6778. (g) D. C. Santra, S. Mondal, S. Malik, Design of triphenylamine appended anthracene derivatives: electropolymerization and their electrochromic behavior. RSC Adv., 2016, 6, 81579−81606.
15.(a) S. Koyuncu, B. Gultekin, C. Zafer, H. Bilgili, M. Can, S. Demic, I. Kaya, S. Icli, Electrochim. Acta, 2009, 54, 5694–5702. (b) O. Usluer, S. Koyuncu, S. Demic, R. A. Janssen, J. Polym. Sci. Part B: Polym. Phys., 2011, 49, 333–341. (c) S.-H. Hsiao, J.-W. Lin, Facile fabrication of electrochromic poly(amine-amide) and poly(amine-imide) films via carbazole-based oxidative coupling electropolymerization. Macromol. Chem. Phys., 2014, 215, 1525–1532. (d) S.-H. Hsiao, J.-C. Hsueh, Electrochemical synthesis and electrochromic properties of new conjugated polycarbazoles from di(carbazol-9-yl)-substituted triphenylamine and N-phenylcarbazole derivatives. J. Electroana. Chem., 2015, 758, 100–110. (e) S.-H. Hsiao, S.-W. Lin, Electrochemical synthesis of electrochromic polycarbazole films from N-phenyl-3,6-bis(N-carbazolyl)carbazoles. Polym. Chem., 2016, 7, 198–211. (f) S.-H. Hsiao, S.-W. Lin, The electrochemical fabrication of electroactive polymer films from diamide- or diimide-cored N-phenylcarbazole dendrons for electrochromic applications. J. Mater. Chem. C, 2016, 4, 1271–1280. (g) M. I. Mangione, R. A. Spanevello, D. Minudri, D. Heredia, L. Fernandez, L. Otero, F. Fungo. Electropolimerization of functionalized carbazole end-capped dendrimers. Formation of conductive films. Electrochim. Acta, 2016, 207, 143–151. (h) A. Palma-Cando, U. Scherf, Electrochemically generated thin films of microporous polymer networks: Synthesis, properties, and applications. Macromol. Chem. Phys., 2016, 217, 827–841.
16.(a) S.-H. Hsiao and Y.-T. Chiu, Electrosynthesis and electrochromic properties of poly(amide-triarylamine)s containing triptycene units. RSC. Adv., 2015, 5, 90941−90951. (b) S.-H. Hsiao and J.-Y. Lin. Electrosynthesis of ambipolar electrochromic polymer films from anthraquinone-triarylamine hybrids. J. Polym. Sci., Part A: Polym. Chem., 2016, 54, 644−655. (c) S.-H. Hsiao, H.-M. Wang, Facile fabrication of redox-active and electrochromic poly(amide-amine) films through electrochemical oxidative coupling of arylamino groups. J. Polym. Sci., Part A: Polym. Chem., 2016, 54, 2476−2485. (d) S.-H. Hsiao, H.-M. Wang, Electrochemically fabricated electrochromic films from 4-(N-carbazolyl)- triphenylamine and its dimethoxy derivatives. RSC Adv., 2016, 6, 43470-43479. (e) S.-H. Hsiao, L.-C. Wu, Fluorescent and electrochromic polymers from 2,8-di(carbazol-9-yl)dibenzothiophene and its S,S-dioxide derivative. Dyes Pigments, 2016, 134, 51–63. (f) S.-H. Hsiao, J.-S. Han, Redox-active and electrochromic polymers from triarylamine end-capped, 2,7-bis(diphenylamino)naphthalene-cored dicarboxamides. Eur. Polym. J., 2017, 90, 122–135. (g) S.-H. Hsiao, Y.-Z. Chen, Electroactive and ambipolar electrochromic polyimides from arylene diimides with triphenylamine N-substituents. Dyes and Pigments, 2017, 144, 173–183. (h) S.-H. Hsiao, H.-Y. Lu, Electrosynthesis of aromatic poly(amide-amine) films from triphenylamine-based electroactive compounds for electrochromic applications. Polymers, 2017, 9, 708. (i) S.-H. Hsiao, Y.-Z. Chen, Electrosynthesis of redox-active and electrochromic polymer films from triphenylamine-cored star-shaped molecules end-capped with arylamine groups. Eur. Polym. J., 2018, 99, 422–436. (j) S.-H. Hsiao, Y.-P. Huang, Redox-active and fluorescent pyrene-based triarylamine dyes and their derived electrochromic polymers. Dyes and Pigments, 2018, 158, 368–381. (k) S.-H. Hsiao, H.-Y. Lu, Electrosynthesis and photoelectrochemistry of bis(triarylamine)-based polymer electrochromes. J. Electrochem. Soc., 2018, 165, H638–H645.
17.C. Lambert, G. Noll, The class II/III transition in triarylamine redox systems. J. Am. Chem. Soc., 1999, 121, 8434–8442.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