跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/07 01:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖婉君
研究生(外文):LIAO, WAN-JYUN
論文名稱:含10,11-二氫化-5H-二苯[b,f]氮呯結構之聚(芳香胺-醯亞胺)與聚(芳香胺-醯胺)的電化學合成與電致變色性質之研究
論文名稱(外文):Electrosynthesis and Electrochromism of Poly(arylamine-imide)s and Poly(arylamine-amide)s with 10,11-Dihydro-5H-dibenz[b,f]azepine moieties
指導教授:蕭勝輝
指導教授(外文):HSIAO, SHENG-HUEI
口試委員:蕭勝輝劉貴生吳知易龔宇睿
口試委員(外文):HSIAO, SHENG-HUEILIOU, GUEY-SHENGWU, TZI-YIKUNG, YU-RUEI
口試日期:2019-07-30
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:145
中文關鍵詞:二苯氮呯三苯胺咔唑電聚合電致變色光譜電化學
外文關鍵詞:10,11-Dihydro-5H-dibenz[b,f]azepineTriphenylamineCarbazoleElectrochemical polymerizationElectrochromismSpectroelectrochemistry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
本論文在探討利用電化學聚合法合成含10,11-二氫化-5H-二苯[b,f]氮呯(10,11-dihydro-5H-dibenz[b,f]azepine)結構的聚(芳香胺-醯亞胺)與聚(芳香胺-醯胺)及其電化學及電致變色特性。
在論文的第一部分,首先將含二苯氮呯結構的一胺5-(4-aminophenyl)-10,11-dihydro-5H-dibenz[b,f]azepine與pyromellitic dianhydride (PMDA)、naphthalene-1,4,5,8-tetracarboxylic dianhydride (NTDA)和perylene-3,4,9,10-tetracarboxylic dianhydride (PTDA)縮合成三種電活性的二醯亞胺單體,N,N’-bis[4-(10,11-dihydro-5H-dibenz[b,f]azepin-5-yl)phenyl]pyromellitimide (AZTPA-PMDI)、N,N’-bis[4-(10,11-dihydro-5H-dibenz[b,f]azepin-5-yl)phenyl]naphthalene-1,4,5,8-tetracarboxylic diimide (AZTPA-NTDI)和N,N’-bis[4-(10,11-dihydro-5H-dibenz[b,f]azepin-5-yl)phenyl]perylene-3,4,9,10-tetracarboxylic diimide (AZTPA-PTDI)。將這些二醯亞胺單體溶於Bu4NClO4/CH2Cl2中進行循環伏安掃描可直接在ITO電極表面生成聚(芳香胺-醯亞胺)薄膜 AZTPA-PMPI、AZTPA-NTPI及AZTPA-PTPI。這三種聚合物薄膜皆具有兩性的電化學氧化還原行為與多種顏色變化,在陽極掃描時出現一對可逆的氧化還原峰,在陰極掃描時則出現兩對氧化還原峰。藉由開關測試了解薄膜的電致變色穩定性。我們也以這些電聚合薄膜為電活性材料製成簡易的電致變色元件,評估其在電致變色領域應用的可能性。
在論文的第二部分,一種新型含二苯氮呯及三苯胺結構的二胺化合物4,4’-diamino-4”-(10,11-dihydro-5H-dibenz[b,f]azepin-5-yl)triphenylamine (AZTPA-2NH2)是由5-(4-aminophenyl)-10,11-dihydro-5H-dibenz[b,f]azepine與p-fluoronitrobenzene的縮合及二硝基中間產物的還原製得。AZTPA-2NH2 分別與4-羧基三苯胺(4-carboxytriphenylamine) 和N-(4-羧苯基)咔唑 [N-(4-carboxyphenyl)carbazole]進行縮合反應製得兩種具有二苯氮呯-三苯胺核心結構及兩個三苯胺(triphenylamine; TPA)或N-苯基咔唑(N-phenylcarbazole; NPC)末端基的電活性單體AZTPA-(TPA)2及AZTPA-(NPC)2。 將這兩個單體溶於0.1 M Bu4NClO4/CH2Cl2的電解液中,於0.0到1.5 V間進行循環伏安掃描,末端的TPA或NPC基團會產生電化學偶聯反應直接在ITO玻璃電極的表面上沉積電活性聚合物薄膜。這兩種電化學生成的聚合物薄膜都顯示出可逆的氧化還原過程及明顯的顏色變化,可以從無色的中性態轉變成黃綠色或藍色的氧化態。這兩種電致變色薄膜具備良好的電致變色穩定性及著色效率。我們以電聚合薄膜作為活性層製作電致變色元件,評估它們在研究電致變色的應用潛力。

This thesis deals with the electrochemical synthesis and electrochemical and spectroelectrochemical characterization of poly(arylamine-imide)s and poly(arylamine-amide)s containing the 10,11-dihydro-5H-dibenz[b,f]azepine unit.
