跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/29 10:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳璿皓
研究生(外文):CHEN,HSUAN-HAO
論文名稱:結合薄膜蒸餾與滲透蒸發系統回收電子級異丙醇之研究
論文名稱(外文):Recovery of Electronic Grade Isopropanol by Membrane Distillation and Pervaporation
指導教授:陳孝行陳孝行引用關係
指導教授(外文):CHEN,SHIAO-SHING
口試委員:陳孝行李奇旺徐宏德
口試委員(外文):CHEN,SHIAO-SHINGLI,CHI-WANGXU,HONG-DE
口試日期:2019-05-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:環境工程與管理研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:75
中文關鍵詞:異丙醇薄膜蒸餾滲透蒸發
外文關鍵詞:Membrane distillationPervaporationIsopropyl alcohol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:837
  • 評分評分:
  • 下載下載:78
  • 收藏至我的研究室書目清單書目收藏:0
臺灣的主要核心產業-電子製造業是廢棄物汙染的主要來源之一,因此發展「循環經濟」及其高值產品與關鍵技術有其必要性。本研究的目的在針對台灣半導體業中如何回收高純度的異丙醇資源化技術,主要分為兩部分先以薄膜蒸餾進行低濃度異丙醇廢液雜質分離,再以滲透蒸發系統進行異丙醇的濃縮,以提高異丙醇的純度,得到高濃度電子級異丙醇,達到循環再利用的目標。
在低濃度異丙醇廢液以薄膜蒸餾進行去除雜質之研究,探討進料溫度(40、50、60℃)、流速(0.075、0.1、0.125m/s)、進料濃度(10、15、20%)的不同,造成去除效率的差異,探討薄膜蒸餾系統對異丙醇廢液去除雜質的最佳條件。發現最佳條件在溫度60℃、流速0.125m/s、進料濃度15%時會有最高通量16.47kg/m2h且雜質去除率不受參數的影響,在任何條件下都可以達到99.6%以上的去除率。經過薄膜蒸餾的異丙醇溶液再進行滲透蒸發純化之研究,探討操作溫度(25、60℃)、真空壓力(80、100kpa)、異丙醇進料濃度(80~99%)的不同造成通量、分離效率的差異,探討滲透蒸發薄膜系統對異丙醇脫水的最佳條件。其結果顯示經由滲透蒸發純化後的異丙醇濃度可以達到99.7%,達到電子級異丙醇標準,並且跟直接滲透蒸發相比使用薄膜蒸餾和滲透蒸發混合系統不只可以將雜質去除,達到電子級異丙醇標準,還可以提高滲透蒸發的通量及選擇率,增快濃縮效率。

The electronics manufacturing industry in Taiwan is considered as the core industry but the primary source leading to waste pollution. Thus, it is necessary to develop the “circular economy” and key technologies to recover these high-value wastes. The purpose of this study is to explore the technology of recovering high-purity isopropanol resource for Taiwan’s semiconductor industry. It is mainly divided into two phases: (1) The membrane distillation is applied to separate the low-concentration isopropanol waste liquid impurity. (2) The pervaporation system then concentrates the high purity but low concentration isopropanol to convert high concentration of electronic grade isopropanol to achieve the ultimate goal of recycling.
For membrane distillation, the paper investigated feed temperature (40, 50, 60 ° C), flow rate (0.075, 0.1, 0.125 m/s) and difference feed concentration (10, 15, 20%) for the flux and removal efficiencies. The optimum condition to remove impurities from the isopropanol waste solution were under temperature of 60°C, flow rate of 0.125 m/s, and IPA concentration of 15%, with a maximum flux of 16.47 kg/m2h. The removal of impurity achieves more than 99.6% regardless of any conditions. After membrane distillation, the isopropyl alcohol solution was further purified by pervaporation to investigate different temperature (25, 60°C) and vacuum pressure (80, 100kpa) on the concentration efficiency. High temperature and low vacuum pressure were favoured for isopropanol dehydration in the PV process. The results show that the concentration of isopropanol can reach 99.7% and achieve the electronic grade isopropanol standard by pervaporation. Compare to direct pervaporation, this specific pervaporation with the membrane distillation can not only remove impurities, but also achieve electronic grade level. In addition, through this special technology, the flux and selectivity of the pervaporation system were increased and the efficiency of IPA inspissation was improved.

