跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/03/16 15:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王靖閔
研究生(外文):WANG, JING-MIN
論文名稱:以微波法製備正極材料LiNi0.8Co0.1Mn0.1O2及廢電池回收金屬之研究
論文名稱(外文):The Preparation of Cathode Materials LiNi0.8Co0.1Mn0.1O2 by Microwave Method and Recovery of Metals from Spent Batteries.
指導教授:蔡德華
指導教授(外文):TSAI, TEH-HUA
口試委員:張裕祺洪桂彬蘇志善
口試委員(外文):CHANG, YU-CHIHONG, GUI-BINGSU, CHIE-SHAAN
口試日期:2019-01-23
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:182
中文關鍵詞:LiNi0.8Co0.1Mn0.1O2陰極材料微波加熱法鋰離子電池廢電池回收
外文關鍵詞:LiNi0.8Co0.1Mn0.1O2Cathode materialMicrowave heatingLithium-ion. batteryRecovery battery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本實驗採取鎳鈷錳莫爾比8:1:1之層狀結構,透過高鎳含量達到高電容量之效果,並降低鈷在電池中的占比使材料成本下降。透過微波加熱法讓反應物能快速加熱與均勻的受熱,而形成穩定且均一的前驅化合物。

原料採用三種不同鹽類,分別是鈷錳鎳的醋酸鹽、硝酸鹽、硫酸鹽在微波加熱系統中進行前驅物合成,再藉由高溫段燒得LiNi0.8Co0.1Mn0.1O2粉末進行比較。

探討酸鹽種類、pH值、微波系統反應時間、煅燒溫度對LiNi0.8Co0.1Mn0.1O2的影響。並利用X光繞射儀分析、SEM、ICP-OES、DLS、與電化學分析儀,觀察成品的結晶、表面形貌、元素組成、粒徑大小及電化學性能的測試。

廢電池的回收則為目前的產業趨勢,透過妥善的回收及再生處理可減少對環境的危害並達到資源有效利用的利益。本實驗透過酸溶三種不同的電池廢料樣品,在過程中以氟化氫銨去除雜質鈣、鎂,並透過油萃取的方式去除銅,最後透過再結晶的方式回收電池中的貴重金屬鎳。

In this experiment, the molar ratio of a layered structure was adopted nickel-cobalt-manganese 8:1:1, and the high specific capacity was achieved by rich nickel content, and the lower proportion of cobalt in the battery bring the lower cost. Prepared by microwave heating methods can form a stable and uniform precursor compound because uniform heating.

The Layered LiNi0.8Co0.1Mn0.1O2 cathode materials were synthesized by using three different acidic salts, Cobalt, Manganese, Nickel of acetic acid, nitric acid and sulfuric acid, respectively. And put in the microwave heating system, and then compare the different LiNi0.8Co0.1Mn0.1O2 samples which were obtained by calcination .

Study on some variables: Acid type, pH value, reaction time of microwave, calcined temperature how to influence LiNi0.8Co0.1Mn0.1O2. And observe the crystallization, surface morphology, element composition, particle size, and electrochemical performance by X-ray diffraction analysis, SEM/EDX, ICP-OES, DLS, and Electrochemical analyzer.

Currently, the industry trend in to recycling of waste batteries. Through proper recycling the harm to the environment can be reduced and the benefits of efficient using resources can be realized. Three different kinds of battery waste samples were dissolved by acid in this experiment, Ammonium fluoride was used to remove impurities Calcium and Magnesium, and copper was removed by oil extraction. Finally, precious metal nickel in the battery was recovered by recrystallization.

