[1] 林厚勳,鋰電池-才是未來電動車的發展關鍵,鉅亨網,2018。
https://buzzorange.com/techorange/2018/07/09/lion-battery-is-the-future-of-eletric-car/
[2] 三元電池的趨勢 可望改善鈷供給吃緊的狀態,鉅亨網,2018。
https://news.cnyes.com/news/id/4005915
[3] Woo, Oh Sung, Sang Ho Park, Chul-Wan Park and Yang-Kook Sun, “Structural and electrochemical properties of layered Li[Ni0.5Mn0.5]1−xCoxO2 positive materials synthesized by ultrasonic spray pyrolysis method” Solid State Ionics, Volume 171, Issues 3–4, 167-172, 2004.
[4] Chen, Ching-Hsiang, Chih-Jen Wang and Bing-Joe Hwang, “Electrochemical performance of layered Li[NixCo1−2xMnx]O2 cathode materials synthesized by a sol–gel method”, Journal of Power Sources, Volume 146, Issues 1–2, 626-629, 2005.
[5] Lee, K. S. , S. T. Myung and K. Amine, “Structural and Electrochemical Properties of Layered Li [ Ni1 − 2xCoxMnx ] O2 ( x = 0.1 – 0.3 ) Positive Electrode Materials for Li-Ion Batteries”, Journal of The Electrochemical Society, 154, A971-A977, 2007.
[6] Eom, J and M. G. Kim, “Storage Characteristics of LiNi0.8Co0.1 + xMn0.1 − xO2 (x = 0 , 0.03, and 0.06) Cathode Materials for Lithium Batteries”, Journal of The Electrochemical Society, 155, A239-A247, 2008.
[7] Li, Ling-jun, Xin-hai Li and Zhi-xing Li, “A simple and effective method to synthesize layered LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion battery” Powder Technology, Volume 206, Issue 3, 353-357, 2011.
[8] Zhang, Bao, Ling jun Li and Jun chao Zheng, “Characterization of multiple metals (Cr, Mg) substituted LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion battery”, Journal of Alloys and Compounds, Volume 520, 190-194, 2012.
[9] Woo, S. U., B. C. Park and S. T. Myung, “Improvement of Electrochemical Performances of Li [ Ni0.8Co0.1Mn0.1 ] O2 Cathode Materials by Fluorine Substitution”, Journal of The Electrochemical Society, 154, A649- A655, 2007.
[10] Kim, Myung Hyoon, Ho-Suk Shin, Dongwook Shin and Yang-Kook Sun, “Synthesis and electrochemical properties of Li[Ni0.8Co0.1Mn0.1]O2 and Li[Ni0.8Co0.2]O2 via co-precipitation”, Journal of Power Sources, Volume 159, Issue 2, 22, 1328-1333, 2006.
[11] Woo, S. W., S.-T. Myung, H. Bang, D.-W. Kim and Y.-K. Sun, “Improvement of electrochemical and thermal properties of Li[Ni0.8Co0.1Mn0.1]O2 positive electrode materials by multiple metal (Al, Mg) substitution”, Electro chimica Acta, Volume 54, Issue 15, 3851-3856, 2009.
[12] Gao, Hongyan, Shuai Liu, Yafei Li and Eric Conte, “A Critical Review of Spinel Structured Iron Cobalt Oxides Based Materials for Electrochemical Energy Storage and Conversion”, Energies, 2017.
[13] 溫添進 “鋰離子高分子電池之研究發展簡述”,科學發展月刊,第29卷 第7期,p.498-p.503,2001。
[14] 吳偉新、吳笙卉 “高安全鋰金屬負極材料”,工業材料雜誌,375期,p.54-p.64, 2018。
[15] 嚴珮華 “鋰電池為什麼會爆炸?防爆發明在台灣”,天下雜誌,2016。
https://www.cw.com.tw/article/article.action?id=5078444
[16] 唐致遠 “鋰離子電池容量衰減機理的研究進展”,天津大學化工學院應用化學系碩士論文,第17卷 第1期,p.1-p.7,2005。
[17] Li, J., J. M. Zheng and Y. Yang, “Studies on Storage Characteristics of LiNi0.4Co0.2Mn0.4O2 as Cathode Materials in Lithium-Ion Batteries”, The Electrochemical Society, Volume 154, issue 5, A427-A432, 2007.
