(54.236.58.220) 您好!臺灣時間:2021/03/05 00:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:莊哲閔
研究生(外文):CHUANG, CHE-MIN
論文名稱:污水處理廠磷回收技術之生命週期評估–以某試驗模廠為例
論文名稱(外文):Life Cycle Assessment of Phosphorus Recovery Technologies in the Wastewater Treatment Plant–Case Study of A Pilot Plant
指導教授:胡憲倫胡憲倫引用關係
指導教授(外文):HU, XIAN-LUN
口試委員:胡憲倫陳孝行莊順興
口試委員(外文):HU, XIAN-LUNCHEN, XIAO-XINGCHUANG, SHUN-HSING
口試日期:2020-07-08
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:環境工程與管理研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:107
語文別:中文
論文頁數:93
中文關鍵詞:磷回收生命週期評估磷稀缺流體化床結晶化
外文關鍵詞:Phosphorus recoveryPhosphorus scarcityLife cycle assessmentCrystallizationFluidized bed
相關次數:
  • 被引用被引用:0
  • 點閱點閱:58
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
磷(P)是一種不可或缺的元素。隨著人口的增加,人類日漸對於磷礦產生依賴,從而造成了磷稀缺的問題。磷作為一種非再生資源,正因為化肥生產需求日益增加,面臨了枯竭危機。隨著都市化和工業化的快速發展,造成的污水已成為了不可避免的問題。許多國家開始注意到磷資源的重要性,並積極尋求磷回收的技術開發,因此從污水中回收有價值的資源受到了關注。

台灣目前有試驗模廠針對污水處理廠之污泥進行磷結晶回收的實作案例,本研究將透過生命週期評估分析探討污水處理廠中回收磷應用於實廠之潛力。透過盤查某廠之污水處理流程以及試驗模廠使用的鹼併超音波水解與流體化床技術,蒐集投入與產出數據進並行生命週期評估後,與國外文獻進行比較,探討台灣與國外使用技術的差異,並檢視污水處理廠設置回收磷設備之效益與環境衝擊。
經評估結果顯示,經特徵化的結果以放流水處理階段在各項環境衝擊的佔比最高環境衝擊總量分別為7.33E-04 kg P eq與6.08E-03 kg N eq。經標準化後的結果在淡水優養化、海洋優養化、淡水生態毒性與海洋生態毒性這四項衝擊類別的表現較為凸出分別為1.13E-03、1.32E-03、9.24E-04與8.07E-04。 在礦產資源稀缺這項衝擊類別中,環境衝擊為-1.40E-10,與未設置磷回收前進行比較,可以減少約130%的環境衝擊。本研究透過生命週期評估結果,表明了磷回收技術增設後,具有改善污水處理廠環境效益的優勢,每處理一噸生活污水可減少約12%的環境衝擊總量。

透過磷回收之環境效益評估,初步地分析磷回收技術的可行性與環境效益,除了減少污水處理廠的環境衝擊,其回收產品能遠低於現有法規標準,表現其發展之潛力;而在經濟效益評估中,將回收產品與市售肥料進行價格比較,仍需要進一步地透過實廠應用後的回收產品進行成本分析,主要受到設備成本與產品品質所影響。

本研究初步蒐集與彙整試驗模廠與F污水處理廠之基本投入與廠出資料,並提出此技術的環境效益與環境衝擊,而數據蒐集仍需要進一步的探討與分析,例如:實廠設置鹼併超音波水解與流體化床技術並參與先期投入與產出數據盤查,建立台灣磷回收技術的完整生命週期評估,進而推動污水處理廠設置磷回收技術的可行性。

Phosphorus (P) is an indispensable element. With the increase of population, humans are increasingly dependent on phosphate rock, which has caused the problem of phosphorus scarcity. Phosphorus, as a non-renewable resource, is facing a crisis of depletion because of the increasing demand for fertilizer production. With the rapid development of urbanization and industrialization, the sewage produced has become an inevitable problem. Many countries have begun to pay attention to the importance of phosphorus resources and are actively seeking technology development for phosphorus recovery. Therefore, the recovery of valuable resources from sewage has attracted attention.

