1.Michael G, “Case of mercury exposure, bioavailability, and absorption,” Ecotoxicology and Environmental Safety, vol. 56, pp. 174-179, 2003.
2.Lange, N. A., Handbook of Chemistry, McGraw–Hill, New York, pp. 288-290, 1976.
3.Licate, A., Balles, E. and Schuttetnhelm, W., “Mercury control alternative forcoal-fired power plants,” 10th Annual NAWTEC Conference, Orlando, USA, 2002.
4.Balogh, S. J., Huang, Y., Offerman, H. J., Meyer, M. L. and Johnson D. K., “Episodes of elevated methylmercury concentrations in prairie streams,” Environmental Science and Technology, vol. 36, no. 8, pp. 1665-1666, 2002.
5.Pirrone, N., Costa, P., Pacyna, J. M. and Ferrara R., “Mercury emissions to the atmosphere from natural and anthropogenic sources in the Mediterranean region,” Atmospheric Environment, vol. 35, no. 17, pp. 2997-3006, 2001.
6.Mizukoshi K, Watanabe Y, Kato I: Otorhinolaryngological findings in Minamata disease. Recent advances in Minamata disease studies, ed. by Tsubaki T, Takahashi H. Kodansha LTD, pp 74-115, 1986.
7.Bakir F, Damluji SF, Amin-Zaki L, et al., “Methylmercury poisoning in Iraq,” Science, vol. 181, no. 4096, pp. 230-241, 1973.
8.Al-Saleem, T. and the Clinical Committee on Mercury Poisoning. “Levels of mercury and pathologic changes in patients with organomercury poisoning,” Bulletin of the World Health Organization, Vol.53(Suppl), pp. 99-104, 1976.
9.Agency for Toxic Substances and Disease Registry(ATSDR), Toxicological profile for mercury. Atlanta, GA: Centers for Disease Control, 1999.
10.Aulerich RJ, Ringer RK, and Iwamoto S, “Effects of dietary mercury in mink,” Archives of Environmental Contamination and Toxicology, Vol.2, pp. 43-51, 1974.
11.Zalups RK, and Lash LH, “Advances in understanding the renal transport and toxicity of mercury”, Journal of Toxicology and Environmental Health, Vol.42, no. 1, pp.1-44, 1994.
12.Schroeder, W.H. and Munthe, J., “Atmospheric mercury — An overview”, Atmospheric Environment, vol. 32, no.5, pp. 809-822, 1998.
13.Clarkson, Magos L, Myers GJ, “Current Concepts: The Toxicology of Mercury — Current Exposures and Clinical Manifestations, ” New England Journal of Medicine, vol. 349, pp. 1731-1737, 2003.
14.Inácio, M. M., Pereira, V. and Pinto, M. S., “Mercury contamination in sandy soils surrounding an industrial emission source (Estarreja, Portugal),” Geoderma, vol. 85, no.4, pp. 325-339, 1998.
15.Elfving, D. C., Wilson, K. R., Ebel, J. G. Jr., Manzell, K. L., Gutenmann, W. H. and Lisk, D. J., “Downward migration of mercury in an old sandy soil,” Chemosphere, vol. 31, no. 3, pp. 2897-2900, 1995.
16.Chang, T. C., Yen, J. H., “On-site mercury-contaminated soils remediation by using thermal desorption technology,” Journal of Hazardous Materials, vol. 128, no. 2-3, pp. 208-217, 2006.
17.Rodríguez, O., Padilla, I., Tayibi, H., López-Delgado, A., “Concerns on liquid mercury and mercury-containing wastes: A review of the treatment technologies for the safe storage,” Journal of Environmental Management, vol. 101, pp. 197-205, 2012.
18.FRTR, “Technology cost and performance –soil washing at the king of Prussia technical corporation superfund site,” http://costperformance.org/profile.cfm?ID=125&CaseID=125, 1995.
19.FRTR, “Guide to documenting and managing cost and performance information for remediation projects,” http://www.frtr.gov/pdf/guide.pdf, 1998.
20.FRTR, “Soil washing federal remediation technologies reference guide and screening manual,” http://www.frtr.gov/matrix2/section4/4-19.html, 2001.
21.Bricka, R.M., C.W. Williford, and L.W. Jones, “Heavy metal soil contaminated at U.S. army installations: Proposed research and strategy for technology development,” U.S. Army Corps of Engineers, Technical Report IRRP-94-1, 1994.
22.Washburn, C. and Hill, E., “Mercury retorts for the processing of precious metals and hazardous wastes,” Journal of the Minerals, vol. 55, no. 4, pp. 45-50, 2003.
23.EPA Remediation and Characterization Innovative Technologies (EPA REACH IT) online database. “SepraDyne Corporation - Vacuum desorption,” http://www.epareachit.org, 2006.
24.Kucharski, R., Zielonka, U., Sas-Nowosielska, A., Kuperberg, J. M., Worsztynowicz, A., Szdzuj, J., “A method of mercury removal from topsoil using low-thermal application,” Environmental Monitoring and Assessment, vol. 104, no. 1-3, pp. 341-351, 2005.
25.Kunkel, A. M., Seibert, J. J., Elliot, L. J., Ricci, K., Lynn, E. K., Pope, G. A., “Remediation of elemental mercury using in situ thermal desorption (ISTD),” Environmental Science and Technology, vol. 40, no. 7, pp. 2384-2389, 2006.
26.US EPA, “Mercury study report to congress, Volume Ⅰ: Executive summary,” EPA-425R/R, 97, 003, 1997.
27.US EPA, ”Mercury study report to congress, Volume Ⅱ : An inventory of anthropogenic mercury in the United States,” EPA-425R, 97, 004, 1997.
