跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/16 04:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂佩穎
研究生(外文):LU, PEI-YIN
論文名稱:土壤中汞污染特性與整治技術比較分析之探討
論文名稱(外文):A Study of Pollution Characteristics and Remediation Technology Comparisons in Soil Polluted by Mercury
指導教授:張添晉張添晉引用關係
指導教授(外文):CHANG, TIEN-CHIN
口試委員:胡憲倫溫麗琪張添晉
口試委員(外文):HU, SHIAN-LUENWEN, LIH-CHYICHANG, TIEN-CHIN
口試日期:2019-07-12
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:環境工程與管理研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:89
中文關鍵詞:土壤熱處理管理與監督
外文關鍵詞:MercurySoilThermal treatment
DOI:Management and supervision
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
土壤遭受重金屬汞污染大部份為早期生產鹼氯之工廠或生產日光燈使用含汞原料,因運作管理不當或未妥善處理製程產生之廢棄物,而致使土壤受到汞污染。重金屬汞因具揮發性,絕大多數使用熱處理來降低土壤中汞濃度。熱處理為一高能耗處理技術,土壤污染處理費佔整治經費最高比例約60%以上,藉由篩分作業初步使污染體積減量而降低工程成本,也使污染土壤均勻化同時在熱處理時達到較高效果。目前已有研究指出,檸檬酸可降低熱處理溫度,並保留土壤中大部份的性質,但土壤污染是呈現非連續式且不均質狀態,無法確實掌握污染土壤中汞濃度,因此,該技術應用在工程上仍有需突破的地方。目前國內甲級廢棄物處理機構,處理1公噸污染土壤費用約新台幣25,000元,當現地處理費用低於委外處理費時,現地處理就具有經濟優勢。以台南鹼氯工廠處理含汞之污染土壤或底泥為例,1公噸之處理費用約2,600元,顯示當整治工程達經濟規模時,其處理費用成本相對便宜,同時也可獲得較高的利潤。
整治期間除了掌握整治成效品質,更應避免整治執行期間造成周遭地區環境品質惡化,本研究訂定了整治成效品質及環境監測品質管理方針,提供管理單位掌握要點有效督導或整治單位施工時實質上的自我管理。污染整治工作通常需投入巨大社會成本且曠日廢時,如果可以透過風險評估後,民眾健康風險不因場址污染而升高,顯示無立即性之危害,使用險風控管除可避免造成二次污染外亦是一種具符合經濟效益作法。
Most of the soil is exposed to heavy metal mercury pollution it is used in the early production of alkali chloride plants or in the production of fluorescent lamps. The soil is contaminated with mercury due to improper management of operations or improper disposal of waste from the process. Heavy metal mercury is volatile, and most heat treatments are used to reduce the concentration of mercury in the soil. Heat treatment is a high-energy treatment technology. Soil pollution treatment costs account for about 60% of the maximum rectification expenses. The screening operation initially reduces the pollution volume and reduces the engineering cost, and also homogenizes the contaminated soil to achieve higher efficiency during heat treatment. At present, it has been pointed out that citric acid can reduce the heat treatment temperature and retain most of the properties in the soil, but the soil pollution is in a discontinuous state of inhomogeneity and cannot accurately grasp the concentration of mercury in the contaminated soil. Therefore, the technology is applied in There is still a need for breakthroughs in the project. At present, the domestic Grade A waste disposal agency handles 1 ton of contaminated soil and costs about 25,000 NT dollors. When the local treatment cost is lower than the outsourcing treatment fee, the local treatment still has economic advantages. Sinopec Anshun Plant handles 1 metric ton of contaminated soil or sediment for about 2,600 NT dollors, which shows that when the remediation project reaches an economic scale, its processing cost is relatively cheap, and at the same time, relatively high profits can be obtained.
In addition to mastering the quality of remediation during the remediation period, it should avoid the deterioration of environmental quality in the surrounding areas during the rectification period. This study has established a quality management policy for environmental remediation and an environmental monitoring quality management policy, and provides management units with the key points to effectively supervise or rectify the unit's self-management during construction. Although the pollution remediation is a one-size-fits-all approach, but sometimes it is because of the huge social costs involved.After the risk assessment, the public health risks are not increased due to site pollution, indicating no immediate harm, and the use of risk control It is also a cost-effective way to avoid secondary pollution.
