跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/09 15:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:詹旻洋
研究生(外文):CHAN,MIN-YANG
論文名稱:具 ITO 薄膜之電光調變微碟共振元件
論文名稱(外文):Electro-optically Tunable Microdisk Resonators with ITO Films
指導教授:王子建
指導教授(外文):WANG,TZYY-JIANN
口試委員:王子建鄭鈺潔彭隆瀚黃定洧陳建旭
口試委員(外文):WANG,TZYY-JIANNCHENG,YU-CHIECHPENG,LUNG-HANHUANG,DING-WEICHEN,CHIEN-HSU
口試日期:2019-07-31
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:68
中文關鍵詞:ITO鈮酸鋰微碟形電光調變離子佈植
外文關鍵詞:ITOmicrodisklithium niobateelectro-optic modulationion implantation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:97
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出具ITO電極的電光調變鈮酸鋰微碟形共振元件,藉由碟形上方的圓形電極和與其連接的懸浮導線結構,使其同時具有高電光調變率與高品質因子的特性。其中鈮酸鋰微碟形厚度只有0.4μm,延伸至碟形外圍的漸逝場範圍很大,會造成嚴重的光吸收,使得共振光場無法產生。論文中以ITO透明導電層作為電極層,相較於使用金屬電極,藉由ITO高透光率的特性,可覆蓋在位於微碟邊緣的共振光場上方,有效增強電場強度與電場/光場的重疊積分,用以達成高效率、高品質因子的電光調變。實驗結果顯示,直徑20m微碟形元件的TE及TM共振模態,在未加上ITO電極時的本質品質因子分別為8.2×104和7.5×104,沉積20nm ITO薄膜層後TE及TM模態最大的本質品質因子分別仍有1.8×104和7.1×103,其中TE及TM共振模態的FSR從17.68nm、18.13nm 分別變化為17.82nm、18.31nm。目前文獻上最佳的電光調變微碟形元件(Opt. Express 25(1), 124-129, 2017),僅有TE模態的電光調變,其調變率為3.41pm/V,本論文提出新型具ITO薄膜之電光調變微碟形元件,其TE及TM模態的電光調變率分別可高達 -30.19 pm/V、-24.31pm/V,TE模態電光調變率增加達8.9倍,且同時具有TE模態與TM模態的高電光調變率。
This thesis proposes an electro-optically modulated lithium niobate microdisc resonant element with ITO electrode is proposed. The circular electrode above the dish and the suspended wire structure connected to it have high electro-optic modulation rate and high quality factor. characteristic. Among them, the thickness of the lithium niobate micro-disc is only 0.4 μm, and the evanescent field extending to the periphery of the dish is large, which causes severe light absorption, so that the resonance light field cannot be generated. In the paper, the ITO transparent conductive layer is used as the electrode layer. Compared with the metal electrode, the high transmittance of ITO can cover the resonant light field at the edge of the microdisk, effectively enhancing the electric field strength and the electric field/light field. The overlap integral is used to achieve electro-optical modulation with high efficiency and high quality factor. The experimental results show that the TE and TM resonance modes of the 20m microdisk-shaped component have the essential quality factors of 8.2×104 and 7.5×104 when the ITO electrode is not added, and TE and TM after depositing the 20 nm ITO film layer. The maximum essential quality factors of the mode are still 1.8×104 and 7.1×103, respectively. The FSR of TE and TM resonance modes are changed from 17.68 nm and 18.13 nm to 17.82 nm and 18.31 nm, respectively. The best electro-optical modulation micro-disc components in the literature (Opt. Express 25(1), 124-129, 2017) have only TE mode electro-optic modulation, and the modulation rate is 3.41 pm/V. The paper proposes a novel electro-optical modulation micro-disc component with ITO film. The electro-optic modulation rate of TE and TM modes can be as high as -30.19 pm/V and -24.31 pm/V, respectively. The TE mode electro-optical modulation rate increases. 8.9 times, and has high electro-optic modulation rate of TE mode and TM mode.


