跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/26 02:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭浩倫
研究生(外文):Cheang, Hou-Lon
論文名稱:以斜向沉積技術研製氮化鈦奈米結構並應用於表面增強拉曼散射 (SERS)之研究
論文名稱(外文):Surface-enhanced Raman scattering from titanium nitride nanostructures fabricated using glancing angle deposition
指導教授:任貽均
指導教授(外文):Jen, Yi-Jun
口試委員:王智明廖博輝
口試委員(外文):WANG,ZHI-MINGLIAO,BO-HUI
口試日期:2018-11-23
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:98
中文關鍵詞:斜向沉積技術表面增強拉曼散射氮化鈦奈米結構
外文關鍵詞:glancing angle depositionsurface-enhanced Raman scatteringtitanium nitridenanostructure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本研究透過斜向沉積技術結合直流(DC)磁控反應濺鍍,並控制沉積期間氮氣流
量與基板溫度,成功的製鍍出氮化鈦奈米結構。通過在沉積過程中控制基板方向生長
傾斜的奈米結構陣列,討論隨著通入氮氣和氬氣中氮氣比例的增加、工作壓力和基板
加熱對沉積過程的影響,透過X 光繞射分析(XRD)分析氮化鈦的結晶向。氮化鈦奈米結
構應用於表面增強拉曼光譜之染料分子探測,利用羅丹明6G (R6G)分子溶液於基板上
並藉由532nm 激發波長,量測其表面增強拉曼散射(Surface Enhance Raman
Scattering, SERS)訊號。探討奈米柱狀結構的長度和相應的電阻率對SERS 訊號強度
的影響。為了研究耐用度,比較氮化鈦和銀奈米柱陣列隨時間其SERS 訊號強度的變
化。
Titanium nitride (TiN) nanostructures were fabricated by glancing angle deposition(GLAD) in direct current (DC) magnetron reactive sputtering. Slanted nanorods arrays (NRAs)was grown by controlling the substrate orientation during deposition. The impact of nitrogen flow rate relative to that of argon during deposition, and the deposition substrate temperatures of TiN were discussed. The TiN NRAs were analyzed by X-ray diffraction (XRD). The surface enhance Raman scattering (SERS) signals from Rhodamine 6G (R6G) of dropped on the substrates were detected by excited wavelength at 532nm. The influence of the length of TiN nanorods and corresponding resistivity on SERS peak intensities was investigated. In order to
study the durability, the difference of variation of SERS intensity between TiN and Ag deposited
NRAs with time was proposed here.
中文摘要…………………………………………………………………………………ⅰ
英文摘要…………………………………………………………………………………ⅱ
誌謝………………………………………………………………………………………ⅲ
目錄………………………………………………………………………………………iv
表目錄……………………………………………………………………………………ⅶ
圖目錄……………………………………………………………………………………ⅷ
第一章 緒論與文獻回顧……………………………………………………………………………………1
1.1 前言……………………………………………………………………………………1
1.2 文獻回顧……………………………………………………………………………………2
1.2.1 傳統表面增強拉曼散射基板之介紹 …………………………………………2
1.2.2 傳統SERS基板所遇到之問題與解決方法……………………………………4
1.2.3 替代電漿子材料-過度金屬氮化物……………………………………………7
1.2.4 氮化鈦作為表面增強拉曼散射基板……………………………………………………………………………………7
1.2.5 調控氮氬比對氮化鈦薄膜的影響……………………………………………………………………………………9
1.2.6不同的氮化鈦製備方式應用於表面增強拉曼散射……………………………………………………………………………10
1.2.7氮化鈦SERS基板之耐用度……………………………………………………………………………………16
1.3 研究動機……………………………………………………………………………………22
第二章 實驗原理……………………………………………………………………………………23
2.1 表面增強拉曼散射……………………………………………………………………………………23
2.1.1 拉曼散射與拉曼散射光譜……………………………………………………………………………………23
2.1.2 表面增強拉曼散射(Surface Enhanced Raman Scattering)……………………………………………25
2.1.3 增強因子(Enhancement Factor, EF)……………………………………………………………………………………26
2.2 斜向沉積技術……………………………………………………………………………………28
第三章 實驗架構與量測系統……………………………………………………………………………………30
3.1 鍍膜系統……………………………………………………………………………………30
3.2 實驗流程……………………………………………………………………………………32
3.3 奈米斜柱陣列製鍍方式……………………………………………………………………………………34
3.4 量測儀器……………………………………………………………………………………34
3.4.1 光譜量測系統……………………………………………………………………………………34
3.4.2 橢圓偏光儀(Ellipsometry)……………………………………………………………………………………35
3.4.3 化學分析電子光譜(ESCA)……………………………………………………………………………………37
3.4.4 低角度X-射線繞射儀(GIXRD)……………………………………………………………………………………38
3.4.5 高解析熱場發射掃描式電子顯微鏡(Thermal FE-SEM)………………………………………………………………39
3.4.6 拉曼光譜儀……………………………………………………………………………………40
第四章 實驗結果與分析討論……………………………………………………………………………………42
4.1 氮化鈦之薄膜特性……………………………………………………………………………………42
4.1.1 氮化鈦薄膜之微觀結構分析……………………………………………………………………………………42
4.1.2 氮化鈦薄膜之電阻率分析……………………………………………………………………………………44
4.1.3 氮化鈦薄膜XRD晶向分析……………………………………………………………………………………45
4.1.4 氮化鈦薄膜光譜圖……………………………………………………………………………………47
4.1.5 氮化鈦薄膜之介電常數比較…………………………………………………49
4.2 氮化鈦奈米柱狀結構……………………………………………………………………………………51
4.2.1 改變通入氮氣量對氮化鈦SERS基板之影響……………………………………………………………………………………51
4.2.2 基板加熱對氮化鈦SERS基板之影響……………………………………………………………………………………70
4.2.3 不同奈米柱長之氮化鈦對SERS基板之影響……………………………………………………………………………………79
4.2.4 不同孔隙率之氮化鈦對SERS基板之影響……………………………………………………………………………………84
4.3 氮化鈦SERS基板之時間性耐用度測試……………………………………………………………………………………89
第五章 結論……………………………………………………………………………………93
參考文獻……………………………………………………………………………………94

1.Chen, J., Park, B., Huang, Y.-W., Zhao, Y., Kwon, Y. “Label-free SERS detection of Salmonella Typhimurium on DNA aptamer modified AgNR substrates,” Journal of Food Measurement and Characterization, 11 (4), 2017, pp. 1773-1779.