[18] 歐寶蔚,“鋰電子電池0.5Li2MnO3-0.5LiMn1/3Co1/3Ni1/3O2正極材料合成及其性質研究” 元智大學化學工程與料科學學系碩士論文,p.8-p.10,2015。[19] Yu, C., G. Li and X. Guan, “Composite Li(Li0.11Mn0.57Ni0.32)O2:Two-step molten-salt synthesis, oxidation state stabilization, and uses as high-voltage cathode for lithium-ion batteries”, Journal of Alloys and Compounds, Volume 528, p.121-p.125, 2012.
[20] 呂承璋、鄭敬哲、陳金銘 “鋰離子電池矽基負極材料之開發”,工業材料雜誌,338期,p.59-p.70,2015。
[21] 陳俊賢,“錳取代鋰鈷鎳氧化物鋰電池陰極材料之研究”,台灣科技大學碩士論文,2002。[22] Mizushima, K., P. C. Jones, P. J. Wiseman and J. B. Goodenough, “Li xCoO2(0< x<-1): A new cathode material for batteries of high energy density”, Materials Research Bulletin, 15(6), p.783- p.789, 1980.
[23] 黃炳照 “先進鋰離子電Li(NiMn)1/2O2正極材料之研究(II)研究成果報告”,行政院國家科學委員會專題研究計畫,p.2-p.3,2009。
[24] Grigor, Warwick, “Analyzing Li-ion Batteries Using Combined Atomic Force. Microscopy and Raman Microscopy”, NT-MDT Spectrum Instruments, https://www.azonano.com/article.aspx?ArticleID=3053, 2015.
[25] トヨタ自動車株式会社 、株式会社デンソー,“リチウム二次電池正極活物質用リチウムニッケル複合酸化物、それを用いたリチウム二次電池およびその特性評価方法”,トヨタ自動車株式会社株式会社デンソー株式会社豊田中央研究所,1999
[26] Rougier, A., P. Gravereau and C. Delmas, “Optimization of the Composition of the Li1-ZNi1+ZO2 Electrode Materials:Structural, Magnetic, and Electrochemical Studies”, The Electrochemical Society, 143, 1168-1179, 1996.
[27] 黃可龍、王兆翔、劉素琴、馬振基,鋰離子電池原理與技術,臺北市,五南圖書出版公司,2010。
[28] Cho, J. and M. M. Thackeray, “Structure change of LiMn2O4 spinel electrodes during electrochemical cycling”, Electrochem.Soc., 146, 3577-3581, 1999.
[29] Eiji, Hosono, Tetsuichi Kudo, Itaru Honma, Hirofumi Matsuda and Haoshen Zhou, “Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density”, Nano Letters, 9, 1045-1051, 2009.
[30] Helon polymer batteries 之網頁
http://www.szhlenergy.com/A/?C-2-21.Html
[31] Liu, Zhaolin, Aishui Yu and Jim Y. Lee, “Synthesis and characterization of LiNi1-x-yCox MnyO2 as the cathode materials of secondary lithium batteries”, Journal of Power Sources, 81-82, 416-419, 1999.
[32] Shen, Bo-Jun, Jeng-Shin Ma, Hung-Chun Wu and Chung-Hsin Lu, “Microwave-mediated hydrothermal synthesis and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 powders”, Materials Letters , 62 , pp.4075–4077 , 2008.
