跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/18 04:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡柏緣
研究生(外文):TSAI, BO-YUAN
論文名稱:鋰鎳鈷錳/鋰鎳鈷鋁三元鋰離子電池正極材料之製備與電化學性質之研究
論文名稱(外文):The Preparation and Electrochemical Performance of Cathode Materials of Lithium Nickel Manganese Cobalt Oxide and Lithium Nickel Cobalt Aluminium Oxide
指導教授:蔡德華
指導教授(外文):TSAI, TEH-HUA
口試委員:蘇至善洪桂彬張裕祺蔡德華
口試委員(外文):SU, JHIH-SHANHONG, GUEI-BINJANG, YU-CHITSAI, TEH-HUA
口試日期:2019-07-04
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:135
中文關鍵詞:正極材料NCMNCA三元鋰電池共沉澱法氫氧化鈉氫氧化鋰
外文關鍵詞:Cathode materialNCMNCATernary lithium-ion batteryCo-precipitation methodsodium hydroxidelithium hydroxide
相關次數:
  • 被引用被引用:2
  • 點閱點閱:372
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
LiNi0.5Co0.2Mn0.3O2 (NCM) 此材料為目前中國大陸使用率較高的三元正極材料。而日本則是以鋁代替錳合成 LiNi0.8Co0.1Al0.1O2(NCA),希望藉由不同離子摻雜可以增強材料的穩定性,提高材料的循環性能。但在製作過程中,由於Al為兩性金屬,不易沉澱,因此NCA材料製作工藝上存在門檻。本實驗藉由比較NCA及NCM各種條件下可以表現出最好的電容量及穩定性。
採用硫酸鎳、硫酸鈷、硫酸鋁、硫酸錳、鋁酸鈉、氫氧化納為原料,在共沉澱法中進行合成,製備前驅物,再與氫氧化鋰進行高溫煅燒,得LiNi0.5Co0.2Mn0.3O2 / LiNi0.8Co0.1Al0.1O2 粉末。本實驗探討了共沉澱法系統中pH質改變、氨水濃度改變、錳和鋁差別及鋁源不同對LiNi0.5Co0.2Mn0.3O2 / LiNi0.8Co0.1Al0.1O2粉末的影響。並使用 XRD、振實密度儀、SEM、ICP-OES、DLS、與電化學分析儀,觀察其材料的結晶、TD大小、表面形貌、元素組成、粒徑大小及電化學性能的測試。
由實驗結果得知,利用硫酸鈷、硫酸鎳、硫酸錳、氫氧化鈉為原料使用共沉澱法在pH值9、氨水mole比為0.5,進行前驅粉合成,並與氫氧化鋰做二次煅燒,第一次煅燒溫度為450°C煅燒4小時,第二次煅燒溫度為850°C煅燒8小時,有最佳的電化學性質(初次放電量為221.01 mAhg-1,其電容衰退率為0.5 %,變速率30次循環充放電衰退率為5.872%)。

LiNi0.5Co0.2Mn0.3O2 (NCM) This material is a ternary cathode material with high utilization rate in China. In Japan, LiNi0.8Co0.1Al0.1O2 (NCA) is synthesized by aluminum instead of manganese. It is hoped that the doping of different ions can enhance the stability of the material and improve the cycle performance of the material. However, in the production process, since Al is an amphoteric metal, it is not easy to precipitate, so there is a threshold for the production process of NCA materials. This experiment can show the best capacitance and stability by comparing NCA and NCM under various conditions.
Using nickel sulfate, cobalt sulfate, aluminum sulfate, manganese sulfate, sodium aluminate, sodium hydroxide as raw materials, the synthesis is carried out in a coprecipitation method to prepare a precursor, and then calcined with lithium hydroxide at a high temperature to obtain LiNi0.5Co0.2Mn0.3O2 / LiNi0.8Co0.1Al0.1O2 powder. In this experiment, the effects of pH change, ammonia concentration change, manganese and aluminum difference and aluminum source on LiNi0.5Co0.2Mn0.3O2 / LiNi0.8Co0.1Al0.1O2 powder were investigated. XRD, tap density meter, SEM, ICP-OES, DLS, and electrochemical analyzer were used to observe the crystallization, TD size, surface morphology, elemental composition, particle size and electrochemical performance of the material.
