|
1.(a) R. J. Mortimer, D. R. Rosseinsky, P. M. S. Monk, Electrochromic Materials and Devices. John Wiley & Sons Inc, 2015. (b) H. C. Moon, C. H. Kim, T. P. Lodge, C. D. Frisbie, Multicolored, low-power, flexible electrochromic devices based on ion gels. ACS Appl. Mater. Interfaces, 2016, 8 (9), 6252–6260. 2.Y. T. Liao, C. Y. Lee, A study of the microstructure and properties relationship of EDOT and aniline conjugated copolymer. Master's thesis, Taipei Tech Department of Molecular Science and Engineering, 2014, 3. 3.(a) http://www.gentex.com. (b) R. J. Mortimer, A. L. Dyer, J. R. Reynolds, Electrochromic organic and polymeric materials for display applications. Displays, 2006, 27, 2−18. (c) C. D. Kim, S. H. Paek, J. K. Lee, Y. I. Park, Y. K. Hwang, Flexible technology for large-size E-paper displays. Current Applied Physics, Sci., 2010, 10, e127-e130. (d) R. Baetens, B. P. Jelle, A. Gustavsen, Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Sol. Energy Mater. Sol. Cells, 2010, 94, 87–105. (e) C. G. Granqvist, Electrochromics for smart windows: Oxide-based thin films and devices. Thin Solid Films, 2014, 564, 1−38. (f) Heng-Yi Tseng, Cheng-Chang Li, Tsung-Hsien Lin, Smart Film, TechNews, 2019. (g) https://ccc.technews.tw/2019/02/05/digital-note-paper-kakumiru/, TechNews, 2019. 4.(a) Y. Y. Cheng, C. W. Wang, Study on modification of multi-wall carbon nanotubes for polyimide composite. Master's thesis, Taipei Tech Department of Molecular Science and Engineering, 2012. (b) Y. Y. Cheng, H. H. Ko, C. W. Wang, Study of Surfactant Modified MWNT/Polyimide Composites by In-Situ Polymerization. Nanoscience and Nanotechnology Letters, SCI, 2013, 5, 1- 7. (c) Meng-Tzu Hsiao, A Study of Porous Polyimide Aerogel. Master's thesis, Taipei Tech Department of Molecular Science and Engineering, 2017. (d) S. H. Hsiao, S. L. Cheng, Ambipolar and multi‐electrochromic polyimides based on N,N‐di(4‐aminophenyl)‐N′,N′‐diphenyl‐4,4′‐oxydianiline, Polym. Int., 2015, 64(6), 811-820. (e) L. Kortekaas, F. Lancia, J.-D. Steen, W.-R. Browne, Reversible Charge Trapping in Bis-Carbazole-Diimide Redox Polymers with Complete Luminescence Quenching Enabling Nondestructive Read-Out by Resonance Raman Spectroscopy, J. Phys. Chem. C, 2017, 121, 27, 14688-14702. (f) S.-H. Hsiao, Y.-Z. Chen, Electrochemical synthesis of stable ambipolar electrochromic polyimide film from a bis(triphenylamine) perylene diimide, J. Electroanal. Chem., 2017, 799, 417-423. 5.(a) L. Hagopiam, G. Kohler, R. I. Walter, Substituent effects on the properties of stable aromatic free radicals. Oxidation-reduction potentials of triarylamine-triarylaminium ion systems. J. Phys. Chem., 1967, 71, 2290-2296. (b) M. Y.ano, A. Fujiwara, M. Tatsumi, M. Oyama, K. Sato, T. Takui, Amine-based organic high-spin systems: Synthesis, electrochemical and spectroscopic studies of polyalkylated one-dimensional oligoaryl triamines. Polyhedron, 2007, 26, 2008-2012. (c) Sheng-Huei Hsiao, Jun-Wen Lin, Facile preparation of electrochromic poly(amine–imide) films from diimide compounds with terminal triphenylamino groups via electrochemical oxidative coupling reactions. Polym. Chem., 2014, 5, 6770-6778. 6.