目錄
摘要........................... i
ABSTRACT....................... iv
致謝........................... iv
目錄........................... vii
圖目錄.......................... x
表目錄.......................... xii
第一章 前言..................... 1
1.1研究緣起..................... 1
1.2研究目的..................... 2
1.3研究內容..................... 2
第二章 文獻回顧.................. 4
2.1異丙醇的特性及來源............ 4
2.1.1異丙醇的性質與特性.......... 4
2.1.2異丙醇的用途............... 5
2.1.3有機溶劑水溶液回收技術...... 7
2.1.4國內常見異丙醇回收之製程..... 11
2.2薄膜分離技術及應用............ 12
2.2.1薄膜分離的介紹.............. 12
2.2.2薄膜模組的種類.............. 13
2.3薄膜蒸餾..................... 16
2.3.1薄膜蒸餾的機制與介紹........ 16
2.3.2薄膜特性................... 18
2.3.3薄膜濕潤................... 19
2.4滲透蒸發..................... 22
2.4.1滲透蒸發的種類.............. 22
2.4.2滲透蒸發薄膜的種類.......... 31
2.4.3薄膜的材料................. 33
2.4.4聚酰亞胺(Polyimide)........ 34
第三章 實驗方法與設備............ 36
3.1實驗方法與原理................ 36
3.1.1實驗內容................... 36
3.1.2實驗測量................... 37
3.1.2.1水通量................... 37
3.1.2.2去除率................... 37
3.1.2.3選擇率................... 37
3.2實驗藥品與材料................ 38
3.2.1實驗藥品................... 38
3.2.2實驗材料................... 38
3.3實驗設備..................... 39
3.3.1薄膜蒸餾設備............... 39
3.3.2滲透蒸發設備............... 41
3.3.3其他儀器設備............... 43
3.4實驗分析方法................. 43
3.4.1異丙醇分析................. 43
3.4.2陽離子分析................. 44
3.4.3陰離子分析................. 45
3.4.4接觸角測量................. 45
第四章 結果與討論 ................47
4.1滲透蒸發......................47
4.1.1進料端溫度之影響............ 47
4.1.2滲透端壓力之影響............ 50
4.1.3進料端組成的變化............ 52
4.2薄膜蒸餾-滲透蒸發結合系統...... 53
4.2.1異丙醇濃度對薄膜蒸餾的影響... 53
4.2.2溫度對薄膜蒸餾的影響.........54
4.2.3流速對薄膜蒸餾的影響........ 55
4.2.4薄膜再利用性............... 56
4.2.5溫度對滲透蒸發的影響........ 57
4.2.6壓力對滲透蒸發的影響........ 59
4.2.7進料端組成的變化............ 61
4.3比較PV與MD-PV混合系統......... 62
第五章 結論與建議 ................64
5.1結論..........................64
5.2建議..........................65
參考文獻.........................66
附錄............................73

圖目錄
圖1.1 研究流程圖..................................................3
圖2.1 異丙醇化學結構式.............................................4
圖2.2 各地區對異丙醇需求圖.........................................6
圖2.3 異丙醇主要用途百分比.........................................6
圖2.4 回收異丙醇製程(1)...........................................11
圖2.5 回收異丙醇製程(2)...........................................11
圖2.6 薄膜孔徑之關係..............................................13
圖2.7 薄膜模組示意圖a(管狀)b(平板)c(螺旋纏繞)d(中空纖維).............14
圖2.8 薄膜蒸餾系統示意圖...........................................17
圖2.9 薄膜結垢可分為表面結垢(外部)、孔徑內結垢(內部)..................20
圖2.10 薄膜濕潤可分為(a)非潤濕(b)表面潤濕(c)部分潤濕(d)完全潤潤.......21
圖2.11 冷凝法示意圖................................................23
圖2.12 載氣吹歸法示意圖............................................24
圖2.13 溶劑吸收法示意圖............................................24
圖2.14 冷凝真空法示意圖............................................25
圖2.15 異丙醇濃度以及溫度對水蒸氣壓影響的關係圖.......................26
圖2.18 異丙醇/水溶液溫度對選擇率的影響...............................28
圖2.19 乙醇/水溶液溫度對選擇率的影響.................................28
圖2.20 異丙醇/甲苯混和液真空壓力對通量的影響..........................29
圖2.21 乙腈/水溶液真空壓力對通量及選擇率的影響........................30
圖2.22 乙腈/水溶液進料濃度對通量以及選擇率的變化......................31
圖2.23 複合薄膜示意圖..............................................32
圖2.24 聚酰亞胺化學結構式..........................................34
圖2.25 4,4'-二氨基二苯醚、均苯四甲酸二酐化學結構式...................34
圖2.26 典型聚酰亞胺的化學結構.......................................35