According to the experimental results, it is known that cobalt sulfate, nickel sulfate, manganese sulfate, and sodium hydroxide are used as raw materials to synthesize the precursor at a pH of 9, and the ammonia ratio of the ammonia is 0.5, and the two step calcinations with lithium hydroxide. First calcined temperature at 450°C for 4 hours, second calcined temperature at 850°C for 8 hours, under these conditions can maintain the best electrochemical properties(The initial discharge is 221.01 mAhg-1, the capacitance decay rate is 0.5%, and the rate of charge and discharge decay rate of 30 cycles is 5.872%.).

摘 要 i
Abstract ii
誌 謝 iv
目 錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機及目的 2
1.3 論文研究架構 3
第二章 文獻回顧 5
2.1 鋰離子電池簡介 5
2.1.1 鋰離子電池工作原理 5
2.1.2 鋰離子電池之類型介紹 7
2.2 正極材料之介紹 9
2.2.1 正極材料之LiCoO2 9
2.2.2 正極材料之LiNiO2 10
2.2.3 LiMn2O4之正極材料 11
2.2.4 LiFePO4之正極材料 12
2.2.5 LiNi1-x-yCoxMnyO2正極材料 13
2.2.6 LiNi1-x-yCoxAlyO2正極材料 14
2.3 正極材料的製備方法 15
2.3.1 高溫固相法 15
2.3.2 溶膠凝膠法 18
2.3.3 噴霧乾燥法 21
2.3.4 水熱法 25
2.3.5 共沉澱法 28
2.3.6 微波法 31
第三章 實驗設備與方法 35
3.1 實驗藥品及材料 35
3.1.1 合成正極材料使用藥品 35
3.1.2 組裝鈕扣電池之材料 39
3.2 實驗器材與分析儀器 41
3.3 實驗儀器介紹 45
3.3.1 X-光繞射分析儀(X-ray diffraction, XRD) 45
3.3.2 掃描式電子顯微鏡(Scanning electron microscope, SEM) 45
3.3.3 雷射繞射粒徑分佈分析儀(Laser Diffraction Scattering, LDS) 46
3.3.4 振實密度量測儀 (Tap Density Instrument) 46
3.3.5 感應耦合電漿發射光譜分析儀 47
(Inductively coupledplasma-optical emission spectrometry, ICP-OES) 47
3.4 前驅體共沉澱法合成裝置圖 48
3.5 實驗流程 49
3.5.1 Ni0.5Co0.2Mn0.3 (OH)2前驅體製備及改變之條件 49
3.5.2 Ni0.8Co0.1Al0.1 (OH)2前驅體製備條件 50
3.5.3 LiNi0.5Co0.2Mn0.3O2正極材料製備 50
3.5.4 LiNi0.8Co0.1Al0.1O2正極材料製備 50
3.5.5 確認起始原料濃度 52
3.5.6 前驅粉及正極材料分析過程 52
3.5.7 正極極片製備 53
3.5.8 手套箱操作流程及檢查表 54
3.5.9 鈕扣型電池組裝 56
第四章 結果與討論 58
4.1 ICP 成分分析 58
4.1.1 NCM正極材料之 ICP-OES 分析 58
4.1.2 NCA正極材料之 ICP-OES 分析 60
4.2 前驅體TD量測 61
4.3 前驅體粒徑分析 62
4.3.1 NCA 62
4.3.2 NCM 63
4.4 前驅粉SEM分析 65
4.5 XRD 晶格結構分析 78
4.6 煅燒後正極材料SEM分析 83
4.7 電化學分析 92
第五章 結論 122
符號說明 124
參考文獻 125


[1]何崇銘,“磷酸鋰釩膠態電解質電池之研究”,碩士論文,國立中興大學物理研究所,台中,2014。
[2]柯賢文,“鋰電池”,科學發展,482, 50-59, 2013。
[3]林幸慧,“鋰電池市場發展趨勢”,材料世界網,
https://www.materialsnet.com.tw/DocView.aspx?id=37891, 2019。
[4]“淺談鋰離子電池技術”,https://blog.xuite.net/joh3622/johnason/112606364-%E6%B7%BA%E8%AB%87%E9%8B%B0%E9%9B%A2%E5%AD%90%E9%9B%BB%E6%B1%A0%E6%8A%80%E8%A1%93+%28%E8%BD%89%E8%BC%89%29, 2011。
[5]旺材鋰電,“高鎳三元鋰電池,鎳含量提高有什麼影響? ”,
https://kknews.cc/zh-tw/news/nroele5.html, 2019。
[6]高工鋰電網,“正極材料NCA含量測定標準 2019年4月1日起正式實施”,
https://kknews.cc/zh-tw/news/r3lmozn.html, 2018。
[7]黃俊誠博士, 陳藹然博士,“鋰電池(Lithium Battery)”,
http://highscope.ch.ntu.edu.tw/wordpress/?p=5091, 2009。