摘 要.............................................................................................................................. i
Abstract ....................................................................................................................... iii
誌謝............................................................................................................................... v
目錄.............................................................................................................................. vi
表目錄.......................................................................................................................... xi
圖目錄......................................................................................................................... xii
第一章 緒論 1
1.1 前言 1
1.2 研究目的 2
1.3 論文研究流程 4
第二章 文獻回顧 7
2.1 鋰離子電池簡介 7
2.1.1 鋰電池工作原理 7
2.1.2 鋰電池優點 9
2.1.3 鋰電池缺陷 10
2.1.4 鋰電池各元件介紹 12
2.2 正極材料介紹 15
2.2.1 層狀結構 15
2.2.1.1 LiCoO2 15
2.2.1.2 LiNiO2 17
2.2.2 尖晶石結構 19
2.2.2.1 LiMn2O4 19
2.2.3 橄欖石結構 21
2.2.3.1 LiFePO4 21
2.2.4 LiNi1-x-yCoxMnyO2三元材料 22
2.2.5 過量鋰材料 23
2.3 合成方法與LINI0.8CO0.1MN0.1O2材料 25
2.3.1 高溫固相法 25
2.3.2 共沉澱法 27
2.3.3 溶膠凝膠法 30
2.3.4 噴霧乾燥法 33
2.3.5 水熱法 37
2.3.6 微波加熱法 40
2.3.7 各種合成方法優缺點比較 46
2.4 鋰電池材料造成之污染 47
2.5 鋰電池回收原理技術 49
2.5.1 預處理 49
2.5.2 乾式法 49
2.5.3 濕式法 50
2.5.4 沉澱實驗 52
2.5.5 萃取實驗 53
2.5.6 結晶實驗 53
第三章 實驗設備與方法 54
3.1 實驗藥品及材料 54
3.1.1 合成LiNi0.8Co0.1Mn0.1O2正極材料 54
3.1.2 組裝鈕扣電池 59
3.1.3 廢電池回收 61
3.2 實驗器材與分析儀器 63
3.3 實驗儀器介紹 66
3.3.1 X-光繞射分析儀(X-ray diffraction, XRD) 66
3.3.2 掃描式電子顯微鏡(Scanning electron microscope, SEM) 67
3.3.3 動態光散射儀(Dynamic light scattering, DLS) 68
3.3.4 微波消化器(Microwave reaction system, MRS) 68
3.3.5 感耦合電漿發射光譜分析儀(Inductively coupled plasma-optical emission spectrometry, ICP-OES) 69
3.3.6 恆電位電流儀(Autolab PGSTAT30 Potential) 69
3.4 實驗流程 70
3.4.1 LiNi0.8Co0.1Mn0.1O2正極材料製備 70
3.4.2 確認起始原料濃度 72
3.4.3 確定不連續微波及平衡時功率 72
3.4.4 確定微波功率與反應時間 73
3.4.5 改變煅燒溫度 79
3.4.6 正極材料分析過程 80
3.4.7 正極極片製備 81
3.4.8 手套箱操作流程及檢查表 83
3.4.9 鈕扣型電池組裝 84
3.4.10 廢電池回收流程 86
第四章 結果與討論 88
4.1 SEM分析 88
4.1.1 不同酸鹽合成之LiNi0.8Co0.1Mn0.1O2 SEM分析 88
4.1.2 不同pH值下之LiNi0.8Co0.1Mn0.1O2 SEM分析 90
4.1.3 不同微波時間下之LiNi0.8Co0.1Mn0.1O2 SEM分析 92
4.1.4 不同煅燒溫度下之LiNi0.8Co0.1Mn0.1O2 SEM分析 94
4.2 ICP-OES元素分析 96
4.2.1 不同pH值前驅物之 ICP-OES 分析 96
4.2.2 不同微波時間前驅物之 ICP-OES 分析 97
4.2.3不同煅燒溫度條件 ICP-OES 分析 99
4.3 DLS粒徑分析 101
4.3.1 不同酸鹽合成之LiNi0.8Co0.1Mn0.1O2 DLS分析 101
4.3.2 不同pH值下之LiNi0.8Co0.1Mn0.1O2 DLS分析 103
4.3.3 不同微波時間下之LiNi0.8Co0.1Mn0.1O2 DLS分析 105
4.3.4 不同煅燒溫度下之LiNi0.8Co0.1Mn0.1O2 DLS分析 108
4.4 XRD分析 111
4.4.1 不同酸鹽合成之LiNi0.8Co0.1Mn0.1O2 XRD分析 111
4.4.2 不同pH值下之LiNi0.8Co0.1Mn0.1O2 XRD分析 114
4.4.3 不同微波時間下之LiNi0.8Co0.1Mn0.1O2 XRD分析 117
