跳到主要內容

臺灣博碩士論文加值系統

(44.220.255.141) 您好!臺灣時間:2024/11/14 04:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王昱凱
研究生(外文):WANG, YU-KAI
論文名稱:進行廢切削液真空蒸餾與轉製乳化燃料之研究
論文名稱(外文):Study on the Vacuum Distillation and the Production of Emulsion Fuels of Waste Metalworking Fluids
指導教授:陳奕宏陳奕宏引用關係
指導教授(外文):CHEN, YI-HUNG
口試委員:張慶源袁明豪
口試委員(外文):CHANG, CHING-YUANYUAN, MIN-HAO
口試日期:2019-07-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:114
中文關鍵詞:旋轉填充床乳化燃料廢切削液熱氮氧化物
外文關鍵詞:Rotating packed bedEmulsion fuelWaste metalworking fluidsThermal NOx
相關次數:
  • 被引用被引用:1
  • 點閱點閱:235
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目的為廢切削液(Waste metalworking fluids)的去化處理,以旋轉填充床(Rotating packed bed, RPB)設備進行真空蒸餾(Vacuum distillation)與產製乳化燃料(Emulsion fuels),分別稱為真空蒸餾用與轉製乳化燃料用旋轉填充床。真空蒸餾是利用兩種物質的沸點不同來達到分離目的,並透過真空技術使廢切削液的沸點降低。測試不同壓力、溫度及廢水種類下,廢切削液的COD去除率可超過90%,同時含水量也可至少減量90%。乳化燃料是由廢切削液與燃料經過乳化作用(Emulsification)而製成,常見的燃料有柴油、生質柴油、生質燃料及重油等,而廢切削液則是由10%油相與90%水相組成。藉由旋轉填充床的特性及廢乳化液的乳化劑,使廢乳化液與燃料於無添加乳化劑的情況下,也能得到乳化穩定性佳的乳化燃料。探討乳化燃料於不同水相含量與乳化劑含量對空污及燃燒效率的影響,將乳化燃料於柴油發電機及鍋爐燃燒,量測其燃燒尾氣之NOx、SO2、CO、CO2與O2的濃度變化。以實驗室攪拌機及超音波震盪機所配製之水相含量9%的乳化柴油,於柴油發電機燃燒後可降低35.1%的NOx排放濃度,這是因為當乳化燃料中水蒸發時,會吸收燃燒室的熱而導致環境溫度下降,因此能同時減少熱氮氧化物生成量與降低燃燒效率。廢切削液增加的同時,乳化燃料的熱值也因此下降,使得乳化燃料的油耗比起原始燃料更多。
The purpose of this study is for the treatment of waste metalworking fluids (MWF) by vacuum distillation or converting into emulsion fuel. Emulsion fuels were produced by the rotating packed bed (RPB). Vacuum distillation separates the substance based on boiling points of water. Test experiments were conducted under different pressure, temperature, and MWF types. The residual MWF can have a COD removal percentage of greater than 90%, and the water content can be reduced by at least 90%. The emulsion fuel consists of waste MWF and fuels. The fuels used in the study include diesel fuel, biodiesel, biofuel and heavy oil, while metalworking fluids are composed of about 10% oil and 90% water. Because of the intensification of RPB and the emulsifier within the waste MWF, the emulsion of waste MWF and fuel do not require additional emulsifier. When the composition of emulsion fuel passes the centrifugation and high-temperature test, the emulsion fuel would further proceed the combustion test to examine the effect of water and MWF contents on the air pollutant emission and combustion efficiency. The emulsion fuel was burned in a diesel generator and a boiler, respectively, and then the concentrations of NOx, NO, SO2, CO, CO2 and O2 in the combustion exhaust gas were measured. The emulsified diesel fuel with a waste MWF content of 9% prepared by laboratory mixer and ultrasonic oscillator can reduce the NOx emission concentration of 35.1% using a diesel generator. However, the concentrations of SO2 and CO increased to 60.9% and 44.5%, respectively, as the content of waste MWF increased. Because the waste MWF contains sulfur, the concentration of SO2 is increased. When the water of the emulsion fuel evaporates, the heat of the combustion chamber is absorbed. The temperature of the combustion chamber is lowered, so the concentration of NOx and the combustion efficiency are reduced. While the contents of waste MWF increased, the heating value of the emulsion fuel decreased which is lower than that of the fuel. The fuel consumption of the emulsion fuel is greater than that of the original fuel.
摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
表目錄 x
圖目錄 xii
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 4
第二章 文獻回顧 5
2.1 廢切削液 5
2.1.1 分類組成 5
2.1.2 產生來源 5
2.2 廢切削液去化 6
2.2.1 濃縮處理 7
2.2.1.1 薄膜蒸餾 8
2.2.1.2 真空蒸餾 8
2.2.1.3 重力分離 11
2.2.1.4 過濾法 11
2.2.1.5 薄膜分離 11
2.2.2 直接處理 12
2.2.2.1 電解法 12
2.2.2.2 生物處理 12
2.2.2.3 乳化技術 13
2.2.2.4 直接燃燒 13
2.3 乳化燃料 14
2.3.1 燃料種類 14
2.3.1.1 石化柴油 14
2.3.1.2 生質柴油 15
2.3.2 乳化型態 17
2.3.3 乳化劑 20
2.4 超重力旋轉填充床 21
2.4.1 超重力因子 23
2.4.2 液體流態 24
第三章 儀器設備及研究方法 25
3.1 實驗流程 25
3.1.1 真空蒸餾 25
3.1.2 乳化燃料 30
3.2 實驗藥品與設備 35
3.2.1 實驗藥品 35
3.2.2 實驗設備 35
3.3 實驗分析方法 40
3.3.1 含水量 40
3.3.2 酸鹼值 41
3.3.3 化學需氧量 42
3.3.4 熱值 43
3.3.5 乳化穩定性 43
3.3.6 燃燒尾氣 44
3.3.7 能耗與能源效率 46
第四章 結果與討論 47
4.1.1 不同種類廢液之影響 50
4.1.2 不同操作壓力之影響 51
4.1.3 不同循環流量之影響 52
4.2 乳化燃料之乳化穩定性 57
4.2.1 不同水相含量之影響 58
4.2.2 有無乳化劑之影響 61
4.2.3 不同燃料之影響 62
4.3 燃燒燃料與乳化燃料之尾氣比較 64
4.3.1 不同水相含量之油品燃燒測試 64
4.3.2 有無乳化劑之油品燃燒測試 80
第五章 結論與建議 91
5.1 結論 91
5.2 建議 92
參考文獻 93
附錄 97
A 機台與切削液用量(台灣經濟研究院,2018) 97
B 超級柴油物性規範(工業技術研究院,2008) 99
C 經濟部能源局提供之能源產品單位熱值表(經濟部能源局,2018) 100
D 真空蒸餾用旋轉填充床實驗數據 101
E 不同廢切削液含量之乳化生質柴油於無添加乳化劑的情況下進行燃燒測試 102
F 不同水相含量之乳化柴油燃燒測試數據 104
G 有無乳化劑之乳化柴油燃燒測試數據 110
符號彙編 114
1.復盛股份有限公司,真空蒸餾機-廢水減量設備,
https://tw.fusheng.com/zh-tw/vacuum-distillation-unit-HD-Series.html(2019)。
2.大同股份有限公司,大同(水對水)熱泵機THW-8HK1D,http://www.tatung.com.tw/Product/Consumer/332(2019)。
3.台塑企業,煉製一廠真空蒸餾單元(VDU#1),第84-90頁,台塑企業雜誌,台北(2016)。
4.童柏仁、林成原、王榮昌,利用超重力技術製作乳化柴油探討,中華民國燃燒學會第二十一屆學術研討會,雲林(2011)。
5.李聰盛、楊建曄、陳茂景,重油加水乳化燃料油燃燒特性實驗研究,中國航空太空學會學刊,第三十一卷,第三期,第247-252頁(1999)。
6.李以霠、焦鴻文、李毓仁、魏增武、鄭景亮,乳化重油線上生產機台與鍋爐燃燒調整操作特性,工業技術研究院綠能與環境研究所,新竹(2011)。
7.林佳璋、劉文宗,超重力技術的原理及進展,化工資訊月刊,第十七卷,第二期,第 16-21 頁(2003)。
8.國家環境毒物研究中心,氮氧化物,http://nehrc.nhri.org.tw/toxic/toxfaq_detail_mobile.php?id=142(2002)。
9.行政院環境保護署,放流水標準,https://oaout.epa.gov.tw/law/LawContent.aspx?id=FL015489,第10-61頁(2017)。
10.行政院環境保護署,放流水標準,https://oaout.epa.gov.tw/law/LawContent.aspx?id=FL015489,第7頁(2017)。
11.行政院環境保護署空保處,鍋爐空氣污染物排放標準總說明,https://oaout.epa.gov.tw/law/Download.ashx?FileID=81505,第1頁(2018)。
12.黃于,鍋爐空污標準上路109年7月前須符合,中央通訊社,https://www.cna.com.tw/news/ahel/201809190194.aspx(2018)。
13.黃成帆、蔡志楹、陳奕宏、陳律言,生質乳化燃料油之原理與特性,化工技術,第二十一卷,第十一期,第156-171頁(2013)。
14.洪紹軒,應用旋轉填充床連續產製乳化燃料油之研究,碩士論文,國立臺北科技大學化學工程研究所,臺北(2016)。
15.經濟部能源局,進口能源、能源指標、能源總供給(歷年)、國內能源消費(按部門區分)及工業部門能源消費,https://www.moeaboe.gov.tw/ECW/populace/web_book/WebReports.aspx?book=M_CH&menu_id=142(2018)。