[8]吳宇平、萬春榮、姜長印,鋰離子2次電池,北京,化學工業出版社,2002。
[9]陳登峻,“鋰鎳鈷錳三元鋰離子電池正極材料電化學性質之研究”,碩士論文,國立台北科技大學化學工程與生物科技研究所,台北,2016。
[10]黃可龍、王兆翔、劉素琴,鋰離子電池原理與關鍵技術,北京,化學工業出版社,第8頁,2007。
[11]吳宇平、戴曉兵、馬軍旗、程預江編著,鋰離子二次電池-應用與實踐,化學工業出版社,2004。
[12]粉體圈,“技術常用鋰電池正極材料性能比較分析”,
https://kknews.cc/zh-tw/finance/2929rpz.html,2015。
[13]Sergey Shashkov and Pavel Dorozhkin,“AFM–RAMAN CHARACTERIZATION OF LI-ION BATTERIES”,
https://www.ntmdt-si.com/resources/applications/afm-raman-characterization-of-li-ion-batteries, 2017.
[14]Xiaoting,“鋰電池正極材料鎳酸鋰”, 鎢的知識,
http://news.chinatungsten.com/big5/tungsten-information/110891-ti-16208,2018。
[15]Hirano, A. , R. Kanno, Y. Kawamoto, Y. Takeda, K. Yamaura , M. Takano, K. Ohyama, M. Ohashi and Y. Yamaguchi, “Relationship between non-stoichiometry and physical properties in LiNiOz ”, Solid State Ionics , 78,123-131, 1995.
[16]Yang, Shuo, Melanie Homberger, Michael Noyong and Ulrich Simon,“Polyol mediated synthesis and electrochemical performance of nanostructured LiMn2O4 cathodes”, Int. J. Electrochem. Sci., 11, 10847-10862, 2016.
[17]旺材鋰電,“詳解三類鋰離子電池正極材料的工作原理”,
https://kknews.cc/zh-tw/car/8lp24ol.html, 2018。
[18]儲能盒子,“匯總|常見六種鋰電池特性及參數對此”,
https://kknews.cc/zh-tw/digital/kmz42lb.html, 2018。
[19]By Janina Molenda and Marcin Molenda,“Composite Cathode Material for Li-Ion Batteries Based on LiFePO4 System”,
https://www.intechopen.com/books/metal-ceramic-and-polymeric-composites-for-various-uses/composite-cathode-material-for-li-ion-batteries-based-on-lifepo4-system-,2017.
[20]Koyama, Y., N. Yabuuchi, I. Tanaka, H. Adachi, and T. Ohzuku, “Solid-State Chemistry and Electrochemistry of LiCo1/3Ni1/3Mn1/3O2 for Advanced Lithium-Ion Batteries-I. First-Principles Calculation on the Crystal and Electronic Structures”, Journal of The Electrochemical Society, A1545-A1551 , 2004.
[21]中國粉體網,“動力電池技術路線之爭,誰將成為新能源汽車的「心臟」?”,
https://kknews.cc/zh-tw/car/jz9p55l.html, 2017。
[22]日本化學產業株式會社,“鋰離子二次電池有關陰極材料”,
http://www.nihonkagakusangyo.co.jp/products/yakuhin/nca.html, 2019。
[23]刘嘉铭、张英杰、董 鹏、李 雪、夏书标, “锂离子电池正极材料高镍LiNi1−x−yCoxMnyO2 研究进展”, 硅 酸 盐 学 报,44,0454-5648,2016。
[24]Hea, Yu-Shi, Zi-Feng Ma, Xiao-Zhen Liao and Yi Jiang, “Synthesis and characterization of submicron-sized LiNi1/3Co1/3Mn1/3O2 by a simple self-propagating solid-state metathesis method”, Jorenal of Power Sources, 163, 1053-1058, 2007.
[25]Ding, Xiang, Yi-xuan Li, Miao-miao Deng, Shuo Wang, Yasmin Aqsa, Qiao Hu and Chun-hua Chen,“Cesium doping to improve the electrochemical performance of layered Li1.2Ni0.13Co0.13Mn0.54O2 cathode material”, Journal of Alloys and Compounds, 791, 100-108, 2019.