4.4.4 不同煅燒溫度下之LiNi0.8Co0.1Mn0.1O2 XRD分析 121
4.5 電化學分析 125
4.5.1 LiNi0.8Co0.1Mn0.1O2循環伏安測試 125
4.5.2 不同微波時間所合成材料變速率放電圖 127
4.5.3 不同煅燒溫度所合成材料變速率放電圖 128
4.5.4 改變第二階段煅燒溫度之LiNi0.8Co0.1Mn0.1O2 SEM分析 132
4.5.5 改變第二階段煅燒溫度之LiNi0.8Co0.1Mn0.1O2 ICP-OES分析 133
4.5.6 改變第二階段煅燒溫度之LiNi0.8Co0.1Mn0.1O2 DLS分析 134
4.5.7 改變第二階段煅燒溫度之LiNi0.8Co0.1Mn0.1O2 XRD分析 135
4.5.8 改變第二階段煅燒溫度之LiNi0.8Co0.1Mn0.1O2變速率放電圖 138
4.6 廢電池回收 139
4.6.1 樣品A 139
4.6.1.1 硫酸浸漬結果 140
4.6.1.2 NH4HF2除Ca、Mg結果 141
4.6.1.3 萃取油萃取Cu結果 143
4.6.1.4 結晶之回收率 144
4.6.2 三菱/HANWA樣品 146
4.6.2.1 水溶樣品結果 147
4.6.2.2 NH4HF2除Ca、Mg結果 148
4.6.2.3 萃取油萃取Cu結果 151
4.6.2.4 結晶之回收率 153
4.6.2.5 不同鹼調整pH值之回收率比較 154
4.6.2.6 改變雙氧水和NH4HF2之回收率比較 156
4.6.3 現場樣品-粗硫酸鎳 158
4.6.3.1 浸漬結果 159
4.6.3.2 NaF除Ca、Mg結果 160
4.6.3.3 萃取油萃取Cu結果 161
4.6.3.4 回收率比較 162
第五章 結論 164
參考文獻 169
附錄 - JCPDS標準圖表 179
符號說明 182


[1] 林厚勳,鋰電池-才是未來電動車的發展關鍵,鉅亨網,2018。
https://buzzorange.com/techorange/2018/07/09/lion-battery-is-the-future-of-eletric-car/
[2] 三元電池的趨勢 可望改善鈷供給吃緊的狀態,鉅亨網,2018。
https://news.cnyes.com/news/id/4005915
[3] Woo, Oh Sung, Sang Ho Park, Chul-Wan Park and Yang-Kook Sun, “Structural and electrochemical properties of layered Li[Ni0.5Mn0.5]1−xCoxO2 positive materials synthesized by ultrasonic spray pyrolysis method” Solid State Ionics, Volume 171, Issues 3–4, 167-172, 2004.
[4] Chen, Ching-Hsiang, Chih-Jen Wang and Bing-Joe Hwang, “Electrochemical performance of layered Li[NixCo1−2xMnx]O2 cathode materials synthesized by a sol–gel method”, Journal of Power Sources, Volume 146, Issues 1–2, 626-629, 2005.
[5] Lee, K. S. , S. T. Myung and K. Amine, “Structural and Electrochemical Properties of Layered Li [ Ni1 − 2xCoxMnx ] O2  ( x = 0.1 – 0.3 )  Positive Electrode Materials for Li-Ion Batteries”, Journal of The Electrochemical Society, 154, A971-A977, 2007.
[6] Eom, J and M. G. Kim, “Storage Characteristics of LiNi0.8Co0.1 + xMn0.1 − xO2 (x = 0 , 0.03, and 0.06) Cathode Materials for Lithium Batteries”, Journal of The Electrochemical Society, 155, A239-A247, 2008.
[7] Li, Ling-jun, Xin-hai Li and Zhi-xing Li, “A simple and effective method to synthesize layered LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion battery” Powder Technology, Volume 206, Issue 3, 353-357, 2011.
[8] Zhang, Bao, Ling jun Li and Jun chao Zheng, “Characterization of multiple metals (Cr, Mg) substituted LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion battery”, Journal of Alloys and Compounds, Volume 520, 190-194, 2012.
[9] Woo, S. U., B. C. Park and S. T. Myung, “Improvement of Electrochemical Performances of Li [ Ni0.8Co0.1Mn0.1 ] O2 Cathode Materials by Fluorine Substitution”, Journal of The Electrochemical Society, 154, A649- A655, 2007.