圖3.1薄膜蒸餾(MD)結合滲透蒸發(PV)系統示意圖.........................36
圖3.3薄膜與墊片示意圖..............................................40
圖3.4 DCMD系統模組圖..............................................41
圖3.5 滲透蒸發示意圖...............................................42
圖3.6 滲透蒸發系統模組圖............................................42
圖3.7接觸角示意圖..................................................46
圖4.1 溫度對純化效率之影響..........................................49
圖4.2 溫度及進料濃度對通量及選擇率的影響..............................49
圖4.3 壓力對純化效率之影響...........................................51
圖4.4 壓力及進料濃度對通量及選擇率的影響...............................51
圖4.5 異丙醇濃度對濕潤的影響..........................................53
圖4.6 溫度及進料濃度對通量和去除率的影響...............................54
圖4.7 流速及進料濃度對通量和去除率的影響...............................55
圖4.8 薄膜再利用性..................................................56
圖4.9 溫度對純化效率的影響...........................................58
圖4.10 溫度及進料濃度對通量及選擇率的影響.............................58
圖4.11 壓力對純化效率的影響.........................................60
圖4.12 壓力及進料濃度對通量及選擇率的影響.............................60
圖4.13 D-PV和PV純化效率的比較.......................................63
圖4.14 MD-PV和PV通量及選擇率的比較..................................63


1.Widagdo, S. and W.D. Seider, Azeotropic Distillation. AIChE Journal, 1996. 42(1): p. 96-130.
2.Hua, D. and T.-S. Chung, Universal surface modification by aldehydes on polymeric membranes for isopropanol dehydration via pervaporation. Journal of Membrane Science, 2015. 492: p. 197-208.
3.Park, H.C., et al., Pervaporation of alcohol-toluene mixtures through polymer blend membranes of poly(acrylic acid) and poly(vinyl alcohol). Journal of Membrane Science, 1994. 90(3): p. 265-274.
4.Luis, P., Chapter 3 - Pervaporation, in Fundamental Modelling of Membrane Systems, P. Luis, Editor. 2018, Elsevier. p. 71-102.
5.Vale, A., Isopropanol. Medicine, 2012. 40(3): p. 130.
6.Market, I. Chemical Economics Handbook. 2018; Available from: https://ihsmarkit.com/products/isopropyl-alcohol-ipa-chemical-economics-handbook.html.
7.Intelligence, M. Isopropyl Alcohol (IPA) Market - Segmented By Application, End-user Industry, and Geography - Trends and Forecast (2019 - 2024). 2018; Available from: https://www.mordorintelligence.com/industry-reports/isopropyl-alcohol-market.
8.Program,Isopropanol Crops. 2014.
9.Urtiaga, A.M., E.D. Gorri, and I. Ortiz, Pervaporative recovery of isopropanol from industrial effluents. Separation and Purification Technology, 2006. 49(3): p. 245-252.
10.Van Hoof, V., et al., Economic comparison between azeotropic distillation and different hybrid systems combining distillation with pervaporation for the dehydration of isopropanol. Separation and Purification Technology, 2004. 37(1): p. 33-49.
11.Haaz, E. and A.J. Toth, Methanol dehydration with pervaporation: Experiments and modelling. Separation and Purification Technology, 2018. 205: p. 121-129.
12.Murthy, Z.V.P. and M.K. Shah, Separation of isopropyl alcohol–toluene mixtures by pervaporation using poly(vinyl alcohol) membrane. Arabian Journal of Chemistry, 2017. 10: p. S56-S61.
13.Pyrgakis, K.A., et al., A process integration approach for the production of biological iso-propanol, butanol and ethanol using gas stripping and adsorption as recovery methods. Biochemical Engineering Journal, 2016. 116: p. 176-194.
14.Cho, J. and J.-K. Jeon, Optimization study on the azeotropic distillation process for isopropyl alcohol dehydration. Korean Journal of Chemical Engineering, 2006. 23(1): p. 1-7.