[33] 我國鋰離子電池三元鎳鈷錳正極材料存在的問題與挑戰http://www.cbea.com/ldc/201811/998535.html
[34] 徐群杰、周羅增、劉明爽、潘紅濤、劉先欽, “鋰離子電池三元正極材料[Li-Ni-Co-Mn-O]的研究進展“, 上海電力學院學報,28(2), p p. 143-148, 2012.
[35] Numata, K., Sakaki C. and Yamanaka S., “ Synthesis of solid solutions in a system of LiCoO2-Li2MnO3 for cathode materials of secondary lithium batteries”, Chem. Lett. , 725−726,1997.
[36] Tabuchia, Mitsuharu, Akiko Nakashimaa, Hikari Shigemuraa, Kazuaki Adoa, Hironori Kobayashia, Hikari Sakaebea, Hiroyuki Kageyama, Tatsuya Nakamurab, Masao Kohzakic, Atsushi Hiranod and Ryoji Kannoe, “Synthesis cation distribution, and electrochemical properties of Fe-substituted Li2MnO3 as a novel 4V positive electrode material”, J. Electrochem, Soc.149(5): A509−A524, 2002.
[37] 趙煜娟, 馮海蘭, 趙春松, 孫召琴,“鋰離子電池富鋰正極材料 xLi2MnO3· (1−x) LiMO2 (M=Co, Fe, Ni1/2Mn1/2...)的研究進展 ” 科學通報,第57卷,第27期,25702586,2012。
[38] Koyama, Yukinori, Naoaki Yabuuchi, Isao Tanaka, Hirohiko Adachi and Tsutomu Ohzuku, “Solid-State Chemistry and Electrochemistry of LiCo1/3Ni1/3Mn1/3O2 for Advanced Lithium-Ion Batteries I. First-Principles Calculation on the Crystal and Electronic Structures”, Journal of The Electrochemical Society, A1545-A1551 , 2004.
[39] Hui, Tong, Pengyuan Dong, Jiafeng Zhanga and Junchao Zheng, “Cathode material LiNi0.8Co0.1Mn0.1O2/LaPO4 with high electrochemical performance for lithium-ion batteries”, Journal of Alloys and Compounds, Volume 764, Pages 44-50, 2018.
[40] Huang, Yue and Zhi-xing Wang, “Synthesis of Ni0.8Co0.1Mn0.1(OH)2 precursor and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium batteries”, Transactions of Nonferrous Metals Society of China, Volume 25, Issue 7, Pages 2253-2259, 2014.
[41] Lu, Huaquan, Haitao Zhou, Ann Mari Svensson and Anita Fossdal, “High capacity Li[Ni0.8Co0.1Mn0.1]O2 synthesized by sol–gel and co-precipitation methods as cathode materials for lithium-ion batteries”, Solid State Ionics, Volumes 249–250, Pages 105-111, 2013.
[42] Luo, Xufang, Xianyou Wang, Li Liao, Sergio Gamboa and P. J. Sebastian, “Synthesis and characterization of high tap-density layered Li[Ni1/3Co1/3Mn1/3]O2 cathode material via hydroxide co-precipitation”, Journal of Power Sources, 158, 654–658, 2006.
[43] Xi, Yukun, Yan Liu, Dengke Zhang and Shuangling Jin, “Comparative study of the electrochemical performance of LiNi0.5Co0.2Mn0.3O2 and LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion batteries”, Solid State Ionics, Volume 327, Pages 27-31, 2018.
[44] Wang, D., X. Li, Z. Wang, H. Guo, Z. Huang, L. Kong and J. Ru, “Improved high voltage electrochemical performance of Li2ZrO3-coated LiNi0.5Co0.2Mn0.3O2 cathode material”, J. Alloys Compd. , 647, pp. 612-619, 2015.