In the first part of this thesis, three electroactive diimide monomers N,N’-bis[4-(10,11-dihydro-5H-dibenz[b,f]azepin-5-yl)phenyl]pyromellitimide (AZTPA-PMDI), N,N’-bis[4-(10,11-dihydro-5H-dibenz[b,f]azepin-5-yl)phenyl]naphthalene-1,4,5,8-tetracarboxylic diimide (AZTPA-NTDI), and N,N’-bis[4-(10,11-dihydro-5H-dibenz[b,f]azepin-5-yl)phenyl]perylene-3,4,9,10-tetracarboxylic diimide (AZTPA-PTDI) were synthesized from condensation of 5-(4-aminophenyl)-10,11-dihydro-5H-dibenz[b,f]azepine with pyromellitic dianhydride (PMDA), naphthalene-1,4,5,8-tetracarboxylic dianhydride (NTDA), and perylene-3,4,9,10-tetracarboxylic dianhydride (PTDA), respectively. Poly(arylamine-imide) films coded as AZTPA-PMPI, AZTPA-NTPI, and AZTPA-PTPI could be electrodeposited on the ITO-glass surface by repetitive cyclic voltammetry (CV) scanning of the diimide solutions in an electrolyte solution of Bu4NClO4/CH2Cl2. The CV diagrams of the electrodeposited films showed an ambipolar redox behavior, with a reversible redox couple during the anodic scanning and two pairs of irreversible redox waves during cathodic scanning. The polymer films displayed multicolored anodic and cathodic coloring. Simple electrochromic devices using the electropolymerized films as electroactive layers were also fabricated as preliminary investigations for electrochromic applications.
In the second part of the paper, a new aromatic diamine, namely 4,4’-diamino-4”-(10,11-dihydro-5H-dibenz[b,f]azepin-5-yl)triphenylamine (AZTPA-2NH2), was successfully synthesized from the fluoro-displacemment of p-fluoronitrobenzene with 5-(4-aminophenyl)-10,11-dihydro-5H-dibenz[b,f]azepine, followed by Pd/C-catalyzed hydrazine reduction of the dinitro intermediate. Two electroactive monomers AZTPA-(TPA)2 and AZTPA-(NPC)2 with (10,11-dihydro-5H-dibenz[b,f]azepin-5-yl)triphenylamine core linked via amide group to two triphenylamine (TPA) or N-phenylcarbazole (NPC) terminal units were prepared by the condensation reaction of AZTPA-2NH2 with 4-carboxytriphenylamine and N-(4-carboxyphenyl)carbazole, respectively. These two monomers were dissolved in 0.1 M Bu4NClO4/CH2Cl2 and subjected to repetitive CV scanning between 0 and 1.5 V. Electroactive polymer films could be electrodeposited on the electrode surface via the oxidative coupling reactions between TPA or NPC radical cations. Both electro-generated polymer films exhibit reversible redox processes, displaying strong color changes from a colorless neutral state to yellow-green or blue oxidation state. The polymer films display good electrochromic stability and high color efficiency. Electrochromic devices using the electrodeposited films as active layers were also fabricated and tested for electrochromic applications.