[10] Kim, Myung Hyoon, Ho-Suk Shin, Dongwook Shin and Yang-Kook Sun, “Synthesis and electrochemical properties of Li[Ni0.8Co0.1Mn0.1]O2 and Li[Ni0.8Co0.2]O2 via co-precipitation”, Journal of Power Sources, Volume 159, Issue 2, 22, 1328-1333, 2006.
[11] Woo, S. W., S.-T. Myung, H. Bang, D.-W. Kim and Y.-K. Sun, “Improvement of electrochemical and thermal properties of Li[Ni0.8Co0.1Mn0.1]O2 positive electrode materials by multiple metal (Al, Mg) substitution”, Electro chimica Acta, Volume 54, Issue 15, 3851-3856, 2009.
[12] Gao, Hongyan, Shuai Liu, Yafei Li and Eric Conte, “A Critical Review of Spinel Structured Iron Cobalt Oxides Based Materials for Electrochemical Energy Storage and Conversion”, Energies, 2017.
[13] 溫添進 “鋰離子高分子電池之研究發展簡述”,科學發展月刊,第29卷 第7期,p.498-p.503,2001。
[14] 吳偉新、吳笙卉 “高安全鋰金屬負極材料”,工業材料雜誌,375期,p.54-p.64, 2018。
[15] 嚴珮華 “鋰電池為什麼會爆炸?防爆發明在台灣”,天下雜誌,2016。
https://www.cw.com.tw/article/article.action?id=5078444
[16] 唐致遠 “鋰離子電池容量衰減機理的研究進展”,天津大學化工學院應用化學系碩士論文,第17卷 第1期,p.1-p.7,2005。
[17] Li, J., J. M. Zheng and Y. Yang, “Studies on Storage Characteristics of LiNi0.4Co0.2Mn0.4O2 as Cathode Materials in Lithium-Ion Batteries”, The Electrochemical Society, Volume 154, issue 5, A427-A432, 2007.
[18] 歐寶蔚,“鋰電子電池0.5Li2MnO3-0.5LiMn1/3Co1/3Ni1/3O2正極材料合成及其性質研究” 元智大學化學工程與料科學學系碩士論文,p.8-p.10,2015。
[19] Yu, C., G. Li and X. Guan, “Composite Li(Li0.11Mn0.57Ni0.32)O2:Two-step molten-salt synthesis, oxidation state stabilization, and uses as high-voltage cathode for lithium-ion batteries”, Journal of Alloys and Compounds, Volume 528, p.121-p.125, 2012.
[20] 呂承璋、鄭敬哲、陳金銘 “鋰離子電池矽基負極材料之開發”,工業材料雜誌,338期,p.59-p.70,2015。
[21] 陳俊賢,“錳取代鋰鈷鎳氧化物鋰電池陰極材料之研究”,台灣科技大學碩士論文,2002。
[22] Mizushima, K., P. C. Jones, P. J. Wiseman and J. B. Goodenough, “Li xCoO2(0< x<-1): A new cathode material for batteries of high energy density”, Materials Research Bulletin, 15(6), p.783- p.789, 1980.
[23] 黃炳照 “先進鋰離子電Li(NiMn)1/2O2正極材料之研究(II)研究成果報告”,行政院國家科學委員會專題研究計畫,p.2-p.3,2009。
[24] Grigor, Warwick, “Analyzing Li-ion Batteries Using Combined Atomic Force. Microscopy and Raman Microscopy”, NT-MDT Spectrum Instruments, https://www.azonano.com/article.aspx?ArticleID=3053, 2015.
[25] トヨタ自動車株式会社 、株式会社デンソー,“リチウム二次電池正極活物質用リチウムニッケル複合酸化物、それを用いたリチウム二次電池およびその特性評価方法”,トヨタ自動車株式会社株式会社デンソー株式会社豊田中央研究所,1999
[26] Rougier, A., P. Gravereau and C. Delmas, “Optimization of the Composition of the Li1-ZNi1+ZO2 Electrode Materials:Structural, Magnetic, and Electrochemical Studies”, The Electrochemical Society, 143, 1168-1179, 1996.
