跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/10 17:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張峻銘
研究生(外文):JYUN, JHANG-MING
論文名稱:組合式弦波充電法對於磷酸鋰鐵電池 內部材料影響之研究
論文名稱(外文):Study on the Effect of Combined Sinusoidal Wave Charging Method on the Internal Material of LFP Battery
指導教授:黃國修黃國修引用關係
指導教授(外文):HUANG, KUOHSIU DAVID
口試委員:陳柏端楊政融蘇評揮
口試委員(外文):CHEN, PO-TUANYANG, CHENG-JUNGSU, PING-HUI
口試日期:2019-07-24
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:車輛工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:82
中文關鍵詞:磷酸鋰鐵電池鋰離子電池電池延壽電容量組合式弦波充電法負極材料SEI膜
外文關鍵詞:Lithium iron phosphate batteryLi-ion batteryCycle-life prolongBattery capacityCombined sinusoidal wave charging methodSEI film
相關次數:
  • 被引用被引用:2
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要為探討目前主流的定電流-定電壓(CC-CV)充電法與依據理論基礎所建立的組合式弦波充電法,在對磷酸鋰鐵電池進行600次充、放電循環後,電池在阻抗、電化學性能、負極的石墨結構及固體電解質界面膜(SEI)生長的部分之影響,由實驗結果可知全新電池在經過600次充、放電延壽循環實驗後,使用CC-CV出電法的電池容量衰退至原先電容量80%,而使用組合式弦波充電法的電池仍保有約94%的電容量,在電化學組抗分析及循環伏安法的測試中,使用組合式弦波充電法的電池在SEI膜阻抗的部分僅增加約0.08 mΩ,且其電化學性能亦優於使用CC-CV充電法之電池,而在場發射掃描式電子顯微鏡及拉曼光譜分析中,使用組合式弦波充電法的電池在負極表面並無觀察到明顯的SEI膜生成,且其負極材料的石墨結構成分與全新電池的狀態幾近相同,最後在SEI膜成分的分析上,發現採用組合式弦波充電法的電池在Li元素中所形成的Li_2 CO_3及Li_2 O含量,僅約15.97%及4.42%,而使用CC-CV充電法的電池其成分含量分別為27.2%及6.69%,故可推論本充電法在對延長電池的使用壽命上,應具備一定的效果。
In this study, the effects of CC-CV charging method and Combined Sinusoidal Wave charging method on the internal structure of lithium iron phosphate battery were discussed. From the experimental results, it is found that after 600 cycles, the battery using the charging method still retains about 94% of SOH, and in the electrochemical impedance analysis and cyclic voltammetry test, the portion of the SEI film impedance is increased about 0.08 mΩ.
In the microstructured portion, no significant SEI film formation was observed on the surface of the negative electrode using the battery of the present charging method. Finally, in the analysis of the SEI film composition, it was found that the Li_2 CO_3 and Li_2 O content in the Li element was only about 15.97% and 4.42% in the battery using this charging method, and the battery component content in the CC-CV charging method was 27.2%. 6.69%.