[26]Luo, Xufang, Xianyou Wang, Li Liao, Sergio Gamboa and P. J. Sebastian, “Synthesis and characterization of high tap-density layered Li[Ni1/3Co1/3Mn1/3]O2 cathode material via hydroxide co-precipitation”, Journal of Power Sources, 158, 654–658, 2006.
[27]Xi, Yukun, Yan Liu, Dengke Zhang, Shuangling Jin, Rui Zhang and Minglin Jin, “Comparative study of the electrochemical performance of LiNi0.5Co0.2Mn0.3O2 and LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion batteries”, Solid State Ionics, 327, 27-31, 2018.
[28]黃可龍、王兆翔、劉素琴、馬振基,鋰離子電池原理與技術,臺北市,五南圖書出版公司,2010。
[29]Shi, Yang, Minghao Zhang, Chengcheng Fang and Ying Shirley Meng, “Urea-based hydrothermal synthesis of LiNi0.5Co0.2Mn0.3O2 cathode material for Li-ion battery”, Journal of Power Sources, 394, 114-121, 2018.
[30]Pan, Cheng-chi, Craig E. Banks, Wei-xin Song, Chi-wei Wang, Qi-yuan Chen and Xiao-bo Ji, “Recent development of LiNixCoyMnzO2: Impact of micro/nano structures for imparting improvements in lithium batteries”, Transactions of Nonferrous Metals Society of China, 23, 108−119, 2013.
[31]Zhanga, Na, Xiaoyu Zhanga, Erbo Shic, Shiyong Zhaoc, Kezhu Jianga, Di Wanga, Pengfei Wanga, Shaohua Guoa, Ping Hea and Haoshen Zhouab, “In situ X-ray diffraction and thermal analysis of LiNi0.8Co0.15Al0.05O2 synthesized via co-precipitation method”, Journal of Energy Chemistry, 27, 1655-1660, 2018.
[32]各種電磁波頻率範圍圖,
http://zh.wikipedia.org/wiki/%E7%94%B5%E7%A3%81%E6%B3%A2。
[33]Lu, Chung-Hsin and Bo-Jun Shen, “Electrochemical characteristics of LiNi1/3Co1/3Mn1/3O2 powders prepared from microwave-hydrothermally derived precursors”, Journal of Alloys and Compounds, 497, 159-165, 2010.
[34]許樹恩、吳泰伯,X光繞射繞射原理與材料結構分析,新竹縣,中國材料科學學會,第3-4頁,1993。
[35]粉體粒徑分析儀 MASTERSIZER 2000說明書(MALVERN, UK),
http://www.mse.ntu.edu.tw/~weigroup/data/service/Particle_size.pdf。
[36]Malvern雷射繞射粒徑分佈分析儀Mastersizer系列說明書(粒徑範圍0.02um~2000um),
https://www.dksh.com/tw-zh-Hant/products/malvern-%E9%9B%B7%E5%B0%84%E7%B9%9E%E5%B0%84%E7%B2%92%E5%BE%91%E5%88%86%E4%BD%88%E5%88%86%E6%9E%90%E5%84%80mastersizer-%E7%B2%92%E5%BE%91%E7%AF%84%E5%9C%8D0.02um-2000um。
[37]振實密度分析儀網站版說明書,
http://www.gdky.com.tw/tapdensity.html。
[38]He, Kun, Zewen Ruan, Xiangguo Teng and Yongming Zhu, “Facile synthesis and electrochemical properties of spherical LiNi0.85−xCo0.15AlxO2 with sodium aluminate via co-precipitation”, Materials Research Bulletin, 90, 131-137, 2017.
[39]Myung, Seung-Taek, Myung-Hun Lee, Shinichi Komaba, Naoaki Kumagai and Yang-Kook Sun, “Hydrothermal synthesis of layered Li[Ni1/3Co1/3Mn1/3]O2 as positive electrode material for lithium secondary battery”, Electrochimica Acta, 50, 4800-4806, 2005.
[40]Liu, Zhaolin, Aishui Yu and Jim Y. Lee, “Synthesis and characterization of LiNi1-x-yCox MnyO2 as the cathode materials of secondary lithium batteries”, Journal of Power Sources, 81-82, 416-419, 1999.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