(a) M. Thelakkat, Star-shaped, dendrimeric and polymeric triarylamines as photoconductors and hole transport materials for electro-optical applications. Macromol. Mater. Eng., 2002, 287, 442−461. (b) N. J. Xiang, T. H. Lee, M. L. Gong, K. L. Tong, S. K. So, L. M. Leung, Synthesis of 2-phenylquinoline-based ambipolar molecules containing multiple 1,3,4-oxadiazole spacer groups. Synth. Met., 2006, 156, 270-275. (c) V. Promarak, M. Ichikawa, D. Meunmart, T. Sudyoadsuk, S. Saengsuwana, T. Keawina, Synthesis and properties of stable amorphoushole-transporting molecules for electroluminescent devices. Tetrahedron Lett., 2006, 47, 8949. (d) C. B. Liu, J. Li, B. Li, Z. R. Hong, F. F. Zhao, S. Y. Liu, W. L. Li, Triphenylamine-functionalized rhenium (I) complex as a highly efficient yellow-green emitter in electrophosphorescent devices. Appl. Phys. Lett., 2006, 89, 243511. (e) Y. Shirota, H. Kageyama, Charge carrier transporting molecular materials and their applications in devices. Chem. Rev., 2007, 107, 953–1010. (f) H. P. Zhao, X. T. Tao, F. Z. Wang, Y. Ren, X. Q. Sun, J. X. Yang, Y. X. Yan, D.C. Zou, X. Zhao, M. H. Jiang, Structure and electronic properties of triphenylamine-substituted indolo[3,2-b]carbazole derivatives as hole-transporting materials for organic light-emitting diodes. Chem. Phys. Lett., 2007, 439, 132-137. (g) B. C. Wang, H. R. Liao, J. C. Chang, L. Chen, J. T. Yeh, Electronic structure and molecular orbital study of hole-transport material triphenylamine derivatives. J. Lumin., 2007, 124, 333-342. (h) Q. G. He, X. P. Guo, J. G. Cheng, F. L. Bai, Synthesis and properties of a luminescent organic material with triphenylamine and pentiptycene units. Chin. Chem. Lett., 2007, 18, 820-822. (i) W. Hu, Y. Zhao, C. Ma, J. Hou, S. Liu, Improving the performance of organic thin-film transistor with a doped interlayer. Microelectron. J., 2007, 38, 509-512. (j) K. L. Wang, G. S. Huang, Synthesis and properties of hyperbranched polyamides containing triphenylamine groups. Master's thesis, National Taipei University of Technology, Dept. & Institute of Chemical Engineering, 2007. (k) K. L. Wang, S. T. Huang, L. G. Hsieh, G. S. Huang, Synthesis, optical and electrochemical properties of new hyperbranched poly(triphenylamine amide)s, Polym. Sci., 2008,4087-4093. (l) Z. Ning, H. Tian, Triarylamine: a promising core unit for efficient photovoltaic materials. Chem. Commun., 2009, 5483–5495. (m) Y.-C. Kung, S.-H. Hsiao, Fluorescent and electrochromic polyamides with pyrenylamine chromophore. J. Mater. Chem, 2010, 20, 5481−5492. (n) A. Iwan, D. Sek, Polymers with triphenylamine units: photonic and electroactive materials. Prog. Polym. Sci., 2011, 36, 1277–1325. (o) M. Liang, J. Chen, Arylamine organic dyes for dye-sensitized solar cells. Chem. Soc. Rev., 2013, 42, 3453–3488. (p) S. H. Hsiao, H. Y. Lu, Electrosynthesis of aromatic poly(amide-amine) films from triphenylamine-based electroactive compounds for electrochromic applications, Polymers, 2017, 9(12), 708. (q) S. H. Hsiao, Y. Z. Chen, Electrosynthesis of redox-active and electrochromic polymer films from triphenylamine-cored star-shaped molecules end-capped with arylamine groups, Eur. Polym. J., 2018, 99, 422–436. (r) S. H. Hsiao, H. Y. Lu, Electrosynthesis and Photoelectrochemistry of Bis(triarylamine)-Based Polymer Electrochromes, J. Electrochem. Soc., 2018, 165, H638–H645. 7.(a) Kosaku Tamura, Masashi Shiotsuki, Norihisa Kobayashi, Toshio Masuda, Fumio Sanda, Synthesis and properties of conjugated polymers containing 3,9‐ and 2,9‐linked carbazole units in the main chain. J. Polym. Sci. Part A : Polym. Chem., 2009, 47, 3506-3517. (b) Y. Liu, D.M. Chao, H. Y. Yao, New triphenylamine-based poly(amine-imide)s with carbazole substituents for electrochromic applications. Org. Electron., 2014, 15, 1422-1431. (c) C. W. Kuo, T. H. Hsieh, C. K. Hsieh, J. W. Liao, T. Y. Wu, Electrosynthesis and characterization of four electrochromic polymers based on carbazole and indole-6-carboxylic acid and their applications in high-contrast electrochromic devices. J. Electrochem. Soc., 2014, 161, D782-D790. (d) S. H. Hsiao, S. W. Lin. The electrochemical fabrication of electroactive polymer films from diamide- or diimide-cored N-phenylcarbazole dendrons for electrochromic applications, J. Mater. Chem. C, 2016, 4, 1217-1280. (e) B. B. Carbas, S. Odabas, F. Türksoy, C. Tanyeli. Synthesıs of a new electrochromıc polymer based on tetraphenylethylene cored tetrakıs carbazole complex and its electrochromıc devıce applıcatıon, Electrochim. Acta, 2016, 193, 72-79. 