15.Rautenbach, R., Membrane Separations Technology - Principles and Applications. R. D. NOBLE, S. A. STERN. Elsevier, Amsterdam 1995. 718 Seiten. Chemie Ingenieur Technik, 1996. 68(1‐2): p. 168-169.
16.Strathmann, H., L. Giorno, and E. Drioli, Introduction to membrane science and technology. Vol. 544. 2011: Wiley-VCH Weinheim.
17.Cassano, A., Recovery Technologies for Water-Soluble Bioactives: Advances in Membrane-Based Processes, in Engineering Foods for Bioactives Stability and Delivery, Y.H. Roos and Y.D. Livney, Editors. 2017, Springer New York: New York, NY. p. 51-83.
18.Damtie, M.M., et al., Membrane distillation for industrial wastewater treatment: Studying the effects of membrane parameters on the wetting performance. Chemosphere, 2018. 206: p. 793-801.
19.Lee, J.-G., et al., Performance modeling of direct contact membrane distillation (DCMD) seawater desalination process using a commercial composite membrane. Journal of Membrane Science, 2015. 478: p. 85-95.
20.Qtaishat, M.R. and F. Banat, Desalination by solar powered membrane distillation systems. Desalination, 2013. 308: p. 186-197.
21.Ashoor, B.B., et al., Principles and applications of direct contact membrane distillation (DCMD): A comprehensive review. Desalination, 2016. 398: p. 222-246.
22.Alklaibi, A.M. and N. Lior, Comparative Study of Direct-Contact and Air-Gap Membrane Distillation Processes. Industrial & Engineering Chemistry Research, 2007. 46(2): p. 584-590.
23.Cheng, L., et al., Comparative study of air gap and permeate gap membrane distillation using internal heat recovery hollow fiber membrane module. Desalination, 2018. 426: p. 42-49.
24.Li, L. and K.K. Sirkar, Studies in vacuum membrane distillation with flat membranes. Journal of Membrane Science, 2017. 523: p. 225-234.
25.Khayet, M., J.I. Mengual, and T. Matsuura, Porous hydrophobic/hydrophilic composite membranes: Application in desalination using direct contact membrane distillation. Journal of Membrane Science, 2005. 252(1): p. 101-113.
26.Adnan, S., et al., Commercial PTFE membranes for membrane distillation application: Effect of microstructure and support material. Desalination, 2012. 284: p. 297-308.
27.Lawson, K.W. and D.R. Lloyd, Membrane distillation. Journal of Membrane Science, 1997. 124(1): p. 1-25.
28.Rezaei, M., et al., Wetting phenomena in membrane distillation: Mechanisms, reversal, and prevention. Water Research, 2018. 139: p. 329-352.
29.Tijing, L.D., et al., Fouling and its control in membrane distillation—A review. Journal of Membrane Science, 2015. 475: p. 215-244.
30.Alkhudhiri, A., N. Darwish, and N. Hilal, Membrane distillation: A comprehensive review. Desalination, 2012. 287: p. 2-18.
31.Ong, Y.K., et al., Recent membrane development for pervaporation processes. Progress in Polymer Science, 2016. 57: p. 1-31.
32.Fried, J.R., Basic Principles of Membrane Technology By Marcel Mulder (University of Twente, The Netherlands). Kluwer Academic:  Dordrecht. 1996. 564 pp. $255.00. ISBN 0-7823-4247-X. Journal of the American Chemical Society, 1997. 119(36): p. 8582-8582.
33.Feng, X. and R.Y.M. Huang, Liquid Separation by Membrane Pervaporation:  A Review. Industrial & Engineering Chemistry Research, 1997. 36(4): p. 1048-1066.
34.Lin, S.H. and C.S. Wang, Recovery of isopropyl alcohol from waste solvent of a semiconductor plant. Journal of Hazardous Materials, 2004. 106(2): p. 161-168.
35.Baker, R.W. and B.T. Low, Membrane Separation☆, in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. 2015, Elsevier.
36.Sokolova, M., et al., Effect of Domain Structure of Segmented Poly(urethane-imide) Membranes with Polycaprolactone Soft Blocks on Dehydration of n-Propanol via Pervaporation. Polymers, 2018. 10(11).
37.Fahmy, A., D. Mewes, and K. Ohlrogge, Absorption-assisted pervaporation for solvent dehydration. Desalination, 2002. 149(1): p. 9-14.
