1.Abma, W. R., Driessen, W., Haarhuis, R., & Van Loosdrecht, M. C. M. (2010). Upgrading of wastewater treatment plant by sustainable and cost-effective separate treatment of industrial wastewater. Water science and technology, 61(7), 1715-1722.
2.Adam, C. (2017). SUSAN-Sustainable and safe re-use of municipal sewage sludge for nutrient recovery.
3.Adam, C., Peplinski, B., Michaelis, M., Kley, G., & Simon, F. G. (2009). Thermochemical treatment of sewage sludge ashes for phosphorus recovery. Waste management, 29(3), 1122-1128.
4.Amann, A., Zoboli, O., Krampe, J., Rechberger, H., Zessner, M., & Egle, L. (2018). Environmental impacts of phosphorus recovery from municipal wastewater. Resources, Conservation and Recycling, 130, 127-139.
5.Appels, L., Degrève, J., Van der Bruggen, B., Van Impe, J., & Dewil, R. (2010). Influence of low temperature thermal pre-treatment on sludge solubilisation, heavy metal release and anaerobic digestion. Bioresource technology, 101(15), 5743-5748.
6.Ashley, K., Cordell, D., & Mavinic, D. (2011). A brief history of phosphorus: from the philosopher’s stone to nutrient recovery and reuse. Chemosphere, 84(6), 737-746.
7.Becerra, F. Y. G., Acosta, E. J., & Allen, D. G. (2010). Alkaline extraction of wastewater activated sludge biosolids. Bioresource technology, 101(18), 6972-6980.
8.Blankesteijn, M. (2019). From measuring to removing to recovering phosphorus in water management in the Netherlands: Challenges for science-based innovation. Science of the Total Environment, 666, 801-811.
9.Brinck, J. W. (2009, September). World resources of phosphorus. In Ciba foundation symposium (Vol. 57, pp. 23-48).
10.Xuechu, C., Hainan, K., Deyi, W. U., Xinze, W., & Yongyong, L. (2009). Phosphate removal and recovery through crystallization of hydroxyapatite using xonotlite as seed crystal. Journal of Environmental Sciences, 21(5), 575-580.
11.Cieślik, B., & Konieczka, P. (2017). A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods. Journal of Cleaner Production, 142, 1728-1740.
12.Cordell, D., Drangert, J. O., & White, S. (2009). The story of phosphorus: global food security and food for thought. Global environmental change, 19(2), 292-305.
13.Cornel, P., & Schaum, C. (2009). Phosphorus recovery from wastewater: needs, technologies and costs. Water Science and Technology, 59(6), 1069-1076.
14.Corominas, L., Foley, J., Guest, J. S., Hospido, A., Larsen, H. F., Morera, S., & Shaw, A. (2013). Life cycle assessment applied to wastewater treatment: state of the art. Water research, 47(15), 5480-5492.
15.European Commission, Critical raw materials list, Europe Commission, https://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical_en
16.Dai, L., Wu, B., Tan, F., He, M., Wang, W., Qin, H., ... & Hu, Q. (2014). Engineered hydrochar composites for phosphorus removal/recovery: lanthanum doped hydrochar prepared by hydrothermal carbonization of lanthanum pretreated rice straw. Bioresource technology, 161, 327-332.
17.Desmidt, E., Ghyselbrecht, K., Zhang, Y., Pinoy, L., Van der Bruggen, B., Verstraete, W., ... & Meesschaert, B. (2015). Global phosphorus scarcity and full-scale P-recovery techniques: a review. Critical Reviews in Environmental Science and Technology, 45(4), 336-384.
18.Donatello, S., & Cheeseman, C. R. (2013). Recycling and recovery routes for incinerated sewage sludge ash (ISSA): A review. Waste Management, 33(11), 2328-2340.
19.Donatello, S., Tong, D., & Cheeseman, C. R. (2010). Production of technical grade phosphoric acid from incinerator sewage sludge ash (ISSA). Waste management, 30(8-9), 1634-1642.