8.(a) Y. T. Liao, C. H. Chiang, Electropolymerization of polyaniline, Master's thesis, Taipei Tech Department of Molecular Science and Engineering, 2012. (b) Y. T. Liao, P. Y. Wu, A study of electropolymerization PEDOT nano conductive polymer films. Master's thesis, Taipei Tech Department of Molecular Science and Engineering, 2013. (c) S. H. Hsiao, Y. P. Huang, Redox-active and fluorescent pyrene-based triarylamine dyes and their derived electrochromic polymers, Sci., 2018, 158, 368−381. 9.(a) K. Y. Cheung, Q. Miao, Polycyclic Arenes Containing Seven‐Membered Carbocycles. Polycyclic Arenes and Heteroarenes, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2015, 85. (b) Q. Miao, Heptagons in Aromatics: From Monocyclic to Polycyclic. Chem. Rec., 2015, 15, 1156. (c) Dandan Shi, Xisha Zhang, Deqing Zhang, Application of Organic Conjugated Frameworks Containing Seven-Membered Carbon Rings in Optoelectronic Materials. Prog. in Chem., 2018, 30(5), 658-672. 10.(a) G. R. Proctor, J. Redpath, Monocyclic Azepines: the Synthesis and Chemical Properties of the Monocyclic Azepines. John Wiley & Sons, New York, 1996. (b) E. Cini, G. Bifulco, G. Menchi, M. Rodriquez, M. Taddei, Synthesis of Enantiopure 7‐Substituted Azepane‐2‐carboxylic Acids as Templates for Conformationally Constrained Peptidomimetics. Eur. J. Org. Chem., 2012, 2012(11), 2133-2141. (c) G. Zhang, P. Zhao, L. Hao, Y. Xu, Amine-modified SBA-15 (P): a promising adsorbent for CO2 capture. J. CO2 Utilization., 2018, 24, 22-33. 11.(a) B. V. Alviri, M. Pourayoubi, A. Saneei, M. Keikha, A. Lee, A. Crochet, A. A. Ajees, M. Necas, K. M. Fromm, K. Damodaran, T. A. Jenny, Puckering behavior in six new phosphoric triamides containing aliphatic six- and seven-membered ring groups and a database survey of analogous ring-containing structures. Tetrahedron, 2018, 74(1), 28-41. (b) Irene R. Márquez, Silvia Castro-Fernández, Alba Millán, Araceli G. Campaña, Synthesis of distorted nanographenes containing seven- and eight-membered carbocycles. Chem. Commun., 2018, 54, 6705-6718. 12.A. Karimata, S. Suzuki, M. Kozaki, K. Okada, Stereoelectronic control of oxidation potentials of 3,7-bis(diarylamino)phenothiazines, RSC Adv., 2017, 7, 56144-56152. 13.S. H. Cheng, S. H. Hsiao, T. H. Su, G. S. Liou. Novel Aromatic Poly(Amine-Imide)s Bearing A Pendent Triphenylamine Group: Synthesis, Thermal, Photophysical, Electrochemical, and Electrochromic Characteristics, Macromolecules, 2005, 38, 2, 307-316. 14.A. J. Paine. Mechanisms and models for copper mediated nucleophilic aromatic substitution. 2. Single catalytic species from three different oxidation states of copper in an Ullmann synthesis of triarylamines, J. Am. Chem. Soc., 1987, 109, 5, 1496-1502. 15.S. H. Hsiao, Y. Z. Chen, Electroactive and ambipolar electrochromic polyimides from arylene diimides with triphenylamine N-substituents. Dyes and Pigments, 2017, 144, 173-183. 16.(a) M. B. Robin, P. Day, Mixed valence chemistry—A survey and classification. Adv. Inorg. Chem. Radiochem., 1968, 10, 247–422. (b) C. Lambert, G. Noll, The class II/III transition in triarylamine redox systems. J. Am. Chem. Soc., 1999, 121, 8434–8442.
|