摘要 i
ABSTRACT iii
ACKNOWLEDGEMENTS vi
CONTENTS vii
LIST OF SCHEMES x
LIST OF TABLES xi
LIST OF FIGURES xii
CHAPTER 1 1
INTRODUCTION 1
CHAPTER 2 12
2.1 Materials and Instrumentation 12
2.1.1 Materials 12
2.1.2 Instrumentation 13
2.2 Monomer Synthesis of Chapter 3 14
2.2.1 5-(4-Nitrophenyl)-10,11-dihydro-5H-dibenz[b,f]azepine (AZTPA-NO2) 14
2.2.2 5-(4-Aminophenyl)-10,11-dihydro-5H-dibenz[b,f]azepine (AZTPA -NH2) 15
2.2.3 N,N’-Bis[4-(10,11-dihydro-5H-dibenz[b,f]azepin-5-yl)phenyl]pyromellitimide (AZTPA-PMDI) 16
2.2.4 N,N’-Bis[4-(10,11-dihydro-5H-dibenz[b,f]azepin-5-yl)phenyl]naphthalene-1,4,5,8-tetracarboxylic diimide (AZTPA-NTDI) 16
2.2.5 N,N’-Bis[4-(10,11-dihydro-5H-dibenz[b,f]azepin-5-yl)phenyl]perylene-3,4,9,10-tetracarboxylic diimide (AZTPA-PTDI) 17
2.3 Monomer Synthesis of Chapter 4 18
2.3.1 4,4’-Dinitro-4”-(10,11-dihydro-5H-dibenz[b,f]azepin-5-yl)triphenylamine (AZTPA-2NO2) 18
2.3.2 4,4’-Diamino-4”-(10,11-dihydro-5H-dibenz[b,f]azepin-5-yl)triphenylamine (AZTPA-2NH2) 18
2.3.3 4,4’-Bis(4-diphenylaminobenzamido)-4”-(10,11-dihydro-5H-dibenz[b,f]azepin-5-yl)triphenylamine (AZTPA-(TPA)2) 19
2.3.4 4,4’-Bis[4-(carbazol-9-yl)benzamido]-4”-(10,11-dihydro-5H-dibenz[b,f]azepin-5-yl)triphenylamine (AZTPA-(NPC)2) 20
2.3.5 4,4’-Dibenzamido-4”-(10,11-dihydro-5H-dibenz[b,f]azepin-5-yl)triphenylamine (AZTPA-(Ph)2) 21
2.3.6 N,N-Bis(4-aminophenyl)-N’,N’-diphenyl-1,4-phenylenediamine (TPPDA-2NH2) 22
2.3.7 N,N-Bis[4-(4-diphenylaminobenzamido)phenyl]-N’,N’-diphenyl-1,4-phenylenediamine (TPPDA-(TPA)2) 22
2.3.8 N,N-Bis{4-[(carbazol-9-yl)benzamido]phenyl}-N’,N’-diphenyl-1,4-phenylenediamine (TPPDA-(NPC)2) 23
2.3.9 N,N-Bis(4-benzamidophenyl)-N’,N’-diphenyl-1,4-phenylenediamine (TPPDA-(Ph)2) 24
2.3.10 Triphenylamine (TPA) 24
2.5 Electrochemical Polymerization 25
2.6 Fabrication of Electrochromic Devices 25
CHAPTER 3 27
Electrosynthesis of Electrochromic Polymer Films from Arylene Diimides of 5-(4-Aminophenyl)-10,11-dihydro-5H-dibenz[b,f]azepine 27
3.1 Monomers synthesis 27
3.2 Electrochemical Activity of Monomers 38
3.3 Optical Properties 46
3.4 Electrochemical Properties of the Polymer Films 48
3.5 Spectroelectrochemistry of the Polymers 56
3.6 Electrochromic Switching 66
3.7 Electrochromic Devices 71
CHAPTER 4 74
Electrosynthesis of Electrochromic Properties of Poly(amide-triarylamine)s Containing 10,11-Dihydro-5H-dibenz[b,f]azepin-5-yl)triphenylamine Units 74
4.1 Monomer Synthesis 74
4.2 Electrochemical and Spectroelectrochemical Properties of Model Compound 92
4.3 Electrochemical Polymerization of Monomers 101
4.4 Optical Properties 116
4.5 Electrochemical Properties of the Polymer Films 118
4.6 Spectroelectrochemical Properties of Polymers 122
4.7 Electrochromic Switching 130
4.8 Electrochromic Devices 136
CHAPTER 5 139
CONCLUSIONS 139
REFERENCES 140


1.(a) R. J. Mortimer, D. R. Rosseinsky, P. M. S. Monk, Electrochromic Materials and Devices. John Wiley & Sons Inc, 2015. (b) H. C. Moon, C. H. Kim, T. P. Lodge, C. D. Frisbie, Multicolored, low-power, flexible electrochromic devices based on ion gels. ACS Appl. Mater. Interfaces, 2016, 8 (9), 6252–6260.