In Taiwan, there is currently a pilot plant that implements phosphorus crystallization recovery of sludge from wastewater treatment plants. This study will explore the potential of phosphorus recovery from wastewater treatment plants to be used in general plants through life cycle assessment and analysis. Through the investigation of the wastewater treatment process of a certain plant and the alkali and ultrasonic hydrolysis and fluidized bed technology used in the pilot plant, after collecting input and output data in life cycle assessment, it is compared with foreign literature to discuss Taiwan and foreign countries. Use the differences in technology, and examine the benefits and environmental impact of wastewater treatment plants setting up phosphorus recovery equipment.
The characterized results show that the highest proportion of environmental impacts in the discharge water treatment stage in each environmental impact are 7.33E-04 kg P eq and 6.08E-03 kg N eq. The standardized results are more prominent in the four impact categories of freshwater and marine eutrophication, freshwater, and marine ecotoxicity, which are 1.13E-03, 1.32E-03, 9.24E-04, and 8.07E-04, respectively. In the impact category of the scarcity of mineral resources, the environmental impact is -1.40E-10. Compared with before phosphorus recovery is not set, the environmental impact can be reduced by about 130%. This study shows that the addition of phosphorus recovery technology has the advantage of improving the environmental efficiency of wastewater treatment plants. Each ton of domestic wastewater treatment can reduce the total environmental impact by about 12%.

Through the environmental benefit assessment of phosphorus recovery, preliminary analysis of the feasibility and environmental benefits of phosphorus recovery technology, in addition to reducing the environmental impact of wastewater treatment plants, the products showing development potential that can up to the existing regulations and standards even below; In the comparison of the prices of recycled products with commercially available fertilizers, it is still necessary to conduct a cost analysis through the recycled products applied in the actual factory, which is mainly affected by the cost of equipment and product quality.

In summary, this study only preliminary collected and aggregated the basic input and output data of the pilot plant and F wastewater treatment plant, and proposed the environmental benefits and environmental impact of this technology. Data collection still needs further discussion and analysis, such as general plant settings alkali and ultrasonic hydrolysis and fluidized bed technology and participate in the preliminary input and output data inventory, establish a complete life cycle assessment of phosphorus recovery technology in Taiwan and then promote the feasibility of phosphorus recovery technology in wastewater treatment plants.
摘要 II
ABSTRACT IV
目錄 VII
圖目錄 IX
表目錄 X
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 4
1.3 研究架構 6
第二章 文獻回顧 8
2.1磷資源介紹 8
2.1.1 磷的來源 8
2.1.2 磷的歷史 11
3.1.3 磷稀缺的危機 11
2.2國內外磷資源管理現況 12
2.2.1 台灣 12
2.2.2 歐美 16
2.2.3 中國 19
2.3 磷回收技術文獻回顧 21
2.3.1 從液相中回收磷 21
2.3.2 從污泥相中回收磷 27
2.3.3 國內磷回收技術 33
2.4生命週期評估及污水處理廠與磷回收技術 37
2.4.1 生命週期評估的發展及內容 37
2.4.2 污水處理廠與磷回收技術生之命週期評估研究 44
2.5磷回收技術之經濟效益 46
第三章 研究方法 48
3.1 研究流程 48
3.2污水處理廠回收磷之生命週期評估研究 48
3.2 磷回收環境與經濟效益評估 61
3.3 與國外文獻進行比較 62
第四章 結果與討論 65
4.1磷回收技術之環境效益--生命週期評估結果 65
4.2磷回收技術之經濟效益評估 77
4.3與國外文獻進行比較 78
第五章 結論與建議 81
5.1結論 81
5.2建議 82
參考文獻 84
英文文獻 84
中文文獻 93

1.Abma, W. R., Driessen, W., Haarhuis, R., & Van Loosdrecht, M. C. M. (2010). Upgrading of wastewater treatment plant by sustainable and cost-effective separate treatment of industrial wastewater. Water science and technology, 61(7), 1715-1722.