20.Driessen, W., Abma, W., Van Zessen, E., Reitsma, G., & Haarhuis, R. (2009). Sustainable treatment of reject water and industrial effluent by producing valuable byproducts. In Proceedings of 14th European Biosolids and Organic Resources Conference, Leeds, UK.
21.Egle, L., Rechberger, H., Krampe, J., & Zessner, M. (2016). Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies. Science of the Total Environment, 571, 522-542.
22.Ekardt, F. (2011). Theorie der Nachhaltigkeit: rechtliche, ethische und politische Zugänge-am Beispiel von Klimawandel, Ressourcenknappheit und Welthandel. Nomos.
23.Emmerson, R. H. C., Morse, G. K., Lester, J. N., & Edge, D. R. (1995). The life‐cycle analysis of small‐scale sewage‐treatment processes. Water and Environment Journal, 9(3), 317-325.
24.Emsley, J., & Huxtable, R. J. (2000). The shocking history of phosphorus: a biography of the devil's element (pp. 1-326). London: Macmillan.
25.EU. (2009). SUSAN-Sustainable and Safe Re-use of Municipal Sewage Sludge for Nutrient Recovery, Final Activity Report, Contract Number 016079
26.European Fertilizer Manufacturers Association. (2000). Phosphorus: essential element for food production. European Fertilizer Manufacturers Association (EFMA), Brussels.
27.Fang, C., Zhang, T., Li, P., Jiang, R., Wu, S., Nie, H., & Wang, Y. (2015). Phosphorus recovery from biogas fermentation liquid by Ca–Mg loaded biochar. Journal of Environmental Sciences, 29, 106-114.
28.FAO, 2007a. Current World Fertilizer Trends and Outlook to 2010/11. Food and Agriculture Organisation of the United Nations Rome.
29.Fraiture, C. D. (2007). Future Water Requirements for Food—Three Scenarios, International Water Management Institute (IWMI), SIWI Seminar: Water for Food, Bio-fuels or Ecosystems. World water week.
30.Gaterell, M. R., Gay, R., Wilson, R., Gochin, R. J., & Lester, J. N. (2000). An economic and environmental evaluation of the opportunities for substituting phosphorus recovered from wastewater treatment works in existing UK fertiliser markets. Environmental Technology, 21(9), 1067-1084.
31.Giensen, A., & van der Moldeh, J. G. (1996). The crystalactor: wastewater treatment by crystallization without waste production. DHV Water BV, Amerfoort.
32.Goedkoop, M., Heijungs, R., Huijbregts, M., De Schryver, A., Struijs, J., & Van Zelm, R. (2009). ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level, 1, 1-126.
33.Hospido, A., & Tyedmers, P. (2005). Life cycle environmental impacts of Spanish tuna fisheries. Fisheries Research, 76(2), 174-186.
34.Huang, H., Liu, J., & Ding, L. (2015). Recovery of phosphate and ammonia nitrogen from the anaerobic digestion supernatant of activated sludge by chemical precipitation. Journal of Cleaner Production, 102, 437-446.
35.Huang, H., Zhang, D., Guo, G., Jiang, Y., Wang, M., Zhang, P., & Li, J. (2018). Dolomite application for the removal of nutrients from synthetic swine wastewater by a novel combined electrochemical process. Chemical Engineering Journal, 335, 665-675.
36.ISO, I. 14040, ISO 14044, ISO 14047-ISO 14049. Environmental Management: Life Cycle Assessment (LCA).
37.Jones, J., Chang, N. B., & Wanielista, M. P. (2015). Reliability analysis of nutrient removal from stormwater runoff with green sorption media under varying influent conditions. Science of the Total Environment, 502, 434-447.
38.Kahiluoto, H., Kuisma, M., Ketoja, E., Salo, T., & Heikkinen, J. (2015). Phosphorus in manure and sewage sludge more recyclable than in soluble inorganic fertilizer. Environmental science & technology, 49(4), 2115-2122.
39.Kataki, S., West, H., Clarke, M., & Baruah, D. C. (2016). Phosphorus recovery as struvite: Recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential. Resources, Conservation and Recycling, 107, 142-156.