摘 要 i
ABSTRACT ii
誌 謝 iii
目錄 iv
表目錄 viii
圖目錄 x
第一章 緒論 1
1.1 研究背景與動機 1
1.2 各國電動車發展政策 2
1.3 電動車產業的發展及瓶頸 3
1.4 鋰離子電池產業發展概況 4
1.5 鋰離子電池介紹 6
1.5.1 電池專有名池解釋 9
1.6 鋰離子電池技術瓶頸 10
1.7 磷酸鋰鐵電池介紹 12
1.7.1 正極材料結構 12
1.7.2 負極材料結構 13
1.7.3 放電特性 14
1.8 論文架構 15
第二章 文獻回顧 16
2.1 電池基本充電法介紹 16
2.1.1 定電流充電法 16
2.1.2 定電壓充電法 17
2.1.3 定電壓-定電流充電法 17
2.1.4 涓流式充電法 18
2.1.5 脈衝式充電法 19
2.2 Reflex 充電法 20
2.3 Motorola 充電法 20
2.4 新式弦波充電法 21
2.5 複合波形充電法 22
2.6 鋰離子電池老化因素之探討 23
2.6.1 充、放電 C 數對電池之影響 23
2.6.2 環境溫度對電池之影響 24
2.6.3 放電深度對電池之影響 24
2.6.4 鋰枝晶生成機制 25
2.6.5 SEI 膜生長機制 26
2.7 電化學阻抗分析法之等效電路建立28
第三章 研究方法 30
3.1 充電過程中鋰離子的游離情形分析 30
3.1.1 鋰離子脫出正極之過程 32
3.1.2 鋰離子通過 SEI 膜的情形 32
3.1.3 鋰離子嵌入負極之過程 33
3.1.4 游離過程的能量整合 34
3.2 組合式弦波充電法之波形建立 35
3.3 實驗流程說明 36
3.4 實驗平台說明 39
3.4.1 實驗用儀器規格 40
3.4.2 實驗用電池規格 45
3.5 實驗儀器原理介紹 46
3.5.1 電化學阻抗分析 46
3.5.2 循環伏安法 46
3.5.3 拉曼光譜儀 47
3.5.4 傅立葉紅外線光譜儀 47
3.5.5 化學分析電子能譜儀 48
3.5.6 場發射掃描式電子顯微鏡 48
第四章 結果討論 49
4.1 充、放電循環實驗結果 49
4.2 電化學阻抗分析51
4.3 循環伏安法分析 53
4.4 負極微觀結構分析 56
4.5 傅立葉紅外線光譜分析 60
4.6 化學分析電子能譜 61
第五章 結論與未來展望 72
5.1 結論 72
5.2 未來展望 73
參考文獻 74
1.王忠慶,電動車時代來臨:歐洲2025年起禁售燃油車引爆汽車產業革命,台灣經濟研究院,2017。
2.郭炳焜,徐徽,王先友,鋰離子電池,長沙:中南大學出版社,2002,第34-36頁。
3.K. Mizushima, P. C. Jones, P. J. Wisemen, J. B. Godenough, “LixCoO2 (04.Rosas, J Saunders, H Castaneda, “Interfacial electrochemical analysis on LiCoO2/carbon nanotubes layers as cathode active composite in aqueous electrolytes”, Electrochimica Acta, vol. 113, 2013, pp. 77-86.
5.Caihua Jiang, Zilong Tang, Zhongtai Zhang, “From hydrated layered-spinel lithium manganate composite to high-performance spinel LiMn2O4: A novel synthesis tuned by the concentration of LiOH” , Ceramics International, vol. 43, 2017, pp. 11773-11779.
6.洪裕桓,智慧型鋰電池管理系統之研製,碩士論文,國立中山大學電機工程學系,高雄,2005。
7.Shuai Ma, Modi Jiang, Peng Tao, Chengyi Song, Jianbo Wu, JunWang, Tao Deng, Wen Shang, “Temperature effect and thermal impact in lithium-ion batteries: A review”, Progress in Natural Science: Materials International, vol. 28, 2018, pp. 653-666.
8.Akihiro Kushima, Kang Pyo So, Cong Su, Peng Bai, Nariaki Kuriyama, Takanori Maebashi, Yoshiya Fujiwara, Martin Z.Bazant, Ju Lia, “Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: Root growth, dead lithium and lithium flotsams”, Nano Energy, vol. 32, 2017, pp. 271-279.
9.L. Somerville, J. Bareno, S. Trask, P. Jennings, A. McGordon, C. Lyness, I. Bloom, “The effect of charging rate on the graphite electrode of commercial lithium-ion cells: A post-mortem study”, Journal of Power Sources 335, 2016, pp. 189-196.
10.Padhi, K. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc. 1997, 144, 1188.