2.Y. T. Liao, C. Y. Lee, A study of the microstructure and properties relationship of EDOT and aniline conjugated copolymer. Master's thesis, Taipei Tech Department of Molecular Science and Engineering, 2014, 3.
3.(a) http://www.gentex.com. (b) R. J. Mortimer, A. L. Dyer, J. R. Reynolds, Electrochromic organic and polymeric materials for display applications. Displays, 2006, 27, 2−18. (c) C. D. Kim, S. H. Paek, J. K. Lee, Y. I. Park, Y. K. Hwang, Flexible technology for large-size E-paper displays. Current Applied Physics, Sci., 2010, 10, e127-e130. (d) R. Baetens, B. P. Jelle, A. Gustavsen, Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Sol. Energy Mater. Sol. Cells, 2010, 94, 87–105. (e) C. G. Granqvist, Electrochromics for smart windows: Oxide-based thin films and devices. Thin Solid Films, 2014, 564, 1−38. (f) Heng-Yi Tseng, Cheng-Chang Li, Tsung-Hsien Lin, Smart Film, TechNews, 2019. (g) https://ccc.technews.tw/2019/02/05/digital-note-paper-kakumiru/, TechNews, 2019.
4.(a) Y. Y. Cheng, C. W. Wang, Study on modification of multi-wall carbon nanotubes for polyimide composite. Master's thesis, Taipei Tech Department of Molecular Science and Engineering, 2012. (b) Y. Y. Cheng, H. H. Ko, C. W. Wang, Study of Surfactant Modified MWNT/Polyimide Composites by In-Situ Polymerization. Nanoscience and Nanotechnology Letters, SCI, 2013, 5, 1- 7. (c) Meng-Tzu Hsiao, A Study of Porous Polyimide Aerogel. Master's thesis, Taipei Tech Department of Molecular Science and Engineering, 2017. (d) S. H. Hsiao, S. L. Cheng, Ambipolar and multi‐electrochromic polyimides based on N,N‐di(4‐aminophenyl)‐N′,N′‐diphenyl‐4,4′‐oxydianiline, Polym. Int., 2015, 64(6), 811-820. (e) L. Kortekaas, F. Lancia, J.-D. Steen, W.-R. Browne, Reversible Charge Trapping in Bis-Carbazole-Diimide Redox Polymers with Complete Luminescence Quenching Enabling Nondestructive Read-Out by Resonance Raman Spectroscopy, J. Phys. Chem. C, 2017, 121, 27, 14688-14702. (f) S.-H. Hsiao, Y.-Z. Chen, Electrochemical synthesis of stable ambipolar electrochromic polyimide film from a bis(triphenylamine) perylene diimide, J. Electroanal. Chem., 2017, 799, 417-423.
5.(a) L. Hagopiam, G. Kohler, R. I. Walter, Substituent effects on the properties of stable aromatic free radicals. Oxidation-reduction potentials of triarylamine-triarylaminium ion systems. J. Phys. Chem., 1967, 71, 2290-2296. (b) M. Y.ano, A. Fujiwara, M. Tatsumi, M. Oyama, K. Sato, T. Takui, Amine-based organic high-spin systems: Synthesis, electrochemical and spectroscopic studies of polyalkylated one-dimensional oligoaryl triamines. Polyhedron, 2007, 26, 2008-2012. (c) Sheng-Huei Hsiao, Jun-Wen Lin, Facile preparation of electrochromic poly(amine–imide) films from diimide compounds with terminal triphenylamino groups via electrochemical oxidative coupling reactions. Polym. Chem., 2014, 5, 6770-6778.