2.Adam, C. (2017). SUSAN-Sustainable and safe re-use of municipal sewage sludge for nutrient recovery.
3.Adam, C., Peplinski, B., Michaelis, M., Kley, G., & Simon, F. G. (2009). Thermochemical treatment of sewage sludge ashes for phosphorus recovery. Waste management, 29(3), 1122-1128.
4.Amann, A., Zoboli, O., Krampe, J., Rechberger, H., Zessner, M., & Egle, L. (2018). Environmental impacts of phosphorus recovery from municipal wastewater. Resources, Conservation and Recycling, 130, 127-139.
5.Appels, L., Degrève, J., Van der Bruggen, B., Van Impe, J., & Dewil, R. (2010). Influence of low temperature thermal pre-treatment on sludge solubilisation, heavy metal release and anaerobic digestion. Bioresource technology, 101(15), 5743-5748.
6.Ashley, K., Cordell, D., & Mavinic, D. (2011). A brief history of phosphorus: from the philosopher’s stone to nutrient recovery and reuse. Chemosphere, 84(6), 737-746.
7.Becerra, F. Y. G., Acosta, E. J., & Allen, D. G. (2010). Alkaline extraction of wastewater activated sludge biosolids. Bioresource technology, 101(18), 6972-6980.
8.Blankesteijn, M. (2019). From measuring to removing to recovering phosphorus in water management in the Netherlands: Challenges for science-based innovation. Science of the Total Environment, 666, 801-811.
9.Brinck, J. W. (2009, September). World resources of phosphorus. In Ciba foundation symposium (Vol. 57, pp. 23-48).
10.Xuechu, C., Hainan, K., Deyi, W. U., Xinze, W., & Yongyong, L. (2009). Phosphate removal and recovery through crystallization of hydroxyapatite using xonotlite as seed crystal. Journal of Environmental Sciences, 21(5), 575-580.
11.Cieślik, B., & Konieczka, P. (2017). A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods. Journal of Cleaner Production, 142, 1728-1740.
12.Cordell, D., Drangert, J. O., & White, S. (2009). The story of phosphorus: global food security and food for thought. Global environmental change, 19(2), 292-305.
13.Cornel, P., & Schaum, C. (2009). Phosphorus recovery from wastewater: needs, technologies and costs. Water Science and Technology, 59(6), 1069-1076.
14.Corominas, L., Foley, J., Guest, J. S., Hospido, A., Larsen, H. F., Morera, S., & Shaw, A. (2013). Life cycle assessment applied to wastewater treatment: state of the art. Water research, 47(15), 5480-5492.
15.European Commission, Critical raw materials list, Europe Commission, https://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical_en
16.Dai, L., Wu, B., Tan, F., He, M., Wang, W., Qin, H., ... & Hu, Q. (2014). Engineered hydrochar composites for phosphorus removal/recovery: lanthanum doped hydrochar prepared by hydrothermal carbonization of lanthanum pretreated rice straw. Bioresource technology, 161, 327-332.
17.Desmidt, E., Ghyselbrecht, K., Zhang, Y., Pinoy, L., Van der Bruggen, B., Verstraete, W., ... & Meesschaert, B. (2015). Global phosphorus scarcity and full-scale P-recovery techniques: a review. Critical Reviews in Environmental Science and Technology, 45(4), 336-384.
18.Donatello, S., & Cheeseman, C. R. (2013). Recycling and recovery routes for incinerated sewage sludge ash (ISSA): A review. Waste Management, 33(11), 2328-2340.
19.Donatello, S., Tong, D., & Cheeseman, C. R. (2010). Production of technical grade phosphoric acid from incinerator sewage sludge ash (ISSA). Waste management, 30(8-9), 1634-1642.
20.Driessen, W., Abma, W., Van Zessen, E., Reitsma, G., & Haarhuis, R. (2009). Sustainable treatment of reject water and industrial effluent by producing valuable byproducts. In Proceedings of 14th European Biosolids and Organic Resources Conference, Leeds, UK.