[27] 黃可龍、王兆翔、劉素琴、馬振基,鋰離子電池原理與技術,臺北市,五南圖書出版公司,2010。
[28] Cho, J. and M. M. Thackeray, “Structure change of LiMn2O4 spinel electrodes during electrochemical cycling”, Electrochem.Soc., 146, 3577-3581, 1999.
[29] Eiji, Hosono, Tetsuichi Kudo, Itaru Honma, Hirofumi Matsuda and Haoshen Zhou, “Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density”, Nano Letters, 9, 1045-1051, 2009.
[30] Helon polymer batteries 之網頁
http://www.szhlenergy.com/A/?C-2-21.Html
[31] Liu, Zhaolin, Aishui Yu and Jim Y. Lee, “Synthesis and characterization of LiNi1-x-yCox MnyO2 as the cathode materials of secondary lithium batteries”, Journal of Power Sources, 81-82, 416-419, 1999.
[32] Shen, Bo-Jun, Jeng-Shin Ma, Hung-Chun Wu and Chung-Hsin Lu, “Microwave-mediated hydrothermal synthesis and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 powders”, Materials Letters , 62 , pp.4075–4077 , 2008.
[33] 我國鋰離子電池三元鎳鈷錳正極材料存在的問題與挑戰http://www.cbea.com/ldc/201811/998535.html
[34] 徐群杰、周羅增、劉明爽、潘紅濤、劉先欽, “鋰離子電池三元正極材料[Li-Ni-Co-Mn-O]的研究進展“, 上海電力學院學報,28(2), p p. 143-148, 2012.
[35] Numata, K., Sakaki C. and Yamanaka S., “ Synthesis of solid solutions in a system of LiCoO2-Li2MnO3 for cathode materials of secondary lithium batteries”, Chem. Lett. , 725−726,1997.
[36] Tabuchia, Mitsuharu, Akiko Nakashimaa, Hikari Shigemuraa, Kazuaki Adoa, Hironori Kobayashia, Hikari Sakaebea, Hiroyuki Kageyama, Tatsuya Nakamurab, Masao Kohzakic, Atsushi Hiranod and Ryoji Kannoe, “Synthesis cation distribution, and electrochemical properties of Fe-substituted Li2MnO3 as a novel 4V positive electrode material”, J. Electrochem, Soc.149(5): A509−A524, 2002.
[37] 趙煜娟, 馮海蘭, 趙春松, 孫召琴,“鋰離子電池富鋰正極材料 xLi2MnO3· (1−x) LiMO2 (M=Co, Fe, Ni1/2Mn1/2...)的研究進展 ” 科學通報,第57卷,第27期,25702586,2012。
[38] Koyama, Yukinori, Naoaki Yabuuchi, Isao Tanaka, Hirohiko Adachi and Tsutomu Ohzuku, “Solid-State Chemistry and Electrochemistry of LiCo1/3Ni1/3Mn1/3O2 for Advanced Lithium-Ion Batteries I. First-Principles Calculation on the Crystal and Electronic Structures”, Journal of The Electrochemical Society, A1545-A1551 , 2004.
[39] Hui, Tong, Pengyuan Dong, Jiafeng Zhanga and Junchao Zheng, “Cathode material LiNi0.8Co0.1Mn0.1O2/LaPO4 with high electrochemical performance for lithium-ion batteries”, Journal of Alloys and Compounds, Volume 764, Pages 44-50, 2018.
[40] Huang, Yue and Zhi-xing Wang, “Synthesis of Ni0.8Co0.1Mn0.1(OH)2 precursor and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium batteries”, Transactions of Nonferrous Metals Society of China, Volume 25, Issue 7, Pages 2253-2259, 2014.
[41] Lu, Huaquan, Haitao Zhou, Ann Mari Svensson and Anita Fossdal, “High capacity Li[Ni0.8Co0.1Mn0.1]O2 synthesized by sol–gel and co-precipitation methods as cathode materials for lithium-ion batteries”, Solid State Ionics, Volumes 249–250, Pages 105-111, 2013.
[42] Luo, Xufang, Xianyou Wang, Li Liao, Sergio Gamboa and P. J. Sebastian, “Synthesis and characterization of high tap-density layered Li[Ni1/3Co1/3Mn1/3]O2 cathode material via hydroxide co-precipitation”, Journal of Power Sources, 158, 654–658, 2006.