11.費定國,黃楷斌,鋰離子電池正極材料LiFePO4 近年研究進展,國立中央大學,桃園,2009。
12.Jiping Zhu , Rui Duan, Sheng Zhang, Nan Jiang, Yangyang Zhang, Jie Zhu , “The application of graphene in lithium ion battery electrode material”, Springer Plus, 2014.
13.Tsutomu Ohzuku, Atsushi Umeda , Norihiro Yamamoto , “Zero-Strain Insertion Material of Li[Lil/3Tis/3]O4 for Rechargeable Lithium cells”, Journal of Physical Chemistry, 1995.
14.戎澤,李子坤,楊書展,任建國,黃友元,岳敏,2018,鋰離子電池用碳負極材料綜述,廣東化工,中國。
15.張彥博,陳金銘,郭信良,鄭季汝,2009,鋰離子電池高容量負極材料技術,工研院材化所,新竹。
16.Rushanah Mohamed, Shan Ji, Vladimir Linkov,” Preparation and Characterisation of LiFePO4/CNT Material for Li-Ion Batteries”, Journal of Electrochemistry, 2017.
17.Chien-Hsing Lee, Ming-Yang Chen, Shih-Hsien Hsu, Joe-Air Jiang,” Implementation of an SOC-based four-stage constant current charger for Li-ion batteries”, Journal of Energy Storage, vol. 18, 2018, pp. 528-537.
18.Zengkai Wang, Shengkui Zeng, Jianbin Guo, Taichun Qina,” State of health estimation of lithium-ion batteries based on the constant voltage charging curve”, Energy, vol.167, 2019, pp. 661-669.
19.D. Anseán a,, M. González a, J.C. Viera a, V.M. García b, C. Blanco a, M. Valledor” Fast charging technique for high power lithium iron phosphate batteries: A cycle life analysis ”, Journal of Power Sources, 2013, pp.239
20.Panos D. Prezas, Argonne National Laboratory, L. Somerville, Argonne National, Laboratory and University of Warwick, P Jennings and A McGordon,,WMG,University of Warwick, J. K. Basco, Argonne National Laboratory, T. Duong, US Dept. of Energy, I. Bloom, Argonne National Laboratory, ” Effect of Fast Charging of Lithium-Ion Cells: Performance and Post-Test Results”, SAE International by National Taipei University of Technology, 2016.
21.Jun Li, Edward Murphy, Jack Winnick, Paul A. Kohl ,’’The effects of pulse charging on cycling characteristics of commercial lithium-ion batteries” , 2001.
22.Zhifu Wang , Yupu Wan , Yinan Rong , Zhi Li , Lin Fantao ,’’Study on the Optimal Charging Method for Lithium-Ion Batteries Used in Electric Vehicles” , 2016
23.林鼎焜,2016,具有電池充電平衡之新式弦波充電法,碩士論文,國立臺北科技大學機電工程系研究所,臺北。
24.楊芳豪,2018,鋰電池之新型複合波形延壽充電方法研究,碩士論文,國立臺北科技大學車輛工程系,臺北。
25.Po-Tuan Chen, Fang-Haur Yang, Thangavel Sangeetha, Hong-Min Gao, K. David Huang,’’ Moderate Energy for Charging Li-Ion Batteries Determined by First-Principles Calculations’’, Batteries & Supercaps Vol. 1, 2018.
26.Saurabh Saxena, Yinjiao Xing, Daeil Kwon, Michael Pecht,” Accelerated degradation model for C-rate loading of lithium-ion batteries”, International Journal of Electrical Power & Energy Systems, vol. 107, 2019, pp. 438-445.
27.Andrzej Kulka, Katarzyna Redel, Janina Molenda,” Platelet-shape LiFePO4/Fe2P/C composite material as a high-rate positive electrode for Li-ion batteries”, Solid State Ionics, vol. 335, 2019, pp. 113-120.
28.M. Kassem, C. Delacourt. “Postmortem analysis of calendar-aged graphite/LiFePO4 cells”, Journal of Power Sources, 2013, pp. 159-171.