21.Egle, L., Rechberger, H., Krampe, J., & Zessner, M. (2016). Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies. Science of the Total Environment, 571, 522-542.
22.Ekardt, F. (2011). Theorie der Nachhaltigkeit: rechtliche, ethische und politische Zugänge-am Beispiel von Klimawandel, Ressourcenknappheit und Welthandel. Nomos.
23.Emmerson, R. H. C., Morse, G. K., Lester, J. N., & Edge, D. R. (1995). The life‐cycle analysis of small‐scale sewage‐treatment processes. Water and Environment Journal, 9(3), 317-325.
24.Emsley, J., & Huxtable, R. J. (2000). The shocking history of phosphorus: a biography of the devil's element (pp. 1-326). London: Macmillan.
25.EU. (2009). SUSAN-Sustainable and Safe Re-use of Municipal Sewage Sludge for Nutrient Recovery, Final Activity Report, Contract Number 016079
26.European Fertilizer Manufacturers Association. (2000). Phosphorus: essential element for food production. European Fertilizer Manufacturers Association (EFMA), Brussels.
27.Fang, C., Zhang, T., Li, P., Jiang, R., Wu, S., Nie, H., & Wang, Y. (2015). Phosphorus recovery from biogas fermentation liquid by Ca–Mg loaded biochar. Journal of Environmental Sciences, 29, 106-114.
28.FAO, 2007a. Current World Fertilizer Trends and Outlook to 2010/11. Food and Agriculture Organisation of the United Nations Rome.
29.Fraiture, C. D. (2007). Future Water Requirements for Food—Three Scenarios, International Water Management Institute (IWMI), SIWI Seminar: Water for Food, Bio-fuels or Ecosystems. World water week.
30.Gaterell, M. R., Gay, R., Wilson, R., Gochin, R. J., & Lester, J. N. (2000). An economic and environmental evaluation of the opportunities for substituting phosphorus recovered from wastewater treatment works in existing UK fertiliser markets. Environmental Technology, 21(9), 1067-1084.
31.Giensen, A., & van der Moldeh, J. G. (1996). The crystalactor: wastewater treatment by crystallization without waste production. DHV Water BV, Amerfoort.
32.Goedkoop, M., Heijungs, R., Huijbregts, M., De Schryver, A., Struijs, J., & Van Zelm, R. (2009). ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level, 1, 1-126.
33.Hospido, A., & Tyedmers, P. (2005). Life cycle environmental impacts of Spanish tuna fisheries. Fisheries Research, 76(2), 174-186.
34.Huang, H., Liu, J., & Ding, L. (2015). Recovery of phosphate and ammonia nitrogen from the anaerobic digestion supernatant of activated sludge by chemical precipitation. Journal of Cleaner Production, 102, 437-446.
35.Huang, H., Zhang, D., Guo, G., Jiang, Y., Wang, M., Zhang, P., & Li, J. (2018). Dolomite application for the removal of nutrients from synthetic swine wastewater by a novel combined electrochemical process. Chemical Engineering Journal, 335, 665-675.
36.ISO, I. 14040, ISO 14044, ISO 14047-ISO 14049. Environmental Management: Life Cycle Assessment (LCA).
37.Jones, J., Chang, N. B., & Wanielista, M. P. (2015). Reliability analysis of nutrient removal from stormwater runoff with green sorption media under varying influent conditions. Science of the Total Environment, 502, 434-447.
38.Kahiluoto, H., Kuisma, M., Ketoja, E., Salo, T., & Heikkinen, J. (2015). Phosphorus in manure and sewage sludge more recyclable than in soluble inorganic fertilizer. Environmental science & technology, 49(4), 2115-2122.
39.Kataki, S., West, H., Clarke, M., & Baruah, D. C. (2016). Phosphorus recovery as struvite: Recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential. Resources, Conservation and Recycling, 107, 142-156.