[43] Xi, Yukun, Yan Liu, Dengke Zhang and Shuangling Jin, “Comparative study of the electrochemical performance of LiNi0.5Co0.2Mn0.3O2 and LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion batteries”, Solid State Ionics, Volume 327, Pages 27-31, 2018.
[44] Wang, D., X. Li, Z. Wang, H. Guo, Z. Huang, L. Kong and J. Ru, “Improved high voltage electrochemical performance of Li2ZrO3-coated LiNi0.5Co0.2Mn0.3O2 cathode material”, J. Alloys Compd. , 647, pp. 612-619, 2015.
[45] Hu, G.R., M. F. Zhang, L. W. Liang, Z. D. Peng, K. Du and Y. B. Cao, “Mg-Al-B cosubstitution LiNi0.5Co0.2Mn0.3O2 cathode materials with improved cycling performance for lithium-ion battery under high cutoff voltage”, Electrochim Acta, 190, pp. 264-275, 2016.
[46] Savut, Jan S., S. Nurgul, Xiaoqin Shi, Hui Xia and Huan Pang, “Improvement of electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material by graphene nanosheets modification”, Electrochim. Acta, 149, p.86-p.93, 2014.
[47] Xu, J., S. L. Chou, Q. F. Gu, H. K. Liu and S. X. Dou, “The effect of different binders on electrochemical properties of LiNi1/3Mn1/3Co1/3O2 cathode material in lithium ion batteries”, J. Power Sources, 225, pp. 172-178, 2013.
[48] Zhang, Linsen, Huan Wang, Lizhen Wang and Yang Cao, “High electrochemical performance of hollow corn-like LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries”, Applied Surface Science, Volume 450, Pages 461-467, 2018.
[49] Lu, Z. and J. R. Dahn, “Understanding the anomalous capacity of Li/Li[Ni × Li(1/3−2x/3)Mn(2/3−x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies”, J. Electrochem. Soc., 149, pp. A815-A822, 2002.
[50] Feng, W., J. Tian, Y. F. Su, W. Jing, C. Z. Zhang, L. Y. Bao, H. Tao, J. H. Li, and C. Shi, “Effect of Ni2+ content on lithium/nickel disorder for Ni-rich cathode materials”, ACS Appl. Mater. Interf., 7702-7708, 2015.
[51] Lee, S. W., H. Kim, M. S. Kim, H. C. Youn, K. Kang, B. W. Cho, K. C. Roh and K. B. Kim, “Improved electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material synthesized by citric acid assisted sol-gel method for lithium ion batteries”, J. Power Sources, 315, pp. 261-268, 2016.
[52] 各種電磁波頻率範圍圖,
http://zh.wikipedia.org/wiki/%E7%94%B5%E7%A3%81%E6%B3%A2
[53] 魏祺峻,“以微波法製備二氧化釩之研究”,台北科技大學化學工程所碩士論文,p.23-p.25,2010。
[54] 陳柏翰,“以二氧化鈦提升鋰離子電池LiNi1/3Co1/3Mn1/3O2正極材料電化學性質之研究”,台北科技大學化學工程所碩士論文,2015。
[55] Zhao, Ruirui and Jianlin Miao, “Synthesis of layered materials by ultrasonic/microwave-assisted coprecipitation method: A case study of LiNi0.5Co0.2Mn0.3O2”, Sustainable Materials and Technologies, Volume 18, December 2018.
[56] Lee, Ki-Soo and Seung-Taek Myung, “Microwave synthesis of Spherical Li(Ni0.4Co0.2Mn0.4)O2 Powders as a positive electrode material foe lithium batteries”, Electrochimica Acta, Volume 53 p.3065-3074, 2007.
[57] Lu, Chung-Hsin and Bo-Jun Shen, “Electrochemical characteristics of LiNi1/3Co1/3Mn1/3O2 powders prepared from microwave-hydrothermally derived precursors”, Journal of Alloys and Compounds, 497, 159-165, 2010.