29.J. Lindgren, P.D. Lund,” Effect of extreme temperatures on battery charging and performance of electric vehicles”, Journal of Power Sources, 2016, pp. 37-45.
30.Kevin Mallon, Francis Assadian, Bo Fu,” Analysis of On-Board Photovoltaics for a Battery Electric Bus and Their Impact on Battery Lifespan”, Energies, 2017.
31.B. Xu, A. Oudalov, A. Ulbig, G. Andersson, D. S. Kirschen, “Modeling of Lithium-Ion Battery Degradation for Cell Life Assessment”, IEEE Transactions on Smart Grid, 2018, pp.1131-1140.
32.Aniruddha Jana, R. Edwin García,” Lithium dendrite growth mechanisms in liquid electrolytes”, Nano Energy, vol. 41, 2017, pp. 552-565.
33.Feng Wua, Yan-Xia Yuan, Xin-Bing Cheng, Ying Bai, Yu Li, Chuan Wu, Qiang Zhang,” Perspectives for restraining harsh lithium dendrite growth: Towards robust lithium metal anodes”, Energy Storage Materials, vol. 15, 2018, pp.148-170.
34.Chaoqun Niu, Mingke Zhang, Guangping Chen, Bokai Cao, Jiwei Shi, Jie Du, Yong Chen,” An effectively inhibiting lithium dendrite growth in-situ-polymerized gel polymer electrolyte” Electrochimica Acta, vol. 283, 2018, pp. 349-356.
35.Victor A. Agubra, Jeffrey W. Fergus,” The formation and stability of the solid electrolyte interface on the graphite anode”, Journal of Power Sources,vol. 268, 2014, pp. 153-162.
36.Seong Jin An, Jianlin Li, Claus Daniel, Debasish Mohanty, Shrikant Nagpure David L.Wood III,” The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling”, Carbon, 2016, pp. 52-76.
37.Nae-Lih Wu, Yu-TingWeng, Fu-Sheng Li, Nai-Hsuan Yang, Chin-Lung Kuo, Dong-Sheng Li,” Polymeric artificial solid/electrolyte interphases for Li-ion batteries”, Progress in Natural Science: Materials International, vol.25, 2015, pp. 563-571.
38.Qi Li, Juner Chen, Lei Fan, Xueqian Kong, Yingying Lu,” Progress in electrolytes for rechargeable Li-based batteries and beyond”, Green Energy & Environment, vol. 1, 2016, pp. 18-42.
39.庄全超,徐守冬,邱祥云,崔永丽,方亮,孙世刚,锂离子电池的电化学阻抗谱分析,化学进展,中國,2010。
40.P. L. Taberna, P. Simon, and J. F. Fauvarque,” Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors”, Journal of The Electrochemical Society, 150, pp. A292-A300, 2003.
41.M. Saiful Islam, Craig A. J. Fisher, “Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties”, Chemical Society Reviews, 2014, pp. 185-204.
42.M. Stanley Whittingham, “Lithium Batteries and Cathode Materials”, Chem. Rev., 2004, pp. 4271-4301.
43.John B. Goodenough, Youngsik Kim, “Challenges for Rechargeable Li Batteries”, Chem. Mater. 2010, 22, pp. 587–603.
44.D. Morgan, A. V. der Ven, G. Ceder, Electrochem. Solid-State Lett. 2004, 7, pp. A30-A32.
45.Shi S, Lu P, Liu Z, Qi Y, Hector LG Jr, Li H, Harris SJ, “Direct calculation of Li-ion transport in the solid electrolyte interphase”, J Am Chem Soc. 2012, 134, pp. 15476-15487.
46.Kevin Leung, Fernando Soto, Kie Hankins, Perla B. Balbuena and Katharine L. Harrison, “Stability of Solid Electrolyte Interphase Components on Lithium Metal and Reactive Anode Material Surfaces”, J. Phys. Chem. C, 2016, 120, pp. 6302-6313.