[45] Hu, G.R., M. F. Zhang, L. W. Liang, Z. D. Peng, K. Du and Y. B. Cao, “Mg-Al-B cosubstitution LiNi0.5Co0.2Mn0.3O2 cathode materials with improved cycling performance for lithium-ion battery under high cutoff voltage”, Electrochim Acta, 190, pp. 264-275, 2016.
[46] Savut, Jan S., S. Nurgul, Xiaoqin Shi, Hui Xia and Huan Pang, “Improvement of electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material by graphene nanosheets modification”, Electrochim. Acta, 149, p.86-p.93, 2014.
[47] Xu, J., S. L. Chou, Q. F. Gu, H. K. Liu and S. X. Dou, “The effect of different binders on electrochemical properties of LiNi1/3Mn1/3Co1/3O2 cathode material in lithium ion batteries”, J. Power Sources, 225, pp. 172-178, 2013.
[48] Zhang, Linsen, Huan Wang, Lizhen Wang and Yang Cao, “High electrochemical performance of hollow corn-like LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries”, Applied Surface Science, Volume 450, Pages 461-467, 2018.
[49] Lu, Z. and J. R. Dahn, “Understanding the anomalous capacity of Li/Li[Ni × Li(1/3−2x/3)Mn(2/3−x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies”, J. Electrochem. Soc., 149, pp. A815-A822, 2002.
[50] Feng, W., J. Tian, Y. F. Su, W. Jing, C. Z. Zhang, L. Y. Bao, H. Tao, J. H. Li, and C. Shi, “Effect of Ni2+ content on lithium/nickel disorder for Ni-rich cathode materials”, ACS Appl. Mater. Interf., 7702-7708, 2015.
[51] Lee, S. W., H. Kim, M. S. Kim, H. C. Youn, K. Kang, B. W. Cho, K. C. Roh and K. B. Kim, “Improved electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material synthesized by citric acid assisted sol-gel method for lithium ion batteries”, J. Power Sources, 315, pp. 261-268, 2016.
[52] 各種電磁波頻率範圍圖,
http://zh.wikipedia.org/wiki/%E7%94%B5%E7%A3%81%E6%B3%A2
[53] 魏祺峻,“以微波法製備二氧化釩之研究”,台北科技大學化學工程所碩士論文,p.23-p.25,2010。[54] 陳柏翰,“以二氧化鈦提升鋰離子電池LiNi1/3Co1/3Mn1/3O2正極材料電化學性質之研究”,台北科技大學化學工程所碩士論文,2015。[55] Zhao, Ruirui and Jianlin Miao, “Synthesis of layered materials by ultrasonic/microwave-assisted coprecipitation method: A case study of LiNi0.5Co0.2Mn0.3O2”, Sustainable Materials and Technologies, Volume 18, December 2018.
[56] Lee, Ki-Soo and Seung-Taek Myung, “Microwave synthesis of Spherical Li(Ni0.4Co0.2Mn0.4)O2 Powders as a positive electrode material foe lithium batteries”, Electrochimica Acta, Volume 53 p.3065-3074, 2007.
[57] Lu, Chung-Hsin and Bo-Jun Shen, “Electrochemical characteristics of LiNi1/3Co1/3Mn1/3O2 powders prepared from microwave-hydrothermally derived precursors”, Journal of Alloys and Compounds, 497, 159-165, 2010.
[58] McMahon, Jeff, “Innovation Is Making Lithium-Ion Batteries Harder To Recycle”, 2018.
https://www.forbes.com/sites/unicefusa/2019/01/04/a-special-thank-you-to-unicef-supporters-from-the-worlds-children/#25022cbe4c4d
[59] Gardiner, Joey, “The rise of electric cars could leave us with a big battery waste problem”, The Guardian, 2017.
https://www.theguardian.com/sustainable-business/2017/aug/10/electric-cars-big-battery-waste-problem-lithium-recycling
[60] 李洪枚、姜亢,“廢舊鋰離子電池對環境污染的分析與對策”,上海環境科 23 卷,第 5 期,p.201-p.203,2004。
[61] Shin, Shun Myung, Nak Hyoung Kim, Jeong Soo Sohn and Dong Hyo Yang, “Development of a metal recovery process from Li-ion battery wastes”, Hydrometallurgy, Volume 79, Issues 3–4, Pages 172-181, 2005.