40.Koning, N. B. J., Van Ittersum, M. K., Becx, G. A., Van Boekel, M. A. J. S., Brandenburg, W. A., Van Den Broek, J. A., ... & Smies, M. (2008). Long-term global availability of food: continued abundance or new scarcity?. NJAS-Wageningen Journal of Life Sciences, 55(3), 229-292.
41.Le Corre, K. S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2009). Phosphorus recovery from wastewater by struvite crystallization: A review. Critical Reviews in Environmental Science and Technology, 39(6), 433-477.
42.Li, B., Li, P., Zeng, X. C., Yu, W., Huang, Y. F., Wang, G. Q., & Young, B. R. (2020). Assessing the sustainability of phosphorus use in China: Flow patterns from 1980 to 2015. Science of The Total Environment, 704, 135305.
43.Li, B., Udugama, I. A., Mansouri, S. S., Yu, W., Baroutian, S., Gernaey, K. V., & Young, B. R. (2019). An exploration of barriers for commercializing phosphorus recovery technologies. Journal of Cleaner Production, 229, 1342-1354.
44.Li, H., Zou, S., Li, C., & Jin, Y. (2013). Alkaline post-treatment for improved sludge anaerobic digestion. Bioresource technology, 140, 187-191.
45.Loganathan, P., Vigneswaran, S., Kandasamy, J., & Bolan, N. S. (2014). Removal and recovery of phosphate from water using sorption. Critical Reviews in Environmental Science and Technology, 44(8), 847-907.
46.Maaß, O., Grundmann, P., & und Polach, C. V. B. (2014). Added-value from innovative value chains by establishing nutrient cycles via struvite. Resources, Conservation and Recycling, 87, 126-136.
47.Mårald, E. (1998). I mötet mellan jordbruk och kemi: agrikulturkemins framväxt på Lantbruksakademiens experimentalfält, 1850-1907. Kungl. Skogs-och lantbruksakademien.
48.Moerman, W., Carballa, M., Vandekerckhove, A., Derycke, D., & Verstraete, W. (2009). Phosphate removal in agro-industry: pilot-and full-scale operational considerations of struvite crystallization. Water research, 43(7), 1887-1892.
49.Muhmood, A., Lu, J., Dong, R., & Wu, S. (2019). Formation of struvite from agricultural wastewaters and its reuse on farmlands: Status and hindrances to closing the nutrient loop. Journal of environmental management, 230, 1-13.
50.Müller, J. A., Günther, L., Dockhorn, T., Dichtl, N., Phan, L. C., Urban, I., ... & Bayerle, N. (2007, June). Nutrient recycling from sewage sludge using the Seaborne process. In Conference, Proceedings on Moving Forward Wastewater Biosolids Sustainability: Technical, Managerial, and Public Synergy (pp. 629-633).
51.Nanzer, S., Oberson, A., Berger, L., Berset, E., Hermann, L., & Frossard, E. (2014). The plant availability of phosphorus from thermo-chemically treated sewage sludge ashes as studied by 33 P labeling techniques. Plant and soil, 377(1-2), 439-456.
52.Némethy, A. (2016). Analyzing the process of struvite recovery with Life Cycle Assessment–A case study. Examensarbete/Institutionen för energi och teknik, SLU, 2016: 05.
53.Neyens, E., Baeyens, J., & Creemers, C. (2003). Alkaline thermal sludge hydrolysis. Journal of hazardous materials, 97(1-3), 295-314.
54.Niewersch, C., Abels, C., Li, R., Wintgens, T., & Melin, T. (2009). Mass transport modelling to estimate the efficiency of nanofiltration application for the recovery of phosphorus from sewage sludge. Desalination and water treatment, 6(1-3), 86-93.
55.Nowak, B., Aschenbrenner, P., & Winter, F. (2013). Heavy metal removal from sewage sludge ash and municipal solid waste fly ash—a comparison. Fuel processing technology, 105, 195-201.
56.Petzet, S., Peplinski, B., & Cornel, P. (2012). On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both. Water research, 46(12), 3769-3780.