40.Koning, N. B. J., Van Ittersum, M. K., Becx, G. A., Van Boekel, M. A. J. S., Brandenburg, W. A., Van Den Broek, J. A., ... & Smies, M. (2008). Long-term global availability of food: continued abundance or new scarcity?. NJAS-Wageningen Journal of Life Sciences, 55(3), 229-292.
41.Le Corre, K. S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2009). Phosphorus recovery from wastewater by struvite crystallization: A review. Critical Reviews in Environmental Science and Technology, 39(6), 433-477.
42.Li, B., Li, P., Zeng, X. C., Yu, W., Huang, Y. F., Wang, G. Q., & Young, B. R. (2020). Assessing the sustainability of phosphorus use in China: Flow patterns from 1980 to 2015. Science of The Total Environment, 704, 135305.
43.Li, B., Udugama, I. A., Mansouri, S. S., Yu, W., Baroutian, S., Gernaey, K. V., & Young, B. R. (2019). An exploration of barriers for commercializing phosphorus recovery technologies. Journal of Cleaner Production, 229, 1342-1354.
44.Li, H., Zou, S., Li, C., & Jin, Y. (2013). Alkaline post-treatment for improved sludge anaerobic digestion. Bioresource technology, 140, 187-191.
45.Loganathan, P., Vigneswaran, S., Kandasamy, J., & Bolan, N. S. (2014). Removal and recovery of phosphate from water using sorption. Critical Reviews in Environmental Science and Technology, 44(8), 847-907.
46.Maaß, O., Grundmann, P., & und Polach, C. V. B. (2014). Added-value from innovative value chains by establishing nutrient cycles via struvite. Resources, Conservation and Recycling, 87, 126-136.
47.Mårald, E. (1998). I mötet mellan jordbruk och kemi: agrikulturkemins framväxt på Lantbruksakademiens experimentalfält, 1850-1907. Kungl. Skogs-och lantbruksakademien.
48.Moerman, W., Carballa, M., Vandekerckhove, A., Derycke, D., & Verstraete, W. (2009). Phosphate removal in agro-industry: pilot-and full-scale operational considerations of struvite crystallization. Water research, 43(7), 1887-1892.
49.Muhmood, A., Lu, J., Dong, R., & Wu, S. (2019). Formation of struvite from agricultural wastewaters and its reuse on farmlands: Status and hindrances to closing the nutrient loop. Journal of environmental management, 230, 1-13.
50.Müller, J. A., Günther, L., Dockhorn, T., Dichtl, N., Phan, L. C., Urban, I., ... & Bayerle, N. (2007, June). Nutrient recycling from sewage sludge using the Seaborne process. In Conference, Proceedings on Moving Forward Wastewater Biosolids Sustainability: Technical, Managerial, and Public Synergy (pp. 629-633).
51.Nanzer, S., Oberson, A., Berger, L., Berset, E., Hermann, L., & Frossard, E. (2014). The plant availability of phosphorus from thermo-chemically treated sewage sludge ashes as studied by 33 P labeling techniques. Plant and soil, 377(1-2), 439-456.
52.Némethy, A. (2016). Analyzing the process of struvite recovery with Life Cycle Assessment–A case study. Examensarbete/Institutionen för energi och teknik, SLU, 2016: 05.
53.Neyens, E., Baeyens, J., & Creemers, C. (2003). Alkaline thermal sludge hydrolysis. Journal of hazardous materials, 97(1-3), 295-314.
54.Niewersch, C., Abels, C., Li, R., Wintgens, T., & Melin, T. (2009). Mass transport modelling to estimate the efficiency of nanofiltration application for the recovery of phosphorus from sewage sludge. Desalination and water treatment, 6(1-3), 86-93.
55.Nowak, B., Aschenbrenner, P., & Winter, F. (2013). Heavy metal removal from sewage sludge ash and municipal solid waste fly ash—a comparison. Fuel processing technology, 105, 195-201.
56.Petzet, S., Peplinski, B., & Cornel, P. (2012). On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both. Water research, 46(12), 3769-3780.