28.US EPA, “Mercury study report to congress, Volume Ⅲ: Fate and transport of mercury in the environment,” EPA-425R, 97, 005, 1997.
29.US EPA, “Mercury Study Report to Congress, Volume Ⅵ : An ecological assessment for anthropogenic mercury emission in the United States,” EPA-425R, 97,008, 1997.
30.US EPA Office of solid waste and emergency response. “Arsenic treatment technologies for soil, waste, and water,” EPA-542-R-02-004, 2002.
31.US EPA, “Thermal desorption at the Lipari Landfill, Operable Unit 3, Pitman, New Jersey,” Cost and performance summary report, 2002.
32.Rumayor, M., Diaz-Somoano, M., Lopez-Anton, M.A., and Martinez-Tarazona, M.R., “Mercury compounds characterization by thermal desorption,” Talanta, vol. 114, pp. 318-322, 2013.
33.Reddy, K.R., Chaparro, C., and Saichek, R.E., “Removal of mercury from clayey soils using electrokinetics,” Journal of Environmental Science and Health, vol. 38, no. 2, pp. 307-338, 2003.
34.Mulligan, C.N.;Yang, R.N. and Gibbs, B.F. “An Evaluation of Technologies for the Heavy Metal Remediation of Dredged Sediment,” Journal of Hazardous Materials, vol. 85, no. 1-2, pp. 145-163, 2001.
35.Clemens, S., “Developing tools for phytoremediation: towards a molecular understanding of plant metal tolerance and accumulation,” International Journal of Occupational Medicine and Environmental Health, vol. 14, no. 3, pp. 235-239, 2001.
36.Cluis, C., “Junk-greedy greens: phytoremediation as a new option for soil decontamination,” BioTeach Journal, vol. 2, pp. 61-67, 2004.
37.Fujun Ma, Changsheng Peng, Deyi Hou, Bin Wu, Qian Zhang, Fasheng Li, Qingbao Gu, “Citric acid facilitated thermal treatment: An innovative method for the remediation of mercury contaminated soil,” Journal of Hazardous Materials, vol. 300, pp. 546-552, 2015.
38.Feng He, Jie Gao, Eric Pirce, P. J. Strong, Hailong Wang, Liyuan Liang “In situ remediation technologies for mercury-contaminated soil,” Environmental Science and Pollution Reserch, vol. 22, no. 11, pp. 8124-8147, 2015.
39.歐陽嘉謙,以熱脫附系統處理土壤中汞之研究,碩士論文,國立中央大學環境工程研究所,桃園,2014。40.顏佳慧,汞污染場址整治復育與監督管理之實證研究,碩士論文,國立臺北科技大學環境規劃與管理研究所,臺北,2003。41.侯丞、何啟功,淺談汞對健康的危害,高醫醫訊,第18卷,1999。
42.吳忠信,二價陰離子在氧化鋁表面之吸附研究,博士論文,國立台灣大學環境工程學研究所,臺北,1999。43.張嘉芳,汞污染場址之地下水與化學特性及其健康風險評,碩士論文,國立台灣大學環境工程學研究所,臺北,2001。44.丁健原,重金屬鉻之土壤污染及其溶質吸附移動模擬研究,碩士論文,國立台灣大學農業工程學研究所,1987。45.黃如宏,台灣代表性農業土壤中重金屬吸附與脫附作用之研究(一)不同萃取劑之萃取效果比較,碩士論文,國立台灣大學農業化學研究所,1988。46.李欣怡,汞與戴奧辛污染土壤熱脫附處理研究,碩士論文,國立臺北科技大學環境規劃與管理研究所,臺北,2012。47.古晏菁,土壤污染整治技術介紹,工業污染防治報導,第104 期,1999。
48.吳裕民,以植生復育技術處理受戴奧辛及汞污染土壤之研究,博士論文,國立中山大學海洋環境及工程系,高雄,2013。49.駱尚廉、闕蓓德,受重金屬污染土壤的整治復育技術及復育方案評估,第五屆土壤污染防治研討會論文集,pp. 19-25, 1997。
50.簡永幸,以萃取配合序列沉降法復育受汞污染土壤,碩士論文,國立屏東科技大學環境工程與科學系,屏東,2000。
51.李文忠,比較熱脫附與電漿技術處理汞污染土壤之研究,碩士論文,嘉南藥理科技大學環境工程與科學系,臺南,2006。52.台大慶齡工業研究中心,義芳化工廠周遭用地場址評估調查報告書,台北市政府教育局,1997。
53.黃煥彰,2002,失落的記憶~台鹼安順廠,《看守台灣》(台北),第4卷,第2期,第80-88 頁。
54.中國石油化學工業開發股份有限公司,中石化安順廠土壤污染整治場址污染整治第三次變更計畫,2018。
55.遠雄建設事業股份有限公司,新亞電器新莊廠土壤污染控制場址污染控制計畫,2011。
56.遠雄建設事業股份有限公司,新亞電器新莊廠土壤污染控制場址污染控制完成報告,2012。
57.新北市政府環境保護局,新亞電器新莊廠土壤污染改善完成驗證結果報告書,2013。
58.中國石油化學工業開發股份有限公司,原台灣鹼業樹林廠土壤污染控制計畫,2014。
59.中國石油化學工業開發股份有限公司,原台灣鹼業樹林廠土壤污染控制計畫執行進度報告,2014。
60.新北市政府環境保護局,105年度新北市土壤及地下水污染調查及查證工作計畫,2016。
61.行政院環境保護署,熱脫附處理對土壤質地變化、汞與戴奧辛污染物去除效果以及物種分佈探討,2011。
62.行政院環境保護署,土壤及地下水污染整治網,https://sgw.epa.gov.tw/public。
63.行政院環境保護署,土壤及地下水污染整治法,2010,02,03修正。