47.Yoshitaka TATEYAMA, “First-Principles Calculation Study on Solid Electrolyte Interphase (SEI) in Lithium Ion Battery”, Journal of Computer Chemistry, vol. 18, pp. 18-28.
48.T. Richard Jow, Kang Xu, Oleg Borodin and Makoto Ue, “Electrolytes for Lithium and Lithium-Ion Batteries”, Johnson Matthey Technol. Rev., 2015, 59, pp. 30–33.
49.Kang Xu, Arthur von Cresce, Unchul Lee, “Differentiating contributions to "ion transfer" barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface”, Langmuir 2010, 26, pp.11538–11543.
50.Zak E. Hughes and Tiffany R. Walsh, “Computational chemistry for graphene-based energy applications: progress and challenges”, Journal of Nanoscale, 2015.
51.Muralikrishna Raju, P. Ganesh, Paul R. C. Kent and Adri C. T. van Duin, “Reactive Force Field Study of Li/C Systems for Electrical Energy Storage”, J. Chem. Theory Comput., 2015, pp. 2156-2166.
52.Chaohe Xu, Binghui Xu, Yi Gu, Zhigang Xiong, Jing Sun and X. S. Zhao, “Graphene-based electrodes for electrochemical energy storage”, The Royal Society of Chemistry, 2013, pp.1388-1414.
53.Kristin Persson, Yoyo Hinuma, Ying Shirley Meng, Anton Van der Ven and Gerbrand Ceder, “Thermodynamic and kinetic properties of the Li-graphite system from first-principles calculations”, The American Physical Society, 2010, pp.125416-1-8.
54.M. Maccario, L. Croguennec, B. Desbat, M. Couzi, F. Le Cras and L. Servantd, “Raman and FTIR Spectroscopy Investigations of Carbon-Coated LixFePO4 Materials”, Journal of The Electrochemical Society, 2008, 155, pp. A879-A886.
55.Jing Wu1, Gopi Krishna Phani Dathar, Chunwen Sun, Murali G Theivanayagam, Danielle Applestone, Anthony G Dylla1, Arumugam Manthiram, Graeme Henkelman, John B Goodenough and Keith J Stevenson, “In situ Raman spectroscopy of LiFePO4:
size and morphology dependence during charge and self-discharge”, Nanotechnology, 2013, 424009 (9pp).
56.Jian-liang CHENG, Xin-hai LI, Zhi-xing WANG, Hua-jun GUO, “Mechanism for capacity fading of 18650 cylindrical lithium ion batteries”, Trans. Nonferrous Met. Soc. China 27(2017) 1602−1607.
57.Christian M. Julien, Karim Zaghib, Alain Mauger, Henri Groult, “Enhanced Electrochemical Properties of LiFePO4 as Positive Electrode of Li-Ion Batteries for HEV Application”, Advances in Chemical Engineering and Science, 2012, pp. 321-329.
58.A. Ait Salah, P. Jozwiak, K. Zaghib, J. Garbarczyk,F. Gendron a, A. Maugerd, C.M. Julien, “FTIR features of lithium-iron phosphates as electrode materials for rechargeable lithium batteries”, Spectrochimica Acta Part A 65, 2006, pp. 1007–1013.
59.Suzy Surbl´e, Aur´elien Habrioux, Cyril Paireau, Pascal Berger, Hicham Khodja, Delphine Neff, Dominique Gosset, Sophie Mailley, and S´ebastien Patouxd, “Complementary Ion Beam Analysis and Raman Studies for Investigation of the Carbon Coating Impact on Li Insertion/Deinsertion Process at LiFePO4/C Electrodes”, Journal of The Electrochemical Society, 164, 2017, pp. A3538-A3544.
60.Jadra Mosa, Mario Aparicio, Alicia Dur´an, Christel Laberty-Robert and Clement Sancheza, “Nanocrystalline mesoporous LiFePO4 thin-films as cathodes for Li-ion microbatteries”, J. Mater. Chem. A, 2014, pp. 3038–3046.