57.Pradel, M., & Aissani, L. (2019). Environmental impacts of phosphorus recovery from a “product” Life Cycle Assessment perspective: allocating burdens of wastewater treatment in the production of sludge-based phosphate fertilizers. Science of The Total Environment, 656, 55-69.
58.Qin, C., Liu, H., Liu, L., Smith, S., Sedlak, D. L., & Gu, A. Z. (2015). Bioavailability and characterization of dissolved organic nitrogen and dissolved organic phosphorus in wastewater effluents. Science of the Total Environment, 511, 47-53.
59.Roeleveld, P. J., Klapwijk, A., Eggels, P. G., Rulkens, W. H., & Van Starkenburg, W. (1997). Sustainability of municipal waste water treatment. Water science and technology, 35(10), 221-228.
60.Roy, R. N., Finck, A., Blair, G. J., & Tandon, H. L. S. (2006). Plant nutrition for food security. A guide for integrated nutrient management. FAO Fertilizer and Plant Nutrition Bulletin, 16, 368.
61.Safari, G. H., Yetilmezsoy, K., Mahvi, A. H., & Zarrabi, M. (2013). Post-treatment of secondary wastewater treatment plant effluent using a two-stage fluidized bed bioreactor system. Journal of Environmental Health Science and Engineering, 11(1), 10.
62.Schulz, M., & Schultze, N. (2001). Die Seaborne-Anlagentechnik zur Aufbereitung organischer Reststoffe-Wohin mit dem Klärschlamm–Wege aus der Landwirtschaft. UAN Hannover.
63.Shu, L., Schneider, P., Jegatheesan, V., & Johnson, J. (2006). An economic evaluation of phosphorus recovery as struvite from digester supernatant. Bioresource technology, 97(17), 2211-2216.
64.Smil, V. (2000). Phosphorus in the environment: natural flows and human interferences. Annual review of energy and the environment, 25(1), 53-88.
65.StatistischesBundesamt, W. Wirtschaftsjahr2012/2013.
66.Steen, I. (1998). Phosphorus availability in the 21st century: management of a non-renewable resource. Phosphorus Potassium, 217, 25-31.
67.Stewart, W. M., Hammond, L. L., & Van Kauwenbergh, S. J. (2005). Phosphorus as a natural resource. Phosphorus: agriculture and the environment, 46, 1-22.
68.Svanström, M., Lozano‐García, F. J., & Rowe, D. (2008). Learning outcomes for sustainable development in higher education. International Journal of Sustainability in Higher Education.
69.Sweden, S. (2011). Nitrogen and phosphorus balances for agricultural land and agricultural sector in 2009. Swedish, with English summary.) Statistiska meddelanden MI, 40.
70.Takaoka, M., Oshita, K., Sun, X. C., Matsukawa, K., & Fujiwara, T. (2010). Phosphorous material flow and its recovery from waste water and solid waste. In UNEP-DTIE-IETC, Regional Workshop on Waste Agricultural Biomass, 2–5 March 2010 at Global Environment Centre Foundation in Osaka. Japan Institute of Wastewater Engineering Technology (JIWET).
71.Tao, W., Fattah, K. P., & Huchzermeier, M. P. (2016). Struvite recovery from anaerobically digested dairy manure: A review of application potential and hindrances. Journal of environmental management, 169, 46-57.
72.Thompson, M., Ellis, R., & Wildavsky, A. (1990). Cultural Theory. Boulder, Colo.
73.Torres, M. L., & Lloréns, M. D. C. E. (2008). Effect of alkaline pretreatment on anaerobic digestion of solid wastes. Waste Management, 28(11), 2229-2234.
74.Treadwell, J. L., Clark, O. G., & Bennett, E. M. (2018). Dynamic simulation of phosphorus flows through Montreal’s food and waste systems. Resources, Conservation and Recycling, 131, 122-133.
75.USGS, National Minerals Information Center, Phosphate Rock Statistics and Information (2018). https://www.usgs.gov/centers/nmic/phosphate-rock-statistics-and-information
76.Weigand, H., Bertau, M., Hübner, W., Bohndick, F., & Bruckert, A. (2013). RecoPhos: Full-scale fertilizer production from sewage sludge ash. Waste management, 33(3), 540-544.