中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 ix
第一章 前言 1
1.1研究緣起 1
1.2研究目的 2
第二章 文獻回顧 3
2.1汞的物化特性 3
2.2汞對人體的毒性及危害 5
2.3汞在環境中轉化 7
2.4汞在土壤中的傳輸現象 9
2.4.1土層中汞化合物種之移動 9
2.4.2汞化合物種在土層中移動之影響 10
2.5汞的利用及應用 11
2.6污染土壤整治技術 11
2.6.1固化/穩定化(Solidification/Stabilization) 12
2.6.2熱處理技術(Thermal treatment) 15
2.6.3淋洗技術及酸萃取法(Soil Flushing/Washing) 21
2.6.4電動力學修復技術(Electrokinetics) 24
2.6.5玻璃化技術(Vitrification) 25
2.6.6植生復育法(Phytoremediation) 26
2.7土壤受汞污染案例 27
2.7.1原義芳化工 27
2.7.2中石化安順廠 34
2.7.3新亞電器(股)公司新莊廠 40
2.7.4原台灣鹼業(股)公司樹林廠 45
2.7.5原正泰化工 48
2.8創新技術-檸檬酸促進熱處理 53
第三章 研究方法與流程 55
3.1研究方法 55
3.2研究流程 56
第四章 受汞污染土壤之案例評析與比較 57
4.1污染型態與整治技術 57
4.2成本分析 64
4.3法規層面 68
4.4場址品質管理 73
4.5場址監督查核 79
第五章 結論與建議 83
5.1結論 83
5.2建議 84
參考文獻 85

1.Michael G, “Case of mercury exposure, bioavailability, and absorption,” Ecotoxicology and Environmental Safety, vol. 56, pp. 174-179, 2003.
2.Lange, N. A., Handbook of Chemistry, McGraw–Hill, New York, pp. 288-290, 1976.
3.Licate, A., Balles, E. and Schuttetnhelm, W., “Mercury control alternative forcoal-fired power plants,” 10th Annual NAWTEC Conference, Orlando, USA, 2002.
4.Balogh, S. J., Huang, Y., Offerman, H. J., Meyer, M. L. and Johnson D. K., “Episodes of elevated methylmercury concentrations in prairie streams,” Environmental Science and Technology, vol. 36, no. 8, pp. 1665-1666, 2002.
5.Pirrone, N., Costa, P., Pacyna, J. M. and Ferrara R., “Mercury emissions to the atmosphere from natural and anthropogenic sources in the Mediterranean region,” Atmospheric Environment, vol. 35, no. 17, pp. 2997-3006, 2001.
6.Mizukoshi K, Watanabe Y, Kato I: Otorhinolaryngological findings in Minamata disease. Recent advances in Minamata disease studies, ed. by Tsubaki T, Takahashi H. Kodansha LTD, pp 74-115, 1986.
7.Bakir F, Damluji SF, Amin-Zaki L, et al., “Methylmercury poisoning in Iraq,” Science, vol. 181, no. 4096, pp. 230-241, 1973.
8.Al-Saleem, T. and the Clinical Committee on Mercury Poisoning. “Levels of mercury and pathologic changes in patients with organomercury poisoning,” Bulletin of the World Health Organization, Vol.53(Suppl), pp. 99-104, 1976.
9.Agency for Toxic Substances and Disease Registry(ATSDR), Toxicological profile for mercury. Atlanta, GA: Centers for Disease Control, 1999.
10.Aulerich RJ, Ringer RK, and Iwamoto S, “Effects of dietary mercury in mink,” Archives of Environmental Contamination and Toxicology, Vol.2, pp. 43-51, 1974.
11.Zalups RK, and Lash LH, “Advances in understanding the renal transport and toxicity of mercury”, Journal of Toxicology and Environmental Health, Vol.42, no. 1, pp.1-44, 1994.
12.Schroeder, W.H. and Munthe, J., “Atmospheric mercury — An overview”, Atmospheric Environment, vol. 32, no.5, pp. 809-822, 1998.
13.Clarkson, Magos L, Myers GJ, “Current Concepts: The Toxicology of Mercury — Current Exposures and Clinical Manifestations, ” New England Journal of Medicine, vol. 349, pp. 1731-1737, 2003.
14.Inácio, M. M., Pereira, V. and Pinto, M. S., “Mercury contamination in sandy soils surrounding an industrial emission source (Estarreja, Portugal),” Geoderma, vol. 85, no.4, pp. 325-339, 1998.