16.邱植培、彭煥羣,梧棲大排遭倒切削液 大量死魚惡臭沖天,公視,https://news.pts.org.tw/article/416504(2018)。
17.謝惠紅、林朝清、鄭士仁、蔡易縉,火力發電廠環境空氣品質之研究,鑛冶:中國鑛冶工程學會會刊,第五十五卷,第四期,第97-106頁(2011)。
18.陳昱劭,旋轉填充床中黏度對質傳影響之研究,博士論文,國立臺灣大學化學工程研究所,臺北(2004)。
19.鄭名翔,切削油染白水溝業者最高恐罰30萬,自由時報,https://news.ltn.com.tw/news/life/breakingnews/2403183(2018)。
20.鄭東文、林智偉,薄膜過濾家族,科學發展,第五百期,第36-41頁(2014)。
21.財團法人台灣產業服務基金會,液體生質燃料測試成果報告,第6-7頁(2019)。
22.蔡淑媛,10甲稻田泡牛奶裡?下月就要收割竟遭偷倒切削油廢液…,自由時報,https://news.ltn.com.tw/news/life/breakingnews/2436480(2018)。
23.楊政郡、劉力仁、張慧雯,達能科技堆置有害油泥 9人送辦/上市矽晶圓廠涉勾結合法掩護非法查扣不法所得數千萬,自由時報,https://news.ltn.com.tw/news/life/paper/1216146(2018)。
24.Agency for toxic substances and disease registry (ATSDR). Nitrogen oxides; 2002. https://www.atsdr.cdc.gov/toxfaqs/tfacts175.pdf.
25.Almojjly A, Johnson D, Oatley-Radcliffe DL, Hilal N. Removal of oil from oil-water emulsion by hybrid coagulation/sand filter as pre-treatment. J Water Process Eng. 2018;26:17-27.
26.Ballester JM, Fueyo N, Dopazo C. Combustion characteristics of heavy oil-water emulsions. Fuel. 1996;75(6):695-705.
27.Basha SA, Gopal KR, Jebaraj S. A review on biodiesel production, combustion, emissions and performance. Renew and sustainable energy reviews. 2009;13(6-7):1628-34.
28.Bittner G, Briggs O, Lauer W. ABB CE Services’ RSFCTM wall burner for oil, gas and coal retrofit applications. Windsor, CT: ABB CE Services, Inc. 1994.
29.Burns JR, Ramshaw C. Process intensification: visual study of liquid maldistribution in rotating packed beds. Chem Eng Sci. 1996;51(8):1347-52.
30.Byers JP. Metalworking fluids: Crc Press; 2017.
31.Cambiella A, Ortea E, Rios G, Benito JM, Pazos C, Coca J. Treatment of oil-in-water emulsions: Performance of a sawdust bed filter. J Hazard Mater. 2006;131(1-3):195-9.
32.Chen YS, Yi-Der Tai C, Chang MH, Liu HS. Characteristics of micromixing in a rotating packed bed. J of the Chin Inst of Chem Engineers. 2006;37(1):63-9.
33.De Swardt CA, Meyer JP. A performance comparison between an air‐source and a ground‐source reversible heat pump. International J of Energy Res. 2001;25(10):899-910.
34.El-Din MN, El-Hamouly SH, Mohamed H, Mishrif MR, Ragab AM. Water-in-diesel fuel nanoemulsions: Preparation, stability and physical properties. Egypt J of Petroleum. 2013;22(4):517-30.
35.Fan X, Hu W, Yang J, Xu X, Gao J. A new emulsifier behavior of the preparation for micro-emulsified diesel oil. Petroleum Sci and Technol. 2008;26(18):2125-36.