[62] Li, Jinhui, Pixing Shi, Zefeng Wang, Yao Chen and Chein-Chi Chang, “A combined recovery process of metals in spent lithium-ion batteries”, Chemosphere, Volume 77, Issue 8, Pages 1132-1136, 2009.
[63] Dunn, J. B. , L. Gaines, M. Barnes, M. Wang and J. Sullivan, “Material and Energy Flows in the Materials Production, Assembly, and End-of-life Stages of the Automotive Lithium-ion Battery Life Cycle”, Argonne National Lab, Argonne IL, p.34-p.53, 2014.
[64] Georgi-Maschler, T., B. Friedricha, R. Weyhe and H. Heegn, “Development of a recycling process for Li-ion batteries”, Journal of Power Sources, Volume 207, p.173-p.182, 2012.
[65] Huang, Bin and Zhefei Pan, “Recycling of lithium-ion batteries: Recent advances and perspectives”, Journal of Power Sources, Volume 399, Pages 274-286, 2018.
[66] Chen, Renjie , Feng Sun, Feng Wu and Jianrui Liu, “ Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process”, Hydrometallurgy, 108,220–225, 2011.
[67] Zhao, J. M., X. Y. Shen, F. L. Deng and F. C. Wang, “Synergistic extraction and separation of valuable metals from waste cathodic material of lithium ion batteries using Cyanex272 and PC-88A”, Separation and Purification Technology, 345–351, 2011.
[68] 第十二章 化學沉澱法
http://course.xauat-hqc.com/hj/swrkzgc/content/main04/12.1.html
[69] 林麗娟,“X光繞射原理及其應用”,工業材料86期,p.100-p.109,1994。
[70] 羅聖全,“科學基礎研究之重要利器—掃瞄式電子顯微鏡(SEM)”,科學研習,第52卷 第5期,p.1-p.5,2013。
[71] 陳俊賢,“錳取代鋰鈷鎳氧化物鋰電池陰極材料之研究”,臺灣科技大學化學工程所碩士論文,p45~55,2002。
[72] 胡一,“三元材料:煅燒是門技藝,搞懂真不容易”,旺財鋰電粉體網,2018。
https://kknews.cc/zh-tw/news/ggqq8e8.html
[73] Weng, Yaqing, Shengming Xu and Guoyong Huang, “Synthesis and performance of Li[(Ni1/3Co1/3Mn1/3)1-xMgx]O2 prepared from spent lithium ion batteries”, Journal of Hazardous Materials, 246-247, pp.163-172, 2013.
[74] Seung-Taek, Myung, Myung-Hun Lee, Shinichi Komaba, Naoaki Kumagai and Yang-Kook Sun, “Hydrothermal synthesis of layered Li[Ni1/3Co1/3Mn1/3]O2 as positive electrode material for lithium secondary battery”, Electrochimica Acta, 50, 4800-4806, 2005.
[75] Jung, Roland, Michael Metzger, Christoph Stinner and Hubert A. Gasteiger, “Oxygen Release and Its Effect on the Cycling Stability of LiNixMnyCozO2 (NMC) Cathode Materials for Li-Ion Batteries”, Journal of The Electrochemical Society, 164(7):A1361-A1377, 2017.
[76] Li, Xiang-qun, Xun-hui Xiong, Zhi-xing Wang and Qi-yuan Chen “Effect of sintering temperature on cycling performance and rate performance of LiNi0.8Co0.1Mn0.1O2”, Transactions of Nonferrous Metals Society of China,Volume 24, Issue 12, p.4023-p.4029, 2014.