6.(a) M. Thelakkat, Star-shaped, dendrimeric and polymeric triarylamines as photoconductors and hole transport materials for electro-optical applications. Macromol. Mater. Eng., 2002, 287, 442−461. (b) N. J. Xiang, T. H. Lee, M. L. Gong, K. L. Tong, S. K. So, L. M. Leung, Synthesis of 2-phenylquinoline-based ambipolar molecules containing multiple 1,3,4-oxadiazole spacer groups. Synth. Met., 2006, 156, 270-275. (c) V. Promarak, M. Ichikawa, D. Meunmart, T. Sudyoadsuk, S. Saengsuwana, T. Keawina, Synthesis and properties of stable amorphoushole-transporting molecules for electroluminescent devices. Tetrahedron Lett., 2006, 47, 8949. (d) C. B. Liu, J. Li, B. Li, Z. R. Hong, F. F. Zhao, S. Y. Liu, W. L. Li, Triphenylamine-functionalized rhenium (I) complex as a highly efficient yellow-green emitter in electrophosphorescent devices. Appl. Phys. Lett., 2006, 89, 243511. (e) Y. Shirota, H. Kageyama, Charge carrier transporting molecular materials and their applications in devices. Chem. Rev., 2007, 107, 953–1010. (f) H. P. Zhao, X. T. Tao, F. Z. Wang, Y. Ren, X. Q. Sun, J. X. Yang, Y. X. Yan, D.C. Zou, X. Zhao, M. H. Jiang, Structure and electronic properties of triphenylamine-substituted indolo[3,2-b]carbazole derivatives as hole-transporting materials for organic light-emitting diodes. Chem. Phys. Lett., 2007, 439, 132-137. (g) B. C. Wang, H. R. Liao, J. C. Chang, L. Chen, J. T. Yeh, Electronic structure and molecular orbital study of hole-transport material triphenylamine derivatives. J. Lumin., 2007, 124, 333-342. (h) Q. G. He, X. P. Guo, J. G. Cheng, F. L. Bai, Synthesis and properties of a luminescent organic material with triphenylamine and pentiptycene units. Chin. Chem. Lett., 2007, 18, 820-822. (i) W. Hu, Y. Zhao, C. Ma, J. Hou, S. Liu, Improving the performance of organic thin-film transistor with a doped interlayer. Microelectron. J., 2007, 38, 509-512. (j) K. L. Wang, G. S. Huang, Synthesis and properties of hyperbranched polyamides containing triphenylamine groups. Master's thesis, National Taipei University of Technology, Dept. & Institute of Chemical Engineering, 2007. (k) K. L. Wang, S. T. Huang, L. G. Hsieh, G. S. Huang, Synthesis, optical and electrochemical properties of new hyperbranched poly(triphenylamine amide)s, Polym. Sci., 2008,4087-4093. (l) Z. Ning, H. Tian, Triarylamine: a promising core unit for efficient photovoltaic materials. Chem. Commun., 2009, 5483–5495. (m) Y.-C. Kung, S.-H. Hsiao, Fluorescent and electrochromic polyamides with pyrenylamine chromophore. J. Mater. Chem, 2010, 20, 5481−5492. (n) A. Iwan, D. Sek, Polymers with triphenylamine units: photonic and electroactive materials. Prog. Polym. Sci., 2011, 36, 1277–1325. (o) M. Liang, J. Chen, Arylamine organic dyes for dye-sensitized solar cells. Chem. Soc. Rev., 2013, 42, 3453–3488. (p) S. H. Hsiao, H. Y. Lu, Electrosynthesis of aromatic poly(amide-amine) films from triphenylamine-based electroactive compounds for electrochromic applications, Polymers, 2017, 9(12), 708. (q) S. H. Hsiao, Y. Z. Chen, Electrosynthesis of redox-active and electrochromic polymer films from triphenylamine-cored star-shaped molecules end-capped with arylamine groups, Eur. Polym. J., 2018, 99, 422–436. (r) S. H. Hsiao, H. Y. Lu, Electrosynthesis and Photoelectrochemistry of Bis(triarylamine)-Based Polymer Electrochromes, J. Electrochem. Soc., 2018, 165, H638–H645.
7.(a) Kosaku Tamura, Masashi Shiotsuki, Norihisa Kobayashi, Toshio Masuda, Fumio Sanda, Synthesis and properties of conjugated polymers containing 3,9‐ and 2,9‐linked carbazole units in the main chain. J. Polym. Sci. Part A : Polym. Chem., 2009, 47, 3506-3517. (b) Y. Liu, D.M. Chao, H. Y. Yao, New triphenylamine-based poly(amine-imide)s with carbazole substituents for electrochromic applications. Org. Electron., 2014, 15, 1422-1431. (c) C. W. Kuo, T. H. Hsieh, C. K. Hsieh, J. W. Liao, T. Y. Wu, Electrosynthesis and characterization of four electrochromic polymers based on carbazole and indole-6-carboxylic acid and their applications in high-contrast electrochromic devices. J. Electrochem. Soc., 2014, 161, D782-D790. (d) S. H. Hsiao, S. W. Lin. The electrochemical fabrication of electroactive polymer films from diamide- or diimide-cored N-phenylcarbazole dendrons for electrochromic applications, J. Mater. Chem. C, 2016, 4, 1217-1280. (e) B. B. Carbas, S. Odabas, F. Türksoy, C. Tanyeli. Synthesıs of a new electrochromıc polymer based on tetraphenylethylene cored tetrakıs carbazole complex and its electrochromıc devıce applıcatıon, Electrochim. Acta, 2016, 193, 72-79.