2.Wu, X., Chen, J., Zhao, Y., Zughaier, S.M. “Rapid detection of Pseudomonas aeruginosa biomarkers in biological fluids using surface-enhanced Raman scattering,” Proceedings of SPIE - The International Society for Optical Engineering, 9107, 2014, 91070A .
3.Wu, X., Chen, J., Park, B., Huang, Y.-W., Zhao, Y. “The use of silver nanorod array-based surface-enhanced Raman scattering sensor for food safety applications,” ACS Symposium Series, 1143, 2013, pp. 85-105 .
4.M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 1974, 163 .
5.Y.-J. Liu, Z.-Y. Zhang, Q. Zhao, R. A. Dluhy, Y.-P. Zhao, “Surface Enhanced Raman Scattering from an Ag Nanorod Array Substrate: The Site Dependent Enhancement and Layer Absorbance Effect,"J. Phys. Chem. C , 113, 2009, 9664–9669.
6.Murai, S., Fujita, K., Daido, Y., Yasuhara, R., Kamakura, R., Tanaka, K. “Plasmonic arrays of titanium nitride nanoparticles fabricated from epitaxial thin films,” Optics Express, 24 (2), 2016, pp. 1143-1153.
7.Bachenheimer, L., Scherzer, R., Elliott, P., Stagon, S., Gasparov, L., Huang, H. “Degradation Mechanism of Ag Nanorods for Surface Enhanced Raman Spectroscopy,” Scientific Reports, 7 (1), 2017, 16580.
8.Goupy, J., Djemia, P., Pouget, S., Belliard, L., Abadias, G., Villégier, J.C., Sauvageot, J.L., Pigot, C. Structure, “electrical conductivity, critical superconducting temperature and mechanical properties of TiNxOy thin films”, Surface and Coatings Technology, 237, 2013, pp. 196-204.
9.Boltasseva, Alexandra ; Atwater, Harry A. Science, “Low-Loss Plasmonic Metamaterials,” Vol.331, 2011, pp.290-291.
10.Naik, G.V., Schroeder, J.L., Ni, X., Kildishev, A.V., Sands, T.D., Boltasseva, A. “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Optical Materials Express, 2 (4), 2012, pp. 478-489.
11.Ponon, N.K., Appleby, D.J.R., Arac, E., King, P.J., Ganti, S., Kwa, K.S.K., O'Neill, A. “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films, 578, 2015, pp. 31-37.
12.Lorite, I., Serrano, A., Schwartzberg, A., Bueno, J., Costa-Krämer, J.L. “Surface enhanced Raman spectroscopy by titanium nitride non-continuous thin films,” Thin Solid Films, 531, 2013, pp. 144-146.
13.Dong, Z., Wei, H., Chen, Y., Wang, R., Zhao, J., Lin, J., Bu, J., Wei, Y., Cui, Y., Yu, Y. “Surface enhanced Raman scattering activity of TiN thin film prepared via nitridation of sol-gel derived TiO2 film,” Proceedings of SPIE - The International Society for Optical Engineering, 9672, 2015, 967209.
14.Zhao, J., Lin, J., Wei, H., Li, X., Zhang, W., Zhao, G., Bu, J., Chen, Y. “Surface enhanced Raman scattering substrates based on titanium nitride nanorods,” Optical Materials, 47, 2015, pp. 219-224.
15.Kaisar, N., Huang, Y.-T., Jou, S., Kuo, H.-F., Huang, B.-R., Chen, C.-C., Hsieh, Y.-F., Chung, Y.-C. “Surface-enhanced Raman scattering substrates of flat and wrinkly titanium nitride thin films by sputter deposition,” Surface and Coatings Technology, 337, 2018, pp. 434-438.