57.Pradel, M., & Aissani, L. (2019). Environmental impacts of phosphorus recovery from a “product” Life Cycle Assessment perspective: allocating burdens of wastewater treatment in the production of sludge-based phosphate fertilizers. Science of The Total Environment, 656, 55-69.
58.Qin, C., Liu, H., Liu, L., Smith, S., Sedlak, D. L., & Gu, A. Z. (2015). Bioavailability and characterization of dissolved organic nitrogen and dissolved organic phosphorus in wastewater effluents. Science of the Total Environment, 511, 47-53.
59.Roeleveld, P. J., Klapwijk, A., Eggels, P. G., Rulkens, W. H., & Van Starkenburg, W. (1997). Sustainability of municipal waste water treatment. Water science and technology, 35(10), 221-228.
60.Roy, R. N., Finck, A., Blair, G. J., & Tandon, H. L. S. (2006). Plant nutrition for food security. A guide for integrated nutrient management. FAO Fertilizer and Plant Nutrition Bulletin, 16, 368.
61.Safari, G. H., Yetilmezsoy, K., Mahvi, A. H., & Zarrabi, M. (2013). Post-treatment of secondary wastewater treatment plant effluent using a two-stage fluidized bed bioreactor system. Journal of Environmental Health Science and Engineering, 11(1), 10.
62.Schulz, M., & Schultze, N. (2001). Die Seaborne-Anlagentechnik zur Aufbereitung organischer Reststoffe-Wohin mit dem Klärschlamm–Wege aus der Landwirtschaft. UAN Hannover.
63.Shu, L., Schneider, P., Jegatheesan, V., & Johnson, J. (2006). An economic evaluation of phosphorus recovery as struvite from digester supernatant. Bioresource technology, 97(17), 2211-2216.
64.Smil, V. (2000). Phosphorus in the environment: natural flows and human interferences. Annual review of energy and the environment, 25(1), 53-88.
65.StatistischesBundesamt, W. Wirtschaftsjahr2012/2013.
66.Steen, I. (1998). Phosphorus availability in the 21st century: management of a non-renewable resource. Phosphorus Potassium, 217, 25-31.
67.Stewart, W. M., Hammond, L. L., & Van Kauwenbergh, S. J. (2005). Phosphorus as a natural resource. Phosphorus: agriculture and the environment, 46, 1-22.
68.Svanström, M., Lozano‐García, F. J., & Rowe, D. (2008). Learning outcomes for sustainable development in higher education. International Journal of Sustainability in Higher Education.
69.Sweden, S. (2011). Nitrogen and phosphorus balances for agricultural land and agricultural sector in 2009. Swedish, with English summary.) Statistiska meddelanden MI, 40.
70.Takaoka, M., Oshita, K., Sun, X. C., Matsukawa, K., & Fujiwara, T. (2010). Phosphorous material flow and its recovery from waste water and solid waste. In UNEP-DTIE-IETC, Regional Workshop on Waste Agricultural Biomass, 2–5 March 2010 at Global Environment Centre Foundation in Osaka. Japan Institute of Wastewater Engineering Technology (JIWET).
71.Tao, W., Fattah, K. P., & Huchzermeier, M. P. (2016). Struvite recovery from anaerobically digested dairy manure: A review of application potential and hindrances. Journal of environmental management, 169, 46-57.
72.Thompson, M., Ellis, R., & Wildavsky, A. (1990). Cultural Theory. Boulder, Colo.
73.Torres, M. L., & Lloréns, M. D. C. E. (2008). Effect of alkaline pretreatment on anaerobic digestion of solid wastes. Waste Management, 28(11), 2229-2234.
74.Treadwell, J. L., Clark, O. G., & Bennett, E. M. (2018). Dynamic simulation of phosphorus flows through Montreal’s food and waste systems. Resources, Conservation and Recycling, 131, 122-133.
75.USGS, National Minerals Information Center, Phosphate Rock Statistics and Information (2018). https://www.usgs.gov/centers/nmic/phosphate-rock-statistics-and-information
76.Weigand, H., Bertau, M., Hübner, W., Bohndick, F., & Bruckert, A. (2013). RecoPhos: Full-scale fertilizer production from sewage sludge ash. Waste management, 33(3), 540-544.