8.(a) Y. T. Liao, C. H. Chiang, Electropolymerization of polyaniline, Master's thesis, Taipei Tech Department of Molecular Science and Engineering, 2012. (b) Y. T. Liao, P. Y. Wu, A study of electropolymerization PEDOT nano conductive polymer films. Master's thesis, Taipei Tech Department of Molecular Science and Engineering, 2013. (c) S. H. Hsiao, Y. P. Huang, Redox-active and fluorescent pyrene-based triarylamine dyes and their derived electrochromic polymers, Sci., 2018, 158, 368−381.
9.(a) K. Y. Cheung, Q. Miao, Polycyclic Arenes Containing Seven‐Membered Carbocycles. Polycyclic Arenes and Heteroarenes, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2015, 85. (b) Q. Miao, Heptagons in Aromatics: From Monocyclic to Polycyclic. Chem. Rec., 2015, 15, 1156. (c) Dandan Shi, Xisha Zhang, Deqing Zhang, Application of Organic Conjugated Frameworks Containing Seven-Membered Carbon Rings in Optoelectronic Materials. Prog. in Chem., 2018, 30(5), 658-672.
10.(a) G. R. Proctor, J. Redpath, Monocyclic Azepines: the Synthesis and Chemical Properties of the Monocyclic Azepines. John Wiley & Sons, New York, 1996. (b) E. Cini, G. Bifulco, G. Menchi, M. Rodriquez, M. Taddei, Synthesis of Enantiopure 7‐Substituted Azepane‐2‐carboxylic Acids as Templates for Conformationally Constrained Peptidomimetics. Eur. J. Org. Chem., 2012, 2012(11), 2133-2141. (c) G. Zhang, P. Zhao, L. Hao, Y. Xu, Amine-modified SBA-15 (P): a promising adsorbent for CO2 capture. J. CO2 Utilization., 2018, 24, 22-33.
11.(a) B. V. Alviri, M. Pourayoubi, A. Saneei, M. Keikha, A. Lee, A. Crochet, A. A. Ajees, M. Necas, K. M. Fromm, K. Damodaran, T. A. Jenny, Puckering behavior in six new phosphoric triamides containing aliphatic six- and seven-membered ring groups and a database survey of analogous ring-containing structures. Tetrahedron, 2018, 74(1), 28-41. (b) Irene R. Márquez, Silvia Castro-Fernández, Alba Millán, Araceli G. Campaña, Synthesis of distorted nanographenes containing seven- and eight-membered carbocycles. Chem. Commun., 2018, 54, 6705-6718.
12.A. Karimata, S. Suzuki, M. Kozaki, K. Okada, Stereoelectronic control of oxidation potentials of 3,7-bis(diarylamino)phenothiazines, RSC Adv., 2017, 7, 56144-56152.
13.S. H. Cheng, S. H. Hsiao, T. H. Su, G. S. Liou. Novel Aromatic Poly(Amine-Imide)s Bearing A Pendent Triphenylamine Group:  Synthesis, Thermal, Photophysical, Electrochemical, and Electrochromic Characteristics, Macromolecules, 2005, 38, 2, 307-316.
14.A. J. Paine. Mechanisms and models for copper mediated nucleophilic aromatic substitution. 2. Single catalytic species from three different oxidation states of copper in an Ullmann synthesis of triarylamines, J. Am. Chem. Soc., 1987, 109, 5, 1496-1502.
15.S. H. Hsiao, Y. Z. Chen, Electroactive and ambipolar electrochromic polyimides from arylene diimides with triphenylamine N-substituents. Dyes and Pigments, 2017, 144, 173-183.
16.(a) M. B. Robin, P. Day, Mixed valence chemistry—A survey and classification. Adv. Inorg. Chem. Radiochem., 1968, 10, 247–422. (b) C. Lambert, G. Noll, The class II/III transition in triarylamine redox systems. J. Am. Chem. Soc., 1999, 121, 8434–8442.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