16.Wei, H., Wu, M., Dong, Z., Chen, Y., Bu, J., Lin, J., Yu, Y., Wei, Y., Cui, Y., Wang, R. “Composition, microstructure and SERS properties of titanium nitride thin film prepared via nitridation of sol–gel derived titania thin films,” Journal of Raman Spectroscopy, 48 (4) , 2017, pp. 578-585.
17.Ban, R., Yu, Y., Zhang, M., Yin, J., Xu, B., Wu, D.-Y., Wu, M., Zhang, Z., Tai, H., Li, J., Kang, J. “Synergetic SERS Enhancement in a Metal-Like/Metal Double-Shell Structure for Sensitive and Stable Application,” ACS Applied Materials and Interfaces, 9 (15), 2017, pp. 13564-13570.
18.Ling, X., Fang, W., Lee, Y.-H., Araujo, P.T., Zhang, X., Rodriguez-Nieva, J.F., Lin, Y., Zhang, J., Kong, J., Dresselhaus, M.S. “Raman enhancement effect on two-dimensional layered materials: Graphene, h-BN and MoS2,” Nano Letters, 14 (6), 2014, pp. 3033-3040.
19.Jayawardhana, S., Rosa, L., Juodkazis, S., Stoddart, P.R. “Additional enhancement of electric field in surface-enhanced raman scattering due to fresnel mechanism,” Scientific Reports, 3, 2013, 2335.
20.Meyer, S.A., Le Ru, E.C., Etchegoin, P.G. Combining Surface Plasmon Resonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS) Analytical Chemistry, 83 (6), 2011, pp. 2337-2344.
21.Liao, P.F., Stern, M.B. “Surface-enhanced Raman scattering on gold and aluminum particle arrays,” Optics Letters, 7 (10), 1982, pp. 483-485.
22.Driskell, J.D., Shanmukh, S., Liu, Y., Chaney, S.B., Tang, X.-J., Zhao, Y.-P., Dluhy, R.A. “The use of aligned silver nanorod arrays prepared by oblique angle deposition as surface enhanced raman scattering substrates,” Journal of Physical Chemistry C, 112 (4) , 2008, pp. 895-901.
23.Le Ru, E.C., Blackie, E., Meyer, M., Etchegoint, P.G. “Surface enhanced raman scattering enhancement factors: A comprehensive study,” Journal of Physical Chemistry C, 111 (37), 2007, pp. 13794-13803.

24.Robbie, K., Brett, M.J. “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 15 (3), 1997, pp. 1460-1465.
25.Brett, M.J., Hawkeye, M.M. “Materials science: New materials at a glance,’’ Science, 319 (5867), 2008, pp. 1192-1193.
26.Lalisse, A., Tessier, G., Plain, J., Baffou, G. “Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold,” Scientific Reports, 6, 2016, 38647.
27.Guler, U., Zemlyanov, D., Kim, J., Wang, Z., Chandrasekar, R., Meng, X., Stach, E., Kildishev, A.V., Shalaev, V.M., Boltasseva, A. “Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide,” Advanced Optical Materials, 5 (7), 2017, 1600717.
28.Bai, Y., Yan, L., Wang, J., Su, L., Chen, N., Tan, Z. “Highly reproducible and uniform SERS substrates based on Ag nanoparticles with optimized size and gap,” Photonics and Nanostructures - Fundamentals and Applications, 23, 2017, pp. 58-63.
29.Chaney, S.B., Shanmukh, S., Dluhy, R.A., Zhao, Y.-P. “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Applied Physics Letters, 87 (3), 2005, 031908.
30.Bachenheimer, L., Scherzer, R., Elliott, P., Stagon, S., Gasparov, L., Huang, H. “Degradation Mechanism of Ag Nanorods for Surface Enhanced Raman Spectroscopy,” Scientific Reports, 7 (1), 2017, 16580.
31.Guler, U., Boltasseva, A., Shalaev, V.M. “Refractory plasmonics,” Science, 344 (6181) , 2014, pp. 263-264.
32.Jen, Y.-J., Lin, C.-F., Lin, M.-J. “Slanted S-shaped nano-columnar thin films for broadband and wide-angle polarization conversion,” Optical Materials Express, 1 (4) , 2011, pp. 525-534.
33.Jen, Y.-J., Chan, S., Huang, J.-W., Jheng, C.-Y., Liu, W.-C. “Self-Shadowing Deposited Pure Metal Nanohelix Arrays and SERS Application,” Nanoscale Research Letters, 10 (1), 498, 2015, pp. 1-6.
34.Jen, Y.-J., Liu, W.-C., Jheng, C.-Y., Huang, J.-W., Chang, Y.-T. “Z-shape nanostructured array deposited by substrate cooling method,” Journal of Nanophotonics, 10 (3), 2016, 033005.
35.Zhang, J., Chen, T.P., Li, X.D., Liu, Y.C., Liu, Y., Yang, H.Y. “Investigation of localized surface plasmon resonance of TiN nanoparticles in TiNxOy thin films,” Optical Materials Express, 6 (7), 2016, pp. 2422-2433.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