77.Wiechmann, B., Dienemann, C., Kabbe, C., Brandt, S., Vogel, I., & Roskosch, A. (2013). Klärschlammentsorgung in der Bundesrepublik Deutschland. Umweltbundesamt.
78.Wilsenach, J., & Loosdrecht, M. V. (2002). Separate urine collection and treatment: options for sustainable wastewater systems and mineral recovery. STOWA.
79.WSRW, 2007. The Phosphate Exports, Western Sahara Resource Watch.
https://www.wsrw.org/a114x515
80.Xie, C., Zhao, J., Tang, J., Xu, J., Lin, X., & Xu, X. (2011). The phosphorus fractions and alkaline phosphatase activities in sludge. Bioresource technology, 102(3), 2455-2461.
81.Xie, W., & Zhao, D. (2016). Controlling phosphate releasing from poultry litter using stabilized Fe–Mn binary oxide nanoparticles. Science of The Total Environment, 542, 1020-1029.
82.Ye, Y., Ngo, H. H., Guo, W., Liu, Y., Li, J., Liu, Y., ... & Jia, H. (2017). Insight into chemical phosphate recovery from municipal wastewater. Science of the Total Environment, 576, 159-171.
83.Yetilmezsoy, K., & Sakar, S. (2008). Improvement of COD and color removal from UASB treated poultry manure wastewater using Fenton's oxidation. Journal of Hazardous materials, 151(2-3), 547-558.
84.Yetilmezsoy, K., Ilhan, F., Sapci-Zengin, Z., Sakar, S., & Gonullu, M. T. (2009). Decolorization and COD reduction of UASB pretreated poultry manure wastewater by electrocoagulation process: A post-treatment study. Journal of hazardous materials, 162(1), 120-132.
中文文獻
1.楊致行(2000),CNS/ISO 14044 環境管理-生命週期評估:原則與架構,工研院環安中心。
2.經濟部標準檢驗局(2008),CNS 14044環境管理-生命週期評估。
3.莊順興(2016,a),下水道污泥水解及磷結晶技術研討會。
4.莊順興(2016,b),都市污水除磷與回收-流體化床結晶技術。
5.陳政良(2006),台中市福田水資源回收中心操作實例。
6.邱鈺婷(2008), 廢棄活性污泥超音波水解特性之研究。朝陽科技大學環境工程與管理系碩士班碩士論文,台中市。
7.吳璽文(2010).,鹼及超音波水解對污泥減量及提昇消化效能之研究。朝陽科技大學環境工程與管理系碩士班碩士論文,台中市。
8.阿帝咖里. (2011,施用堆肥及尿素之氮磷回收淋洗及土壤品質之變化,國立臺灣大學農業化學研究所博士論文。
9.黃文昌. (2012),廢(污)水處理廠節能規劃與改善–以工研院中興院區為例,工業污染防治第122期。
10.許桓瑜(2014),都市污水處理廠之生命週期評估.
11.蘇帝朋(2015),利用Purolite A500 樹脂及化學沉澱進行好氧薄膜處理槽出流水磷回收之研究。嘉南藥理大學環境工程與科學系碩士論文。
12.行政院農業委員會農糧署(2017),106年度農業統計年報。
13.林南宏(2018),藉由流體化結晶床研究磷濃度, pH,莫耳比及預處理對下水污泥磷回收之影響,中興大學環境工程學系所學位論文, 1-177.
14.黃立勛(2019),雙槽平板式微生物燃料電池產能和磷回收研究,臺灣大學環境工程學研究所學位論文, 1-69.
15.王怡心(2017),不確定性分析應用於物質流分析與管理研究,臺灣大學環境工程學研究所學位論文, 1-138.
16.內政部營建署下水道工程處(2018),107年度污水下水道統計要覽。資料來源:http://sewergis.cpami.gov.tw/sewersso/CMMDEF/DataShow.aspx?argNewsid=20191216105939766#

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