[58] McMahon, Jeff, “Innovation Is Making Lithium-Ion Batteries Harder To Recycle”, 2018.
https://www.forbes.com/sites/unicefusa/2019/01/04/a-special-thank-you-to-unicef-supporters-from-the-worlds-children/#25022cbe4c4d
[59] Gardiner, Joey, “The rise of electric cars could leave us with a big battery waste problem”, The Guardian, 2017.
https://www.theguardian.com/sustainable-business/2017/aug/10/electric-cars-big-battery-waste-problem-lithium-recycling
[60] 李洪枚、姜亢,“廢舊鋰離子電池對環境污染的分析與對策”,上海環境科 23 卷,第 5 期,p.201-p.203,2004。
[61] Shin, Shun Myung, Nak Hyoung Kim, Jeong Soo Sohn and Dong Hyo Yang, “Development of a metal recovery process from Li-ion battery wastes”, Hydrometallurgy, Volume 79, Issues 3–4, Pages 172-181, 2005.
[62] Li, Jinhui, Pixing Shi, Zefeng Wang, Yao Chen and Chein-Chi Chang, “A combined recovery process of metals in spent lithium-ion batteries”, Chemosphere, Volume 77, Issue 8, Pages 1132-1136, 2009.
[63] Dunn, J. B. , L. Gaines, M. Barnes, M. Wang and J. Sullivan, “Material and Energy Flows in the Materials Production, Assembly, and End-of-life Stages of the Automotive Lithium-ion Battery Life Cycle”, Argonne National Lab, Argonne IL, p.34-p.53, 2014.
[64] Georgi-Maschler, T., B. Friedricha, R. Weyhe and H. Heegn, “Development of a recycling process for Li-ion batteries”, Journal of Power Sources, Volume 207, p.173-p.182, 2012.
[65] Huang, Bin and Zhefei Pan, “Recycling of lithium-ion batteries: Recent advances and perspectives”, Journal of Power Sources, Volume 399, Pages 274-286, 2018.
[66] Chen, Renjie , Feng Sun, Feng Wu and Jianrui Liu, “ Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process”, Hydrometallurgy, 108,220–225, 2011.
[67] Zhao, J. M., X. Y. Shen, F. L. Deng and F. C. Wang, “Synergistic extraction and separation of valuable metals from waste cathodic material of lithium ion batteries using Cyanex272 and PC-88A”, Separation and Purification Technology, 345–351, 2011.
[68] 第十二章 化學沉澱法
http://course.xauat-hqc.com/hj/swrkzgc/content/main04/12.1.html
[69] 林麗娟,“X光繞射原理及其應用”,工業材料86期,p.100-p.109,1994。
[70] 羅聖全,“科學基礎研究之重要利器—掃瞄式電子顯微鏡(SEM)”,科學研習,第52卷 第5期,p.1-p.5,2013。
[71] 陳俊賢,“錳取代鋰鈷鎳氧化物鋰電池陰極材料之研究”,臺灣科技大學化學工程所碩士論文,p45~55,2002。
[72] 胡一,“三元材料:煅燒是門技藝,搞懂真不容易”,旺財鋰電粉體網,2018。
https://kknews.cc/zh-tw/news/ggqq8e8.html
[73] Weng, Yaqing, Shengming Xu and Guoyong Huang, “Synthesis and performance of Li[(Ni1/3Co1/3Mn1/3)1-xMgx]O2 prepared from spent lithium ion batteries”, Journal of Hazardous Materials, 246-247, pp.163-172, 2013.
[74] Seung-Taek, Myung, Myung-Hun Lee, Shinichi Komaba, Naoaki Kumagai and Yang-Kook Sun, “Hydrothermal synthesis of layered Li[Ni1/3Co1/3Mn1/3]O2 as positive electrode material for lithium secondary battery”, Electrochimica Acta, 50, 4800-4806, 2005.
[75] Jung, Roland, Michael Metzger, Christoph Stinner and Hubert A. Gasteiger, “Oxygen Release and Its Effect on the Cycling Stability of LiNixMnyCozO2 (NMC) Cathode Materials for Li-Ion Batteries”, Journal of The Electrochemical Society, 164(7):A1361-A1377, 2017.
[76] Li, Xiang-qun, Xun-hui Xiong, Zhi-xing Wang and Qi-yuan Chen “Effect of sintering temperature on cycling performance and rate performance of LiNi0.8Co0.1Mn0.1O2”, Transactions of Nonferrous Metals Society of China,Volume 24, Issue 12, p.4023-p.4029, 2014.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