36.Florence A, Whitehill D. Some features of breakdown in water-in-oil-in-water multiple emulsions. J of Colloid and Interface Sci. 1981;79(1):243-56.
37.Gryta M, Karakulski K. The application of membrane distillation for the concentration of oil-water emulsions. Desalination. 1999;121(1):23-9.
38.Harbach JA, Agosta V. Effects of emulsified fuel on combustion in a four-stroke diesel engine. J of Ship Res. 1991;35(04):356-63.
39.Hassan-Beck HM. Process intensification: mass transfer and pressure drop for countercurrent rotating packed beds: Newcastle University; 1997.
40.Horiba, PG-350 manual; 2019. https://www.horiba.com/en_en/.
41.Huang J, Wang Y, Qin J-b, Roskilly AP. Comparative study of performance and emissions of a diesel engine using chinese pistache and jatropha biodiesel. Fuel Process Technol. 2010;91(11):1761-7.
42.Huang XF, Lim TT. Performance and mechanism of a hydrophobic–oleophilic kapok filter for oil/water separation. Desalination. 2006;190(1-3):295-307.
43.Israilides CJ, Vlyssides AG, Mourafeti VN, Karvouni G. Olive oil wastewater treatment with the use of an electrolysis system. Bioresour Technol. 1997;61(2):163-70.
44.Ivanov VM, Nefedov P. Experimental investigation of the combustion process of natural and emulsified liquid fuels: Published for the National Aeronautics and Space Administration, and the …; 1965.
45.Jacques MT. Transient heating of an emulsified water-in-oil droplet. Combustion and Flame. 1977;29:77-85.
46.Jahani H, Gollahalli S. Characteristics of burning jet a fuel and jet a fuel-water emulsion sprays. Combustion and Flame. 1980;37:145-54.
47.Kajdas C. Industrial lubricants. Chemistry and technology of lubricants: Springer; 1997, p. 228-63.
48.Lin BJ, Chen WH, Budzianowski WM, Hsieh CT, Lin PH. Emulsification analysis of bio-oil and diesel under various combinations of emulsifiers. Applied Energy. 2016;178:746-57.
49.Lin CY, Lin HA. Effects of NOx-inhibitor agent on fuel properties of three-phase biodiesel emulsions. Fuel Process Technol. 2008;89(11):1237-42.
50.Lin SL, Lee WJ, Chang SS, Lee CF, Lee LF, Lin CS, et al. Energy savings and emission reduction of traditional pollutants, particulate matter, and polycyclic aromatic hydrocarbon using solvent-containing water emulsified heavy fuel oil in boilers. Energy & Fuels. 2011;25(4):1537-46.
51.Liu HS, Lin CC, Wu SC, Hsu HW. Characteristics of a rotating packed bed. Ind Eng Chem Res. 1996;35(10):3590-6.
52.Mataumoto S, Kang W. Formation and applications of multiple emulsions. Journal of Dispersion Science and Technology. 1989;10(4-5):455-82.
53.Monyem A, Van Gerpen JH. The effect of biodiesel oxidation on engine performance and emissions. Biomass and Bioenergy. 2001;20(4):317-25.
54.Ramshaw C, Mallinson RH. Mass transfer process. Patents; 1981.
55.Seifriz W. Studies in emulsions. J Phys Chem. 1925;29:738-49.
56.Sjögren A, editor Burning of water-in-oil emulsions. Symposium (International) on Combustion; 1977: Elsevier.
57.Van Gerpen J, Shanks B, Pruszko R, Clements D, Knothe G. Biodiesel production technology. National renewable energy laboratory. 2004;1617:80401-3393.
58.Veolia, EVALEDTM PC Vacuum heat pump evaporators; 2019. ttp://www.veoliawatertechnologies.nl/rossmark/ressources/documents/1/56783-BR_Evaled_PC_-Vacuum-het-pump-evap.pdf.
59.Wang CH, Chen JT. An experimental investigation of the burning characteristics of water-oil emulsions. International Communications in Heat and Mass Transf. 1996;23(6):823-34.
60.Wang CH, Law CK. Microexplosion of fuel droplets under high pressure. Combustion and Flame. 1985;59(1):53-62.
61.Xia C, Zhao Q, Ye Z, Zhu W. Removal of organic pollutants from mononitrotoluene (MNT) wastewater by reduced pressure distillation. Sep Purif Technol. 2013;120:1-5.
62.Zhao Q, Ye Z, Zhang M. Treatment of 2, 4, 6-trinitrotoluene (TNT) red water by vacuum distillation. Chemosphere. 2010;80(8):947-50.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top