目 錄

中文摘要 i
英文摘要 ii

致謝 iv

目錄 v

圖目錄 vii

表目錄 ix


第一章 緒論 1
1.1 積體光學簡介 1
1.2 鈮酸鋰晶體特性 2
1.3 微型共振腔簡介 4
1.4 ITO透明導電膜 5
1.5 文獻回顧 6
1.6 論文概述 12

第二章 微碟形共振腔理論 14
2.1 微碟形共振模態 14
2.2 耳語廊模態電磁場分佈 15
2.3 光纖耦合因子 18
2.4 品質因子與損耗來源 20
2.5 電光效應 22

第三章 具ITO薄膜之電光微碟形元件製程與量測 25
3.1 元件製程技術 25
3.1.1 晶圓切割 25
3.1.2 晶片清洗 26
3.1.3 薄膜沉積 26
3.1.4 微影製程 27
3.1.5 蝕刻製程 28
3.1.6 高溫熱處理 29
3.1.7 離子佈植 30
3.2 具ITO薄膜之電光微碟形元件製程 33
3.3 元件特性量測技術 36
3.3.1 四點探針量測 36
3.3.2 微碟形元件量測技術 38
3.4 微碟形元件特性量測架設 40
3.4.1 錐形光纖製作 40
3.4.2 元件傳輸頻譜的量測架設 41
3.4.3 電光調變傳輸頻譜的量測架設 43

第四章 實驗結果與討論 44
4.1 鈮酸鋰微碟形元件之製作與特性量測 44
4.1.1 鈮酸鋰微碟形元件之製作 44
4.1.2 具ITO薄膜之鈮酸鋰微碟形元件特性量測 46
4.2 具ITO薄膜之電光調變微碟形元件的設計與製作 47
4.2.1 具ITO薄膜之電光調變微碟形元件的設計 47
4.2.2 具ITO薄膜之電光調變微碟形元件的製作 51
4.3 電光調變微碟形元件之特性量測 54
4.3.1 環形電極開口在+y和-y方向的元件特性比較 54
4.3.2 環形電極開口在-y方向、不同電極參數的元件特性比較 56