15.Elfving, D. C., Wilson, K. R., Ebel, J. G. Jr., Manzell, K. L., Gutenmann, W. H. and Lisk, D. J., “Downward migration of mercury in an old sandy soil,” Chemosphere, vol. 31, no. 3, pp. 2897-2900, 1995.
16.Chang, T. C., Yen, J. H., “On-site mercury-contaminated soils remediation by using thermal desorption technology,” Journal of Hazardous Materials, vol. 128, no. 2-3, pp. 208-217, 2006.
17.Rodríguez, O., Padilla, I., Tayibi, H., López-Delgado, A., “Concerns on liquid mercury and mercury-containing wastes: A review of the treatment technologies for the safe storage,” Journal of Environmental Management, vol. 101, pp. 197-205, 2012.
18.FRTR, “Technology cost and performance –soil washing at the king of Prussia technical corporation superfund site,” http://costperformance.org/profile.cfm?ID=125&CaseID=125, 1995.
19.FRTR, “Guide to documenting and managing cost and performance information for remediation projects,” http://www.frtr.gov/pdf/guide.pdf, 1998.
20.FRTR, “Soil washing federal remediation technologies reference guide and screening manual,” http://www.frtr.gov/matrix2/section4/4-19.html, 2001.
21.Bricka, R.M., C.W. Williford, and L.W. Jones, “Heavy metal soil contaminated at U.S. army installations: Proposed research and strategy for technology development,” U.S. Army Corps of Engineers, Technical Report IRRP-94-1, 1994.
22.Washburn, C. and Hill, E., “Mercury retorts for the processing of precious metals and hazardous wastes,” Journal of the Minerals, vol. 55, no. 4, pp. 45-50, 2003.
23.EPA Remediation and Characterization Innovative Technologies (EPA REACH IT) online database. “SepraDyne Corporation - Vacuum desorption,” http://www.epareachit.org, 2006.
24.Kucharski, R., Zielonka, U., Sas-Nowosielska, A., Kuperberg, J. M., Worsztynowicz, A., Szdzuj, J., “A method of mercury removal from topsoil using low-thermal application,” Environmental Monitoring and Assessment, vol. 104, no. 1-3, pp. 341-351, 2005.
25.Kunkel, A. M., Seibert, J. J., Elliot, L. J., Ricci, K., Lynn, E. K., Pope, G. A., “Remediation of elemental mercury using in situ thermal desorption (ISTD),” Environmental Science and Technology, vol. 40, no. 7, pp. 2384-2389, 2006.
26.US EPA, “Mercury study report to congress, Volume Ⅰ: Executive summary,” EPA-425R/R, 97, 003, 1997.
27.US EPA, ”Mercury study report to congress, Volume Ⅱ : An inventory of anthropogenic mercury in the United States,” EPA-425R, 97, 004, 1997.
28.US EPA, “Mercury study report to congress, Volume Ⅲ: Fate and transport of mercury in the environment,” EPA-425R, 97, 005, 1997.
29.US EPA, “Mercury Study Report to Congress, Volume Ⅵ : An ecological assessment for anthropogenic mercury emission in the United States,” EPA-425R, 97,008, 1997.
30.US EPA Office of solid waste and emergency response. “Arsenic treatment technologies for soil, waste, and water,” EPA-542-R-02-004, 2002.
31.US EPA, “Thermal desorption at the Lipari Landfill, Operable Unit 3, Pitman, New Jersey,” Cost and performance summary report, 2002.
32.Rumayor, M., Diaz-Somoano, M., Lopez-Anton, M.A., and Martinez-Tarazona, M.R., “Mercury compounds characterization by thermal desorption,” Talanta, vol. 114, pp. 318-322, 2013.
33.Reddy, K.R., Chaparro, C., and Saichek, R.E., “Removal of mercury from clayey soils using electrokinetics,” Journal of Environmental Science and Health, vol. 38, no. 2, pp. 307-338, 2003.
34.Mulligan, C.N.;Yang, R.N. and Gibbs, B.F. “An Evaluation of Technologies for the Heavy Metal Remediation of Dredged Sediment,” Journal of Hazardous Materials, vol. 85, no. 1-2, pp. 145-163, 2001.