77.Wiechmann, B., Dienemann, C., Kabbe, C., Brandt, S., Vogel, I., & Roskosch, A. (2013). Klärschlammentsorgung in der Bundesrepublik Deutschland. Umweltbundesamt.
78.Wilsenach, J., & Loosdrecht, M. V. (2002). Separate urine collection and treatment: options for sustainable wastewater systems and mineral recovery. STOWA.
79.WSRW, 2007. The Phosphate Exports, Western Sahara Resource Watch.
https://www.wsrw.org/a114x515
80.Xie, C., Zhao, J., Tang, J., Xu, J., Lin, X., & Xu, X. (2011). The phosphorus fractions and alkaline phosphatase activities in sludge. Bioresource technology, 102(3), 2455-2461.
81.Xie, W., & Zhao, D. (2016). Controlling phosphate releasing from poultry litter using stabilized Fe–Mn binary oxide nanoparticles. Science of The Total Environment, 542, 1020-1029.
82.Ye, Y., Ngo, H. H., Guo, W., Liu, Y., Li, J., Liu, Y., ... & Jia, H. (2017). Insight into chemical phosphate recovery from municipal wastewater. Science of the Total Environment, 576, 159-171.
83.Yetilmezsoy, K., & Sakar, S. (2008). Improvement of COD and color removal from UASB treated poultry manure wastewater using Fenton's oxidation. Journal of Hazardous materials, 151(2-3), 547-558.
84.Yetilmezsoy, K., Ilhan, F., Sapci-Zengin, Z., Sakar, S., & Gonullu, M. T. (2009). Decolorization and COD reduction of UASB pretreated poultry manure wastewater by electrocoagulation process: A post-treatment study. Journal of hazardous materials, 162(1), 120-132.
中文文獻
1.楊致行(2000),CNS/ISO 14044 環境管理-生命週期評估:原則與架構,工研院環安中心。
2.經濟部標準檢驗局(2008),CNS 14044環境管理-生命週期評估。
3.莊順興(2016,a),下水道污泥水解及磷結晶技術研討會。
4.莊順興(2016,b),都市污水除磷與回收-流體化床結晶技術。
5.陳政良(2006),台中市福田水資源回收中心操作實例。
6.邱鈺婷(2008), 廢棄活性污泥超音波水解特性之研究。朝陽科技大學環境工程與管理系碩士班碩士論文,台中市。7.吳璽文(2010).,鹼及超音波水解對污泥減量及提昇消化效能之研究。朝陽科技大學環境工程與管理系碩士班碩士論文,台中市。8.阿帝咖里. (2011,施用堆肥及尿素之氮磷回收淋洗及土壤品質之變化,國立臺灣大學農業化學研究所博士論文。9.黃文昌. (2012),廢(污)水處理廠節能規劃與改善–以工研院中興院區為例,工業污染防治第122期。
10.許桓瑜(2014),都市污水處理廠之生命週期評估.
11.蘇帝朋(2015),利用Purolite A500 樹脂及化學沉澱進行好氧薄膜處理槽出流水磷回收之研究。嘉南藥理大學環境工程與科學系碩士論文。12.行政院農業委員會農糧署(2017),106年度農業統計年報。
13.林南宏(2018),藉由流體化結晶床研究磷濃度, pH,莫耳比及預處理對下水污泥磷回收之影響,中興大學環境工程學系所學位論文, 1-177.
14.黃立勛(2019),雙槽平板式微生物燃料電池產能和磷回收研究,臺灣大學環境工程學研究所學位論文, 1-69.
15.王怡心(2017),不確定性分析應用於物質流分析與管理研究,臺灣大學環境工程學研究所學位論文, 1-138.
16.內政部營建署下水道工程處(2018),107年度污水下水道統計要覽。資料來源:http://sewergis.cpami.gov.tw/sewersso/CMMDEF/DataShow.aspx?argNewsid=20191216105939766#