61.A.M. Andersson, A. Henningson, H. Siegbahn, U. Jansson, K. Edstro¨m, “Electrochemically lithiated graphite characterised by photoelectron spectroscopy”, Journal of Power Sources, 2003, pp. 522–527.
62.R. Dedryve`re, S. Laruelle, S. Grugeon, P. Poizot, D. Gonbeau and J.-M. Tarascon, “Contribution of X-ray Photoelectron Spectroscopy to the Study of the Electrochemical Reactivity of CoO toward Lithium” Chem. Mater. 2004, pp. 1056-1061.
63.Carsten Fiedler, Bjoern Luerssen, Marcus Rohnke, Joachim Sann, and Juergen Janek, “XPS and SIMS Analysis of Solid Electrolyte Interphases on Lithium Formed by Ether-Based Electrolytes”, Journal of The Electrochemical Society, 164, 2017, pp.A3742-A3749.
64.V. Eshkenazi, E. Peled, L. Burstein, D. Golodnitsky, “XPS analysis of the SEI formed on carbonaceous materials”, Solid State Ionics, 170, 2004, pp. 83–91.
65.J. E. Morales-Ugarte, E. Bolimowska, H. Rouault, J. Santos-Peña, C. C. Santini and A. Benayad, “EIS and XPS Investigation on SEI Layer Formation during First Discharge on Graphite Electrode with a Vinylene Carbonate Doped Imidazolium Based Ionic Liquid Electrolyte”, J. Phys. Chem. C, 2018, 122, pp. 18223−18230.
66.Fei Ding, Wu Xu, Xilin Chen, Jian Zhang, Mark H. Engelhard, Yaohui Zhang, Bradley R. Johnson, Jarrod V. Crum, Thomas A. Blake, Xingjiang Liu and Ji-Guang Zhang, “Effects of Carbonate Solvents and Lithium Salts on Morphology and Coulombic Efficiency of Lithium Electrode”, Journal of The Electrochemical Society, 160, 2013, pp. A1894-A1901.
67.Natalia Schulz, Ren´e Hausbrand, Carolin Wittich, Lucangelo Dimessoand Wolfram Jaegermann, “XPS-Surface Analysis of SEI Layers on Li-Ion Cathodes:Part II. SEI-Composition and Formation inside Composite Electrodes”, Journal of The Electrochemical Society, 165, 2018, pp. A833-A846.
68.D. Bar-Tow, E. Peled and L. Burstein, “A Study of Highly Oriented Pyrolytic Graphite as a Model for the Graphite Anode in Li-Ion Batteries”, Journal of The Electrochemical Society, 146, 1999, pp. 824-832.
69.中國電動汽車百人會,2018,全球電池市場及產能分析,第一電動網。2019年7月31日,取自https://kknews.cc/tech/lexqej9.html
70.黃可龍,王兆翔,劉素琴,鋰離子電池原理與技術,五南圖書出版股份有限公司,台北,2010。
71.Yancheng Zhang , Chao Yang Wang ,“Cycle-Life Characterization of Automotive Lithium-ion Batteries with LiNiO2 Cathode” , Journal of The Electrochemical Society, 156 , pp. A527-A535, 2009.
72.Ma Haikuan, Zhang Xu, Zhong Shilei, Shi Xiaofeng, Ma Lizhen, Ma Jun, “Detection of Antibiotics Based on Hyphenated Technique of Electrostatic- Preconcentration and Surface-Enhanced-Raman-Spectroscopy”, Acta Agronomica Sinica, 2018.
73.廖雪兒,2006,利用步進式霍氏紅外光譜法研究酚於193nm光解所產生一氧化碳之內能分佈,碩士論文,國立清華大學化學系,新竹。
74.張立信,「表面化學分析技術」,奈米通訊,第十九卷,第4期,2012。
75.羅聖全,「科學基礎研究之重要利器-掃描式電子顯微鏡(SEM) 」,科學研習,No. 52-5,2013。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