35.Clemens, S., “Developing tools for phytoremediation: towards a molecular understanding of plant metal tolerance and accumulation,” International Journal of Occupational Medicine and Environmental Health, vol. 14, no. 3, pp. 235-239, 2001.
36.Cluis, C., “Junk-greedy greens: phytoremediation as a new option for soil decontamination,” BioTeach Journal, vol. 2, pp. 61-67, 2004.
37.Fujun Ma, Changsheng Peng, Deyi Hou, Bin Wu, Qian Zhang, Fasheng Li, Qingbao Gu, “Citric acid facilitated thermal treatment: An innovative method for the remediation of mercury contaminated soil,” Journal of Hazardous Materials, vol. 300, pp. 546-552, 2015.
38.Feng He, Jie Gao, Eric Pirce, P. J. Strong, Hailong Wang, Liyuan Liang “In situ remediation technologies for mercury-contaminated soil,” Environmental Science and Pollution Reserch, vol. 22, no. 11, pp. 8124-8147, 2015.
39.歐陽嘉謙,以熱脫附系統處理土壤中汞之研究,碩士論文,國立中央大學環境工程研究所,桃園,2014。
40.顏佳慧,汞污染場址整治復育與監督管理之實證研究,碩士論文,國立臺北科技大學環境規劃與管理研究所,臺北,2003。
41.侯丞、何啟功,淺談汞對健康的危害,高醫醫訊,第18卷,1999。
42.吳忠信,二價陰離子在氧化鋁表面之吸附研究,博士論文,國立台灣大學環境工程學研究所,臺北,1999。
43.張嘉芳,汞污染場址之地下水與化學特性及其健康風險評,碩士論文,國立台灣大學環境工程學研究所,臺北,2001。
44.丁健原,重金屬鉻之土壤污染及其溶質吸附移動模擬研究,碩士論文,國立台灣大學農業工程學研究所,1987。
45.黃如宏,台灣代表性農業土壤中重金屬吸附與脫附作用之研究(一)不同萃取劑之萃取效果比較,碩士論文,國立台灣大學農業化學研究所,1988。
46.李欣怡,汞與戴奧辛污染土壤熱脫附處理研究,碩士論文,國立臺北科技大學環境規劃與管理研究所,臺北,2012。
47.古晏菁,土壤污染整治技術介紹,工業污染防治報導,第104 期,1999。
48.吳裕民,以植生復育技術處理受戴奧辛及汞污染土壤之研究,博士論文,國立中山大學海洋環境及工程系,高雄,2013。
49.駱尚廉、闕蓓德,受重金屬污染土壤的整治復育技術及復育方案評估,第五屆土壤污染防治研討會論文集,pp. 19-25, 1997。
50.簡永幸,以萃取配合序列沉降法復育受汞污染土壤,碩士論文,國立屏東科技大學環境工程與科學系,屏東,2000。
51.李文忠,比較熱脫附與電漿技術處理汞污染土壤之研究,碩士論文,嘉南藥理科技大學環境工程與科學系,臺南,2006。
52.台大慶齡工業研究中心,義芳化工廠周遭用地場址評估調查報告書,台北市政府教育局,1997。
53.黃煥彰,2002,失落的記憶~台鹼安順廠,《看守台灣》(台北),第4卷,第2期,第80-88 頁。
54.中國石油化學工業開發股份有限公司,中石化安順廠土壤污染整治場址污染整治第三次變更計畫,2018。
55.遠雄建設事業股份有限公司,新亞電器新莊廠土壤污染控制場址污染控制計畫,2011。
56.遠雄建設事業股份有限公司,新亞電器新莊廠土壤污染控制場址污染控制完成報告,2012。
57.新北市政府環境保護局,新亞電器新莊廠土壤污染改善完成驗證結果報告書,2013。
58.中國石油化學工業開發股份有限公司,原台灣鹼業樹林廠土壤污染控制計畫,2014。
59.中國石油化學工業開發股份有限公司,原台灣鹼業樹林廠土壤污染控制計畫執行進度報告,2014。
60.新北市政府環境保護局,105年度新北市土壤及地下水污染調查及查證工作計畫,2016。
61.行政院環境保護署,熱脫附處理對土壤質地變化、汞與戴奧辛污染物去除效果以及物種分佈探討,2011。
62.行政院環境保護署,土壤及地下水污染整治網,https://sgw.epa.gov.tw/public。
63.行政院環境保護署,土壤及地下水污染整治法,2010,02,03修正。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