38.Sairam, M., et al., Novel dense poly(vinyl alcohol)–TiO2 mixed matrix membranes for pervaporation separation of water–isopropanol mixtures at 30°C. Journal of Membrane Science, 2006. 281(1): p. 95-102.
39.George, S.C. and S. Thomas, Transport phenomena through polymeric systems. Progress in Polymer Science, 2001. 26(6): p. 985-1017.
40.Huang, R.Y.M. and C.K. Yeom, Pervaporation separation of aqueous mixtures using crosslinked poly(vinyl alcohol)(pva). II. Permeation of ethanol-water mixtures. Journal of Membrane Science, 1990. 51(3): p. 273-292.
41.Razavi, S., A. Sabetghadam, and T. Mohammadi, Dehydration of isopropanol by PVA–APTEOS/TEOS nanocomposite membranes. Chemical Engineering Research and Design, 2011. 89(2): p. 148-155.
42.Selim, A., et al., Effect of silver-nanoparticles generated in poly (vinyl alcohol) membranes on ethanol dehydration via pervaporation. Chinese Journal of Chemical Engineering, 2018.
43.Mandal, M.K., S.B. Sant, and P.K. Bhattacharya, Dehydration of aqueous acetonitrile solution by pervaporation using PVA–iron oxide nanocomposite membrane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011. 373(1): p. 11-21.
44.Das, P. and S.K. Ray, Synthesis of highly water selective copolymer membranes for pervaporative dehydration of acetonitrile. Journal of Membrane Science, 2016. 507: p. 81-89.
45.Nunes, S.P. and K.V. Peinemann, Membrane Preparation. 2006.
46.Freeman, B., Introduction to Membrane Science and Technology. By Heinrich Strathmann. Angewandte Chemie International Edition, 2012. 51(38): p. 9485-9485.
47.Buonomenna, M.G., et al., Membranes Prepared via Phase Inversion. 2011.
48.Kujawski, W., Application of Pervaporation and Vapor Permeation in Environmental Protection. Vol. 9. 2000. 13-26.
49.Xu, W., D.R. Paul, and W.J. Koros, Carboxylic acid containing polyimides for pervaporation separations of toluene/iso-octane mixtures. Journal of Membrane Science, 2003. 219(1): p. 89-102.
50.Matsui, S. and D.R. Paul, Pervaporation separation of aromatic/aliphatic hydrocarbons by a series of ionically crosslinked poly(n-alkyl acrylate) membranes. Journal of Membrane Science, 2003. 213(1): p. 67-83.
51.Smitha, B., et al., Separation of organic–organic mixtures by pervaporation—a review. Journal of Membrane Science, 2004. 241(1): p. 1-21.
52.Shao, P. and R.Y.M. Huang, Polymeric membrane pervaporation. Journal of Membrane Science, 2007. 287(2): p. 162-179.
53.Wang, Y., et al., Green recovery of hazardous acetonitrile from high-salt chemical wastewater by pervaporation. Journal of Cleaner Production, 2018. 197: p. 742-749.
54.Khayet, M., C. Cojocaru, and G. Zakrzewska-Trznadel, Studies on pervaporation separation of acetone, acetonitrile and ethanol from aqueous solutions. Separation and Purification Technology, 2008. 63(2): p. 303-310.
55.Moulik, S., et al., Chitosan-polytetrafluoroethylene composite membranes for separation of methanol and toluene by pervaporation. Carbohydrate Polymers, 2018. 193: p. 28-38.
56.McKeen, L., 6 - Polyimides, in The Effect of Sterilization on Plastics and Elastomers (Third Edition), L. McKeen, Editor. 2012, William Andrew Publishing: Boston. p. 169-182.
57.Xu, Y., C. Chen, and J. Li, Experimental study on physical properties and pervaporation performances of polyimide membranes. Chemical Engineering Science, 2007. 62(9): p. 2466-2473.
58.Yanagishita, H., et al., Preparation of asymmetric polyimide membrane for water/ethanol separation in pervaporation by the phase inversion process. Journal of Membrane Science, 1994. 86(3): p. 231-240.
59.Yeom, C.K., S.H. Lee, and J.M. Lee, Pervaporative permeations of homologous series of alcohol aqueous mixtures through a hydrophilic membrane. Journal of Applied Polymer Science, 2001. 79(4): p. 703-713.
60.Guo, W.F., et al., Pervaporation study of water and tert-butanol mixtures. Journal of Applied Polymer Science, 2004. 91(6): p. 4082-4090.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top