第五章 結論 60

參考文獻 62

附件:發表於2018年OPTIC研討會之論文 65

[1]R. S. W and T. K. Gaylord, "Lithium niobate: summary of physical properties and crystal structure," Appl. Phys. A, vol.37, no.19, pp. 191-203, 1985.
[2]J. Li, H. C. Cheng, and D. D. Stancil, "Electro-optic wafer beam deflectors in LiTaO3," IEEE Photon. Technol. Lett., vol. 8, pp. 1486-1488, 1996.
[3]L. Rayleigh, “The problem of the whispering gallery” Phil. Mag., vol. 20, pp. 1001-1004, 1910.
[4]K. J. Vahala, “Optical microcavities,” Nature, vol. 424, pp. 839-846, 2003.
[5]T.-J. Wang, J.-Y. He, C.-A. Lee, and H. Niu, “High-quality LiNbO3 microdisk resonators by undercut etching and surface tension reshaping,” Opt. Express, vol. 20, no. 27, pp. 28119-28124, 2012.
[6]J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation” Opt. Express, vol. 23, no. 18, pp.23702-23708, 2015.
[7]M. Wang, Y. Xu, Z. Fang, Y. Liao, P. Wang, W. Chu, L. Qiao, J. Lin, W. Fang, and Y. Cheng, “On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrode,” Opt. Express, vol. 25, no. 1, pp.124-129, 2017.
[8]F. Monifi, S. K. Ozdemir, J. Friedlein, and L. Yang, “Encapsulation of a Fiber Taper Coupled Microtoroid Resonator in a Polymer Matrix,” IEEE Photon.Technol.Lett.,vol.25,no.15,pp.1458-1461,2013
[9]M. A. P. Krantz, and P. Delsing, “Fabrication of large dimension aluminum air-bridges for superconducting quantum circuits,” J. Vac. Sci. Techol. B. vol.31, no.3, pp.031601, 2013
[10]A. M. Mintairov, Y. Chu, Y. He, S. Blokhin, A. Nadtochy, M. Maximov, V. Tokranov, S. Oktyabrsky and J. L. Merz, “High-spatial-resolution near-field photoluminescence and imaging of whispering-gallery modes in semiconductor microdisks with embedded quantum dots,” Phys. Rev. B., vol. 77, 195322, 2008.
[11]M. K. Chin, D. Y. Chu, and S. T. Ho, “Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,” J. Appl. Phys., vol. 75, pp.3302-3307, 1994.
[12]S. L. Mcall, A. F. J. Levi, R. E. Slusher, S. J. Pearton and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett., vol. 60, pp.289-291, 1992.
[13]張志豪,砷化銦/砷化鎵微碟共振腔之光學特性研究,碩士論文,國立交通大學電子物理系,2009。
[14]B. E. Little, J.-P. Laine and H. A. Haus, “Analytic theory of coupling from tapered fibers and Half-Blocks into microsphere resonators,” J. Lightwave Technol. vol. 17, no. 4, pp.704-715, 1999.
[15]M. Kuznetsov and H. A. Haus, “Radiation loss in dielectricwaveguide structures by the volume current metho,” IEEE J. Quantum Electron., vol. QE-19, no. 10, pp.1505-1514, 1983.
[16]F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. and Quantum Electron., vol. 26, pp. 977-986, 1994.
[17]C. Y. J. Ying, C. L. Sones, A. C. Peacock, F. Johann, E. Soergel, R. W. Eason, M. N. Zervas and S. Mailis, “Ultra-smooth lithium niobate photonic micro-structures by surface tension reshaping,” Opt Express, vol. 18, no. 11, pp.11508-11513, 2010.
[18]H. J. Lee and S.-Y. Shin, “Lithium niobate ridge waveguides fabricated by wet etching,” Electro. Lett, vol. 31, no. 4, pp. 268-269, 1995.
[19]J. Kritwattanakhorn, M. L. Bauersfeld, A. Kovacs, B. Muller, U. Mescheder, S. Rademacher and J. Wollenstein, “Optimization of platinum adhesion in electrochemical etching process for multi-sensor systems,” Sens. Actuators, B, vol. 127, no. 1, pp. 126-131, 2007.
[20]N. Miyakawa, W. Lenger, T. Ziemann, D. Telitschkin, H. Fecht and A. Friedberger, “MEMS-based microthruster with integrated platinum thin film resistance temperature detector (RTD), heater meander and thermal insulation for operation up to 1,000C,” Microsyst Technol. vol. 18, no. 7-8, pp. 1077-1087, 2012.
[21]何政育,提昇鈮酸鋰微碟形元件共振特性之研究,碩士論文,國立台北科技大學光電工程系,2012。
[22]A. Mazzei, S. Go¨tzinger, L. S. Menezes, V. Sandoghdar and O. Benson, “Optimization of prism coupling to high-Q modes in a microsphere resonator using a near-field probe.” Opt. Comm., vol. 250, pp.428-433, 2005.
[23]K. Sasagawam and M. Tsuchiya, “Highly efficient third Harmonic generation in a periodically poled MgO:LiNbO3 disk resonator,” Appl. Phys. Express., vol. 2, 124401, 2009.
[24]N. Dubreuil, J. C. Knight, D. K. Leventhal, V. Sandoghdar, J. Hare, and V. Lef `evre, “Eroded monomode optical fiber for whispering-gallery mode excitation in fused-silica microspheres,” Opt. Lett., vol. 20, pp.813-815, 1995.
[25]陳泳智,以側磨光纖半塊材耦合器激發微米球型共振腔基模之研究,碩士論文,國立中央大學光電科學與工程學系,2007。
[26]S. M. Spillane, T. J. Kippenberg, O. J. Painter and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett., vol. 91, pp.043902, 2003.
[27]J.C. Knight, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper” Opt Lett., vol. 22, no. 15, pp.1129-1131, 1997.
[28]T. Carmon, S. Y. T. Wang, E. P. Ostby and K. J. Vahala, “Wavelength- independent coupler from fiber to an on-chip cavity, demonstrated over an 850nm span,” Opt. Express., vol. 15, pp.7677-7681, 2007.
[29]陳宏業,電光調變摻鉺鈮酸鋰微碟形共振元件之研究,碩士論文,國立台北科技大學光電工程系,2015。
[30]M. Gheidari and E. A. Soleimani “A study of Al/Ti, Al/Ni/Cr and Al/Mo ohmic contacts to indium tin oxide (ITO) for application in thin film solar cell” ISES ,vol. 5 pp 1123-1125, 2007

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